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ABSTRACT 

The aim of this paper is to present a comparative numerical study between the minorant functions and line 

search methods in computing the step size in the penalty method for linear optimization. The minorant 

functions were confirmed by many interesting numerical experimentations to be more beneficial than the 

classical line search methods. 
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I. INTRODUCTION  

Optimization is an especially interesting topic in data 
science. Linear Optimization (LO) or Linear Programming 
(LP) problems form an important class of optimization 
problems, aiming to find the feasible region and optimize the 
solution in order to have the highest or lowest value of a 
function. It is now well established as an important and very 
active branch of applied mathematics. The wide applicability of 
LO models and its richness as a mathematical theory that 
underlines these models and the methods developed to solve 
them have been the driving forces behind the rapid and 
continuing evolution of the subject. The template is general 
enough to express many different problems in engineering, 
industry, commerce, economics, business administration, 
physical sciences, and mathematics, or in any other area where 
decisions (in a board sense) must be taken in some complex (or 
conflicting) situation that can be represented by a mathematical 
model. There are two classes of methods for the resolution of 
LO problems, simplex method and interior point methods. In 
this study, we are interested in interior point methods. These 
are efficient methods developed to solve LO and NP problems. 
Several algorithms have been proposed to solve LO problems. 
Some fundamental classes of interior point methods are the 
affine method, the projective method with the potential 
reduction of Karmarkar and its alternatives [5, 9], central 
trajectory methods, and penalty/barrier methods [6, 13]. Our 
work is based on the latter type of interior point methods for 
solving LO problems. 

In this paper, we propose a logarithmic barrier interior-
point method for solving LO problems. In fact, the main 
difficulty to be anticipated in establishing iterations in such a 
method will come from the determination and computation of 
the step-size. The aim of this paper is to present a comparative 

numerical study between the line search methods and the 
minorant function to compute the step-size along the direction 
in barrier logarithmic methods. 

II. PROBLEM FORMULATION 

We consider the following LO problem  

� min� ���	�� ≥ �, � ∈ �� .                         (1) 

where 	 ∈ ��×� ,  such that ����	 = � < �, � ∈ �� and � ∈ �� . The problem (1) is the dual of the following linear 
program: 

� max ��!	�! = �! ∈ �� , ! ≥ 0.     (2) 

The problem (1) can be written in the following standard 
form: 

$ min� ���	�� − � = & 
� ∈ �� , & ∈ �� , & ≥ 0.    (3) 

One of the advantages of problem (1) with respect to its 
dual problem (2) is that the variable of the objective function is 
a vector instead of a matrix. Furthermore, under certain 
convenient hypothesis, the resolution of problem (1) is 
equivalent to (2) in the sense that the optimal solution of one of 
the two problems can be reduced directly from the other 
through the application of the theorem of the sladeness 
complementary [15]. In the rest of the paper, the following are 
denoted: 
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 ' = {� ∈ ��  ∶ 	�� − � ≥ 0}, the set of feasible solutions 
of (1).  

 '+ = {� ∈ ��  ∶ 	�� − � > 0} , the set of strictly feasible 
solutions of (1).  

 - = {! ∈ �� ∶ 	! = �, ! ≥ 0}, the set of feasible solutions 
of (2).  

 -+ = {! ∈ �� ∶ 	! = �, ! > 0}, the set of strictly feasible 
solutions of (2). 

Let ., / ∈ �� . 0heir scalar product is defined by: 〈., /〉 = .�/ = ∑ .4/4�456   

We suppose that the sets '+ and -+ are not empty. 

A. The Perturbed Problem of (1)  

Problem (1) is approximated by the following perturbed 
problem:  

�min� 78(�)� ∈ �� .            (4) 

where 9 > 0 is the the penalty parameter and 78 is the barrier 
function defined by: 

78(�) = ���� + �9 ln9 − 9ln ∑ 〈<4 , 	�� − �〉�456    if 	�� − � > 0+∞                                                                            if not   

where (<6, <A, … , <�)  is the canonical base in �� .  We are 
interested in solving the problem (4). 

