
Engineering, Technology & Applied Science Research Vol. 5, No. 2, 2015, 790-794 790

www.etasr.com Dossis and Dimitriou: Are HLS Tools Healthy? The C-Cubed Project

Are HLS Tools Healthy?
The C-Cubed Project

Michael Dossis
Dept. of Informatics Engineering

TEI of Western Macedonia
Kastoria, Greece

mdossis@yahoo.gr

Georgios Dimitriou
Dept. of Electrical and Computer Engineering

University of Thessaly
Volos, Greece

dimitriu@uth.gr

Abstract— The increasing complexity of Application Specific
Integrated Circuits (ASICs) and Systems-on-Chip (SoCs) that
incorporate custom and standard embedded core IP blocks
dictates the need for a new generation of automated and formal
system EDA tools and methodologies. High-Level Synthesis
(HLS) plays a critical role in the required Electronic System
Level (ESL) methodologies. However, most of the available
academic and commercial High-Level Synthesis (HLS) tools still
do not play an established role in the system and hardware
engineering teams. This is true for a number of practical reasons,
analyzed and discussed in this work. The present article is a
practical perspective of the required fully automated and formal
tools, which are needed to constitute integral parts in Electronic
Design Automation (EDA) flows. In addition, this article is a
useful guide to the system engineer who wants to familiarize with
HLS tools and to select the appropriate tool for the everyday
engineering practice. The advanced HLS toolset that is analyzed
in this paper is developed by the first author, its C-frontend by
the second author, and they are both based on formal methods
and fully automated techniques, thus they guarantee the
correctness of the synthesized hardware implementations. This
paper completes with a number of experiments that were
executed using the author’s methodology and they are used to
evaluate the specific HLS tools. Consequently, a number of
conclusions are drawn as well as suggestions for the future
directions of HLS technology. In this way, what is practically
needed by the hardware systems engineering community is
outlined at the end of the paper.

Keywords-High-Level Synthesis; Formal Methods; EDA; ESL;
Hardware Compilers; Digital Hardware Design

I. INTRODUCTION

Nowadays, digital integrated microelectronics feature
extremely complex components, control/design hierarchy and
interconnection schemes. Such components constitute
dominant parts in embedded, high-performance and
portable/consumer electronic computing systems. It is
important to note that as the number of registers in a design
increases linearly, the development and verification effort and
engineering time increase exponentially. Such complexity
cannot be dealt anymore with traditional design methods such
as RTL coding/synthesis/simulation, since they suffer from
highly iterative design flows and prolonged product
development. Often, due to these problems, the products miss
the market windows and engineering investment is lost. During

the last couple of decades, commercial and academic
organisations have invested in High-Level Synthesis (HLS) in
order to achieve automation, quality of implementations and
shortened specification-to-product times [1-5, 7]. However,
there are a number of practical and engineering issues related to
the existing HLS tools. First, they produce much lower quality
of hardware implementations compared to manual techniques.
Second, their hardware models that are difficult to handle, and
with a lot of platform assumptions and transformation
heuristics that assume an ideally-matched target environments,
failing to produce real-life configurations.

Existing and well-defined formal methodologies, such as
logic programming [6], compiler generators, artificial
intelligence and software compilers etc, can benefit HLS tools.
The most understood and explored HLS tasks are high-level
optimizations, scheduling, allocation and binding [1-5, 7].
High-level transformations resemble software compiler
optimizations. Allocation is the selection of functional units
and storing resources for the data and operations objects found
in high-level program code. Binding is the actual mapping of
the above units to real hardware elements such as flip-flops,
latches and combinatorial blocks such as functional operator
hardware units. Scheduling is the arrangement of elementary
operations to Finite State Machine (FSM) states or in other
words real system’s clock cycles. However, the optimization of
real-world, complex applications and their mapping onto
custom hardware fail to produce competitive (with the
manually designed) implementations due to the tools’ inability
to handle arbitrary, complex, nested control flow and large data
objects, as well as sophisticated interfaces through complex
hierarchy and module configuration.