The idea of this new approach consists to introduce one 
original process to calculate the step-size based on minorant 
functions. The main advantage of (4) resides in the strict 
convexity of its objective function and its feasible domain. 
Consequently, the conditions of optimality are necessary and 
sufficient. This fosters theoretical and numerical studies of the 
problem. In the next section, the existence and uniqueness of 
the optimal solution of (4) is proved and we show its 
convergence to (1), in particular the behavior of its optimal 
value and its primal solutions when 9 → 0, then lim8→D �8 =�∗ is an optimal solution of (1). In Section III, we propose an 
interior point algorithm based on the Newton's approach which 
allows us to solve the nonlinear system resulting from the 
optimality conditions. The iteration of this algorithm is of 
descent type, defined by: �FG6 = �F + HFIF , where dk is the 
descent direction and αk is the step-size. Also, we present 
different steps-sizes by minimizing a minorant function which 
approximates the one-dimensional function 
 J(HF) = minKLD 7(� + HI). The last Section is dedicated to 
the presentation of comparative numerical tests to illustrate the 
effectiveness of our approach and to determine the most 
efficient algorithm. 

The main advantage of (4) resides in the strict convexity of 
its objective function and its feasible domain. Consequently, 
the conditions of optimality are necessary and sufficient. This 
fosters theoretical and numerical studies of the problem. Before 
this, it is necessary to show that (4) has at least an optimal 
solution. 

B. Convergence of the Perturbed Problem 

Firstly, we give the following definition: 

Definition: Let 7 be a function defined from ��  to � ∪ {∞}.  7  is called inf-compact if for all 9 > 0,  the set  '8(7) = {� ∈ �� ∶   7(�) ≤ 9}  is compact, which comes in 
particular to say that its cone of recession is reduced to zero. 

To prove that (4) has an optimal solution, we show that 78 
is inf-compact. For that, it is enough to prove that the cone of 

recession '+ PQ78RST = UI ∈ �� ∶  Q78RS(I) ≤ 0V,  is reduced 

to the origin, i.e. PQ78RS(I) ≤ 0T ⇒ (d = 0), where Q78RS is 

defined by: 

Q78RS(I) = limK→GS
7Y(� + HI) − 7Y(�)H = ��I. 

This needs the following proposition: 

Proposition: I = 0 whenever ��I ≤ 0 and 	�I ∈ '+.   
Then, the problem (4) has an optimal solution. We know 

that the Hessian matrix Z = ∇A7Y(�) is positive definite, then 
the problem (4)  is strictly convex, and if it has an optimal 
solution, then it is unique. We have: 

78(�) = ��� + �9 ln9 − 9ln \〈<4 , 	�� − �〉�
456

 

Then: 

]78(�) = � − 9 ∑ ^_`〈_`,^a�bc〉�456   

and: 

]A78(�) = 9 ∑ ^_`(^_`)a
〈_`,^a�bc〉d�456   

As 78  is inf-compact and strictly convex, therefore the 
problem (4) admits a unique optimal solution. We denote by �(9) or �8 the unique optimal solution of (4). 

C. Convergence of the Perturbed Problem to the Initial 
Problem 

For � ∈ '+, let's introduce the symmetrical definite positive 
matrix e4  of rank �, f = 1, … , �  and the lower triangular 
matrix g, such that e4 = 	<4(	<4)� = gg� , which implies that Z  is a positive definite matrix. In what follows, we will be 
interested in the behavior of the optimal value and the optimal 
solution �(9) of problem (4). 

Proposition: For 9 > 0, let �8  an optimal solution of the 
problem (4) then there is an optimal solution of (1) � ∈ ', such 
that, lim8→D �8 = �.  

Remark: We know that if one of the problems (1) and (2) 
has an optimal solution, and the values of their objective 
functions are equal and finite, the other problem has an optimal 
solution. 
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III. RESOLUTION OF THE PERTURBED PROBLEM  

In this part, we are interested in the numerical solution of 
problem (4). We use a logarithmic barrier interior point 
method. This method types are based on the optimality 
conditions which are necessary and sufficient, and consist of 
constructing a sequence of iterate �FG6 = �F + HFIF   , where �8  is an optimal solution of (4) if it satisfies the following 
condition: ∇78Q�8R = 0                                         (5) 

To solve (5) we use the Newton's approach which means to 
find in each iteration a vector �8F + IF checking the following 
linear system: ZFIF = −]78Q�8FR.                                (6) 

As ZF = ]A78Q�8FR is a symmetric positive definite matrix, 
the Cholesky methods and the conjugate gradient methods are 
the best convenient for solving (6). To ensure the convergence 
of the algorithm towards an optimal solution �∗ of (4), it should 
be made sure that all the iterations �8F + IF  remain strictly 
feasible. For that, we introduce a step-size HF  checking the 
condition: 	�Q�8F + HFIFR − � > 0  

A. Effectual Computation of the Step Size 

There are two main techniques used for computing the 
displacement step HF. 

1) Line Search  

These methods try out a sequence of candidate values of HF, stopping to accept one of these values when some 
conditions are satisfied. An ideal choice of the step-size is the 
global minimization of the one-dimensional function J(∙) 
defined by: J(HF) = minKLD 7(� + HI)  

The most used line search methods are Wolfe, Goldstein—
Armijo, Fibonacci, etc. Unfortunately, these methods have big 
computational cost. 

2) Principle of Approximate Function 

A minorant function ij  must be close to: 

i(H) = 68 k78(� + HI) − 78(�)l   

which must give the minK ij(H) in m0, Hno by a simple and easy 
manner, which permits the computation of the step-size at each 
iteration in a relatively short time and with a smaller number of 
instructions in contrast to line search technique. 

Authors in [12] gave a simple form for the function, which 
is presented in the following proposition: 

Proposition [12]: Let Hn = &.p{H: 1 + r4H}  with 

 r4 = 〈_`,^as〉〈_`,^a�bc〉 , ∀f = 1, … , �. For all H ∈ m0, Hno,  the following 

function i(H) is well defined: i(H) = �(∑ r4�456 )H − ‖r‖AH − ∑ ln(1 + r4H)�456   

such that, i(H)verifies the following properties: ‖r‖A = �(r̅A + wxA) = iyy(0) = −iy(0), i(0) = 0  

B. Minorant Function 

Authors in [10] proposed 3 minorant functions in 2019. In 
this paper, we are interested in their best minorant function 
defined as:  ij6(H) = zH − (� − 1) ln(1 + {H) − ln(1 + |H)   

with: z = �r̅ − ‖r‖A { = r̅ − }~√�b6| = r̅ + wx√� − 1.  

In addition, they proved that the minorant function ij6  is 
defined and convex on m0, Hno,  i(H) > ij6(H)  ( ij6  minorant 
function on m0, Hno ), and the function ij6 verifies the following 
properties: ‖r‖A = �(r̅A + wxA) = ij yy(0) = −ij y(0), ij(0) = 0  

The minimum of ij6  is obtained in H�4 = H��� ,  such that, ij6y(0) = 0.  We are then coming back to solve the second 
order following equation: HA − 2�H + � = 0, with: 

� = 6A P�� − 6� − 6�T and � = b‖x‖d
���    

The roots of this equation are of the type H� = � ± √�A − �. 
Let's take one root of the two that belong to m0, Hnm. Thus, the H� 
is explicitly computed, then, we consider it belongs to the 
interval (0, Hn − �)  and i′ (H) < 0,  with � > 0  being a fixed 
precision. 

Remark: The calculation of H�  is performed by a 
dichotomous procedure, in the cases where H�4 ∉ (0, Hn − �), 
and iy(H) > 0,  as follows: 

Put H = 0  and � = Hn − �  while |� − �| > 10b� . If i P�G�A T < 0 , then � = �G�A . Else � = �G�A ,  so H� = �.  This 

calculation guarantees a better approximation of the minimizer 
of ij′ (H) while remaining in the domain of i. 

Proposition [10]: Let �FG6 and �F be two strictly feasible 
solutions of (4) obtained respectively at the � + 1  and � 
iterations, so we have 78(�FG6) < 78(�F). 

IV. ALGORITHM DESCRIPTION AND NUMERICAL 
RESULTS 

In this section, we present the algorithm of our approach to 
obtain an optimal solution �̅  to problem (1) and some 
numerical tests. 

A. The Αlgorithm 

In this section, we present the algorithm of our approach to 
obtain an optimal solution �̅ to the problem (1). 

For simplicity, we consider �F instead of �8Fand � instead 

of �8.   
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Begin algorithm 

Initialization �D is a strictly feasible solution of (1), ID ∈ �� and � > 0 is a given precision. 
Iteration 

While |��IF| > � do 
Solve the system ZFIF = −]78Q�8FR.  
Compute the step-size using the strategy 

of minorant function or line search 

method.   

Take the new iterate �FG6 = �F + HFIF.  
Take � = � + 1. 
End while 

End algorithm 

 

This approach tries to reduce the number of iterations and 
the time of calculation. Some examples are presented below. 