II. HLS TOOLS, AND ENGINEERING PRACTICE

High-Level Synthesis research commenced in the 80s, with
the first academic and industrial linear processing HLS tools
appearing in the early 90s. Usual problems that HLS
researchers were called to handle, were allocation, scheduling
and binding, as mentioned above. The most cumbersome of
these problems to deal with is the building of a reliable
scheduler [3]. It is well known that when the system
complexity increases linearly (e.g. in terms of number of FSM
states), the complexity of the scheduler increases exponentially.
For extremely complex applications, scheduling is NP-
complete [3, 7]. The difficulty to handle complex code

Engineering, Technology & Applied Science Research Vol. 5, No. 2, 2015, 790-794 791

www.etasr.com Dossis and Dimitriou: Are HLS Tools Healthy? The C-Cubed Project

becomes serious, and even prohibitive especially when
complex control flow hierarchy (e.g. nested while, if/then and
for loops) are encountered in the source code model [4, 7].

Although the need for automation is pressing, HLS tools
are still not widely accepted in the industrial practice because
of their low quality of results, particularly for real applications
with complex module/control-flow hierarchy as stated before.
Usually, the specification coding style has a severe impact on
the type, template and quality of the delivered implementation.
For real-life applications, the execution time of the synthesis
transformations (front-end compilation, algorithmic
transformations, optimizing scheduling, allocation and
binding), increases exponentially with a linear increase of the
design size [3-5]. This demanded the use of heuristics to cut
down processing time, leading to suboptimal solutions.

Most of the available HLS tools impose severe extensions
or restrictions (e.g. exclusion of while loops) on the
programming semantic model of the subset that they accept as
specification. Heuristics are applied on the HLS
transformations (e.g. guards, speculation, loop shifting,
trailblazing) [2]. These are suitable for only linear/dataflow
dominated (e.g. stream-based) applications, such as DSP,
image processing and video/sound streaming. Once again they
cannot handle any of the excluded programming constructs,
such as subprograms, records, while loops, and loop breaks.

The most popular commercial HLS tools include the
Catapult-C from Calypto (previously developed by Mentor
Graphics), and Cynthesizer from Forte Design Systems. They
all accept as input a small subset of the System-C and C++
languages. These tools have very complicated for the average
user interfaces, and they are the most expensive of their class
since they are licensed for something less than 300K dollars per
year. So, these E-CAD systems are inaccessible for most of the
small and medium sized ASIC/FPGA design SMEs.

Other commercial or industrial HLS tools are the Symfony
C compiler from Synopsys, the Impulse-C from Impulse
Accelerated Technologies, the CyberWorkBench from NEC,
the C-to-silicon from Cadence, and the free web-based tool C-
to-Verilog from an Israel-based group. These tools are mostly
used only internally by the producing organization, and they
are otherwise not well-known amongst the engineering
community for reasons that were explained above.

The most well-known academic or research-based HLS
efforts are the SPARK tool [2] which accepts as input a small
subset of the ANSI-C language (e.g. while loops are not
accepted), and a conditional guard based optimization method
[7]. The latter set the basis for optimizing conditional source
code at the beginning of the previous decade.

Recent research efforts include a multi-speculative
approach to synthesize complex adders during datapath
synthesis, which again contributes only towards linear flow
oriented designs [8], a fixed-point accuracy analysis and
optimization of polynomial data-flow graphs with respect to a
reference model that is found in many DSP applications [9], a
technique to improve nested loop pipelining for HLS, called
Polyhedral Bubble Insertion [10], an equivalence checking
method of FSMs with datapaths based on value propagation

over model paths, for validation code motion, usually applied
during the HLS scheduling phase [11], a formal method for
accurate high-level casting of optimal adders and subtractors
[12], and an exploration approach, called Spectral-aware Pareto
Iterative Refinement, that uses response surface models
(RSMs) and spectral analysis to predict the design quality
without costly architectural synthesis procedures [13].

III. NEED FOR FORMAL TECHNIQUES

The issues discussed above dictate the need for the
incorporation of intelligent and formal HLS techniques on the
source-to-implementation optimizing transformations. In this
way, the produced hardware implementations become correct-
by-construction. Only top behavioral level verification (e.g.
with rapid compile and execute of the specs) will be needed,
against spending weeks and months, on lengthy RTL or
annotated gate simulations that is required with traditional
methods. In our approach, constraints and designer options can
be applied by the user on the automatic HLS transformation,
such as the number of available resources, the length of the
desired schedule, the type of the micro-architecture, the
generated HDL code as well as the inclusion of custom (e.g.
arithmetic) logic functions throughout the HLS compilation,
avoiding predefined target platforms or synthesis heuristics.

IV. THE C-CUBED EDA HLS FRAMEWORK

The first author has designed and developed an intelligent
HLS toolset [4] that optimizes operations into control steps,
achieving the maximum functional parallelism in the
synthesized implementation [5]. The C-Cubed compiler
employs an advanced scheduler called PARCS, with formal
techniques such as logic programming [6] and RDF subject-
predicate-object relations [7]. Thus, the delivered
implementations are correct-by-construction.

A detailed description of the prototype optimizing C-Cubed
synthesizer can be found in [4]. The C-Cubed tool employs
formal techniques such as predicate logic [6], RDF relations
and XML schema validation to improve the synthesis results.
The usability and correctness of the C-Cubed HLS toolset were
evaluated with a large number of benchmarks, a few of which
are discussed in the following sections of this paper.

The C-Cubed ADA/C HLS design and verification flow,
includes the front-end and back-end HLS tools, and the GNU
C/ADA integrated compiler, development and verification
environment, as shown in Figure 1. The standard programming
set of the ADA and ANSI-C language are accepted by the C-
Cubed synthesizer. The front-end compiler is a compiler-
generator parsing and syntax processing system with all the
standard software compiler optimizations. The back-end
compiler is based on logic programming inference engine rules
and it includes the formal PARCS scheduler and optimizer.
PARCS attempts always to parallelize as many as possible
operations in the same control step, obeying to data/control
dependencies. Nevertheless, the tool can be guided by external
module and operator specific resource constraints.

The C-Cubed design and verification flows are outlined in
Figure 1. The designer, who should be familiar with either

Engineering, Technology & Applied Science Research Vol. 5, No. 2, 2015, 790-794 792

www.etasr.com Dossis and Dimitriou: Are HLS Tools Healthy? The C-Cubed Project

ANSI-C or ADA programming, uses standard programming
language constructs such as routines, if/then, while/for loops,
arrays and records (structures) complex control constructs and
as nested as needed control flow types to build the executable
specification model in any of these languages. Before
execution of the C-Cubed compiler, the user verifies the
correctness of the given algorithm by simply compiling and
executing the source code model along with any benchmark-
specific code (e.g. file-I/O and conversion routines). After
debugging his specification code the user passes it to the C-
Cubed framework for hardware synthesis. C-Cubed tools are
fully automatic, without the slightest code modification,
delivering provably-correct hardware implementations in
VHDL or Verilog RTL. This usually takes from seconds to a
few minutes depending on the complexity of the specification
model. The applications are optimized with the PARCS
scheduler and high-quality RTL implementations are
generated. These RTL code modules are FSM-controlled
datapaths of optimized operators and functional unit sets. They
are fully-synthesizable to hardware with any of the available
academic or commercial RTL synthesizers without the slightest
intervention or modification of the synthesized RTL model

Fig. 1. C-Cubed HLS design and verification flow

. The produced RTL is highly readable and including
comments and object names reflecting the C or ADA source
code names and user identifiers. Thus the designer can easily
trace the code names into the delivered RTL statements and if
he/she desires to execute RTL simulations for further
confidence on the produced implementations, although this is
not needed, due to the formality of the employed synthesis
transformations by the C-Cubed framework.

V. EXPERIMENTAL RESULTS

Arbitrary input ADA or ANSI-C code using any of the
standard programming language constructs is rapidly and
automatically synthesized into functionally-equivalent RTL
VHDL/Verilog hardware implementation, using the C-Cubed
framework. A great number of applications were synthesized
with the C-Cubed toolset [4], some of which are discussed
here. In every case, the functionality of the produced hardware
implementations matched that of the input subprograms, which
was expected due to the formal nature of C-Cubed [4].