B. Numerical Results 

To measure the numerical performance of the proposed 
methods, we present a numerical comparison of the results 
obtained by the proposed algorithm using the minorant 
function given in [10] to compute the step-size and those 
obtained by using the line search Wolfe's method. We use 
examples with fixed and variable sizes to carry out the 
numerical tests. 

The following examples are taken from the literature [1, 4, 
8] and were implemented in MATLAB. We took  � = 1.0< − 006. In the result table: 

 (size) represents the size of the example. 

 (itrat) represents the number of iterations necessary to 
obtain an optimal solution. 

 (time) represents the time of computation in seconds (s). 

 (mf st) represents the strategy that uses minorant function. 

  (lr st) represents the strategy that uses Wolfe's line search. 

Recall that the considered problem (1) is: 

� min� ���	�� ≥ �, � ∈ ��   

We note that the matrices used in the numerical tests are 
full matrices. 

1) Examples with Fixed Size 

Example 01: 

	 = �2 3 1 23 0 −2 1� , � = �20�  and  � = m4 1 2 0o�  

 The initial strictly feasible point is �D = m1 1.5 1 1o� .  
 The optimal solution is �D = m0 0.67 0 0o� .   

Example 02:  

	 = �2 1 0 −1 0 00 0 1 0 1 −11 1 1 1 1 1 � , � = �001�     

and � = m3 −1 1 0 0 0o�  

 The initial strictly feasible point is �D = m1 1 2o� . 
 The optimal solution is �∗ = m0.5 0.0713 0.5o�.   

Example 03: 

	 = �1 −1 1 1 0 01 1 0 0 1 02 2 1 0 0 1� , � = �624�     
and � = m4 −2 −2 0 0 0o�  

 The initial strictly feasible point is �D = m0.5 1 1o� . 
 The optimal solution is  �D = m0 0 0o� .  

Example 04: 

,

100000541232

010000221112

001000512010

000100143354

000010310135

000001113401







































A

  � = m1 4 4 5 7 5o�  � = m−4 −5 −1 −3 5 −8 0 0 0 0 0 0o�  

 The initial strictly feasible point is: �D = m−2 4 1 1 1 1o�  

 The optimal solution is �∗ = m0.5 1.5 0 0 1.5 0o�  

Example 05: 

 �4 = 10�, f = 1, … ,5,  � = m1 1 1 1 1 1 1 1 1 1 0 0 0 0 0o�  

 The initial strictly feasible point is �D = m1 1 1 1 1o�  

 The optimal solution is �D = m0 0 0.0888 0 0.0078o�  

The results of the last examples are given in Table I. 

TABLE I.  EXAMPLES WITH FIXED SIZE 

Size 
mf st ls st 

itrat time itrat time 2 × 4 5 0.032 13 0.130 3 × 6 6 0.044 33 0.128 3 × 6 7 0.051 34 0.132 6 × 12 9 0.055 34 0.306 5 × 15 8 0.048 22 0.170 
 

A 

1 2 3 4 5 5 4 3 2 1 1 0 0 0 0

6 7 8 9 10 5 2 8 3 1 0 1 0 0 0

11 12 13 14 15 6 7 80 90 10 0 0 1 0 0

1 10 20 30 40 50 60 80 90 10 0 0 0 1 0

3 9 27 60 45 60 75 8 9 46 0 0 0 0 1

= 
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2) Example with Variable Size � = 2�, For f, � = 1, … , �,    	mf, �o = 0  if f ≠ � or (f + 1) ≠ �	mf, �o = 	mf, f + �o = 1,    �mfo = 2.        

 The initial strictly feasible point is �D = m1 1 … 1o� . 
 The optimal solution is �∗ = m0 0 … 0o� .   

Table II resumes the obtained results. 

TABLE II.  EXAMPLES WITH FIXED SIZE 

Size 
mf st ls st 

itrat time itrat time 50 × 100 1 0.031 49 8.5512 100 × 200 1 0.053 50 32.6145 200 × 400 2 0.088 51 91.6524 400 × 800 3 0.096 52 161.4374 500 × 1000 3 0.12 52 411.8901 
 

V. CONCLUSION 

The conducted numerical study clearly shows that the 
strategy of the minorant function seems to be more efficient 
than that of the line search in time and number of iterations. 
Our future work will consider further improving the 
computational time of the logarithmic barrier algorithm by 
proposing another, better, approximate function. But the 
extensions would be envisaged to the nonlinear, and not 
necessarily relevant to the LO problem. 
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