After building and verifying the benchmarks in ADA or C
code, they were synthesized into VHDL/Verilog RTL. Since
the C-Cubed transformations utilize formal techniques there is
no need to simulate the generated RTL. Nevertheless for
proving this argument in experimental practice we have
simulated all the generated RTL tests to ensure that they are
functionally equivalent to that of the source code. A RTL
simulation snapshot of a computer graphics benchmark
generated HDL code is shown in Figure 2. This algorithm is
based on the DDA method to draw a straight line on a digitized
screen with pixels. Figure 2 demonstrates the completion of the
generated hardware’s function with the synchronized
done/results_read signal event, as well as all the result data
storing into the external memory.

Fig. 2. The graphics drawing line benchmark simulation

All synthesized applications were implemented on Xilinx
FPGAs using the Mentor Graphics Precision RTL Synthesis
2013b.15_64-bit (Production Release) tool, and the Xilinx ISE
place&route utilities, targeting a Xilinx -family VIRTEX-4 -
part 4VSX55FF1148 -speed -12 technology FPGA device.
Table I shows the state reduction, using the PARCS optimizer
for six benchmarks, the line drawing algorithm, a MPEG
engine, a FIR filter, a diff. eq. solver a RSA crypto-algorithm
and a nested loops benchmark. In some cases with complex
control flow, the state reduction optimization rate reaches up to
41 per cent, or the initial FSM. The state reduction for these
benchmarks is shown graphically in Figure 3. All the tests were
compiled with C-Cubed in less than 1 minute.

Amongst the above applications, the MPEG engine
comprises of a FSM with more than 1500 states. It has been
designed in standard ANSI-C code and the C frontend facility
of C-Cubed tools (developed by the second author of this
paper) was used to convert it into ADA for synthesis. Such a

Engineering, Technology & Applied Science Research Vol. 5, No. 2, 2015, 790-794 793

www.etasr.com Dossis and Dimitriou: Are HLS Tools Healthy? The C-Cubed Project

complex design is practically impossible to design and verify
directly in RTL. Therefore the contribution of the C-Cubed
technology in this direction is invaluable. Tables II and III
provide resource use statistics of the FPGA hardware of the
MPEG video compression application. Timing constraints that
were used for the synthesis and implementation with a clock
frequency target of 100 MHz, which was achieved with
sizeable slack. The RTL synthesis with Precision took less than
3 seconds real time and the C-Cubed frontend optimization was
completed in 45 seconds for the most complex MPEG test. The
produced MPEG RTL for the initial schedule included 9145
VHDL lines, and the optimized by PARCS schedule was a list
of 8162 VHDL lines. Figure 4 shows the Xilinx resource
statistics for the initial and the optimized MPEG design
schedules in a graphical way.

The C-Cubed HLS compiler can be guided by a number of
options, such as local and global resource constraints, the target
HDL, the massively parallel or FSM+datapath architecture, and
the location of complex data objects (such as arrays) on
external or embedded memories. This is the reason that Table I
has multiple experiment lines with “embedded” or “external”
memory options. Of course fruitful trade-offs can be extracted
easily, with experimenting with the high performance
embedded memory vs the more economic and realistic for
small FPGA devices external memory location of the complex
data structures. In any case, the location to external memory is
configured for any of the data objects of the source code, using
a set of elegant memory options file, and without altering the
source code as it happens to other, antagonistic HLS tools.

TABLE I. STATE REDUCTION OPTIMIZATION USING PARCS

Hardware Implementation Statistics

Module name Initial FSM
states

PARCS
parallel FSM

states

State
reduction

line-drawing design 17 10 41%

MPEG top routine (with
external memory)

1697 1380 19%

FIR filter main routine 17 10 41%
Differential equation

solver
20 13 35%

RSA main routine 16 11 31%
nested loops 1st routine 28 20 29%
nested loops 2nd routine

(with embedded memory)
36 26 28%

nested loops 2nd routine
(with external memory)

96 79 18%

nested loops 3rd routine 15 10 33%
nested loops 4th routine 18 12 33%
nested loops 5th routine 17 13 24%

Fig. 3. State reduction rates of some benchmarks in graphical view

Fig. 4. Xilinx Implementation Statistics for the intial and the optimized

(PARCS) FSM state schedule

TABLE II. XILINX VIRTEX-4 FPGA IMPLEMENTATION OF THE INITIAL,
UNOPTIMIZED MPEG SCHEDULE

Initial (Un-optimized) Schedule
Xilinx Utilization Statistics

Resource
Used
Parts

Available
Parts

Utilization
rate

IOs 3093 640 483.28%
Global Buffers 1 32 3.13%

LUTs 6193 49152 12.60%
CLB Slices 3097 24576 12.60%

Dffs or Latches 3836 49152 7.80%

TABLE III. XILINX VIRTEX-4 FPGA IMPLEMENTATION OF THE OPTIMIZED
MPEG SCHEDULE

PARCS (optimized) Schedule Xilinx
Utilization Statistics

Resource
Used
Parts

Available
Parts

Utilization
rate

IOs 3093 640 483.28%
Global Buffers 1 32 3.13%

LUTs 6088 49152 12.39%
CLB Slices 3044 24576 12.39%

Dffs or Latches 3836 49152 7.80%

VI. PROSPECTS OF HLS

What about the future? What should be the future directions
in order to achieve industrial strength HLS? More input
programming languages (e.g. C++, System-C, UML, Fortran,
Delphi-Pascal, Java, SystemC, Python, etc.) and a more
globalized and integrated use of formal techniques throughout
the flow of the HLS toolset are needed in order to bring
practical results with acceptable quality of HLS results. The
automatic and formal nature of future HLS research is critical
in order to be accepted by the engineering community.
Combining formal synthesis with formal verification is the only
way to deal with the extrapolated complexities of nowadays
integrated digital systems. Moreover, HLS methodologies need
to be more general and adaptable to the configuration of
different engineering environments, to raw programming code
of high-level popular languages such as C, C++ and ADA and
to various targeted computing architectures and of course to all
of the established industrial backend flows. Furthermore, new
methods need to be investigated for merging multi-cycle
operation models with pipelined designs and more advanced
programming constructs such as parallelism in the source code,
pointers, and dynamic data structures.

HLS can play a critical part in the engineering practice via
the re-use and acceptance as input of existing hardware and
software IP. To achieve this, a wide compatibility of HLS
input/output with languages and formats is required, as well as

Engineering, Technology & Applied Science Research Vol. 5, No. 2, 2015, 790-794 794

www.etasr.com Dossis and Dimitriou: Are HLS Tools Healthy? The C-Cubed Project

rapid prototyping capability to the future electronics product
development. Furthermore, arbitrary and complex module and
control flow program code in the designer’s set of system
models need to be transformed with ease, speed and
comparable quality with manual methods, into the required
software and hardware implementations. In this way, highly-
complex applications will motivate the design engineers to use
HLS tools and hardware-software co-design, in their everyday
practice. The most important of all: the HLS transformations
need to be based on formal techniques so that lengthy RTL and
gate-level simulations will be avoided and rapid development
cycles will be realized, with free-of-bugs, and first-time-right
products. In this way, complete system hardware/software co-
design flows will be realized into every day engineering
practice. We believe that our C-Cubed approach is an important
step towards achieving the above goals.

VII. CONCLUSIONS AND FUTURE WORK

Very often, the assumptions that many existing HLS tools
make (about the targeted technology attributes, the architectural
template, the HDL code style, the timing and power
consumption, the available operator and data resources as well
as the type of communication with the external environment
components such as shared memories), produce disappointing
synthesis results, since there is still no established methodology
for feeding target technology characteristics back into the core
of the HLS transformation process (although some academic
attempts to model this problem have been made). In most cases
these target implementation characteristics need to be fed into
the synthesis flow and guide the complex synthesis
transformations of the HLS tool, which makes the synthesis
process manual, heavily interactive, cumbersome, prone to
errors and very slow.

This paper contributes towards the understanding of
practical issues of contemporary HLS tools and underlines the
future directions and achievements which should be envisaged.
The most important contribution of this work is a HLS ESL
tool, that automatically, rapidly, formally and optimally
transforms input algorithmic, raw, general, arbitrary, widely
accepted and re-used (from software engineering) high-level
program code into optimal RTL hardware implementations.
The C-Cubed synthesizer is making an important step towards
the requirements for the above achievements and a number of
related projects are under-way to deliver better synthesis results
with readable RTL code and better visibility of the design’s
attributes and algorithmic features. Of course, this is not the
only attempt to deal with the complexities of the HLS
transformations and there have been a number of research
projects that target a better engineering environment to
alleviate the frustrations of industries about dealing with
development results that are just too late to hit the market
window for many electronics products. Moreover, we can learn
from other research efforts and also guide them with our own
experience through the complexities and issues of HLS
research with the aim to deliver better EDA tools to the design
engineers and alleviate their highly-complex tasks to deliver
quickly and correctly high-quality hardware and computing
products.

Future work for the C-cubed tools include the inclusion of a
number of input language formats such as ANSI-C, C++,
SystemC and OpenCL, and a number of output formats like
SystemC and cycle-accurate C test benches for fast verification.
Also, a number of source code optimizations such as dynamic
loop-unrolling and code motion are under development. The
use of RDF and XML formalisms in the automatic validation of
the internal state and structures of the C-Cubed compiler is
under investigation and soon will be integrated into the
standard C-Cubed framework. Moreover, there is ongoing
work on the use of parameterized components, libraries, and
optimized arithmetic units as well as multi-cycle operators to
help in the direction of advanced pipelined, multi-operational
chained designs with high performance and optimized nested
loops.

REFERENCES
[1] B. Le Gal, E. Casseau, S. Huet, “Dynamic memory access management

for High-Performance DSP applications using high-level synthesis”,
IEEE Transactions on Very Large Scale Integration (VLSI) Systems,
Vol. 16, No. 11, pp.1454-1464 , 2008

[2] S. Gupta, R. K. Gupta, N. D. Dutt, A. Nikolau, “Coordinated
parallelizing compiler optimizations and high-level synthesis”, ACM
Transactions on Design Automation of Electronic Systems, Vol. 9, No.
4, pp. 441–470 , 2004

[3] R. A. Walker, S. Chaudhuri, “Introduction to the scheduling problem”,
IEEE Design & Test of Computers, Vol. 12, No. 2, pp. 60–69, 1995

[4] M. F. Dossis, “A formal design framework to generate coprocessors with
implementation options”, International Journal of Research and Reviews
in Computer Science, Vol. 2, No. 4, pp. 929-936, 2011

[5] P. G. Paulin, J. P. Knight, “Force-directed scheduling for the behavioral
synthesis of ASICs”, IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, Vol. 8, No. 6, pp. 661–679, 1989

[6] U. Nilsson, J. Maluszynski, Logic Programming and Prolog, John Wiley
& Sons Ltd., 2nd Edition, 1995

[7] A. A. Kountouris, C. Wolinski, “Efficient scheduling of conditional
behaviors for high-level synthesis”, ACM Transactions on Design
Automation of Electronic Systems, Vol. 7, No. 3, pp. 380–412, 2002

[8] A. A. Del Barrio, R. Hermida, S. O. Memik, J. M. Mendias, M. C.
Molina, “Multispeculative addition applied to datapath synthesis”, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and
Systems, Vol. 31, No. 12, pp. 1817-1830, 2012

[9] O. Sarbishei, K. Radecka, “On the fixed-point accuracy analysis and
optimization of polynomial specifications”, IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, Vol. 32,
No. 6, pp. 831-844, 2013

[10] A. Morvan, S. Derrien, P. Quinton, “Polyhedral bubble insertion: a
method to improve nested loop pipelining for high-level synthesis”,
IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, Vol. 32, No. 3, pp. 339-352, 2013

[11] K. Banerjee, C. Karfa, D. Sarkar, C. Mandal, “Verification of code
motion techniques using value propagation”, IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, Vol. 33,
No. 8, pp. 1180-1193, 2014

[12] R. Sierra, C. Carreras, G. Caffarena, C. A. López Barrio, “A formal
method for optimal high-level casting of heterogeneous fixed-point
adders and subtractors”, IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, Vol. 34, No. 1, pp. 52-62, 2015

[13] S. Xydis, G. Palermo, V. Zaccaria, C. Silvano, “SPIRIT: spectral-aware
pareto iterative refinement optimization for supervised high-level
synthesis”, IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, Vol. 34, No. 1, pp. 155-159, 2015

