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Abstract— The increasing complexity of Application Specific 
Integrated Circuits (ASICs) and Systems-on-Chip (SoCs) that 
incorporate custom and standard embedded core IP blocks 
dictates the need for a new generation of automated and formal 
system EDA tools and methodologies. High-Level Synthesis 
(HLS) plays a critical role in the required Electronic System 
Level (ESL) methodologies. However, most of the available 
academic and commercial High-Level Synthesis (HLS) tools still 
do not play an established role in the system and hardware 
engineering teams. This is true for a number of practical reasons, 
analyzed and discussed in this work. The present article is a 
practical perspective of the required fully automated and formal 
tools, which are needed to constitute integral parts in Electronic 
Design Automation (EDA) flows. In addition, this article is a 
useful guide to the system engineer who wants to familiarize with 
HLS tools and to select the appropriate tool for the everyday 
engineering practice. The advanced HLS toolset that is analyzed 
in this paper is developed by the first author, its C-frontend by 
the second author, and they are both based on formal methods 
and fully automated techniques, thus they guarantee the 
correctness of the synthesized hardware implementations. This 
paper completes with a number of experiments that were 
executed using the author’s methodology and they are used to 
evaluate the specific HLS tools. Consequently, a number of 
conclusions are drawn as well as suggestions for the future 
directions of HLS technology. In this way, what is practically 
needed by the hardware systems engineering community is 
outlined at the end of the paper. 
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I. INTRODUCTION  

Nowadays, digital integrated microelectronics feature 
extremely complex components, control/design hierarchy and 
interconnection schemes. Such components constitute 
dominant parts in embedded, high-performance and 
portable/consumer electronic computing systems. It is 
important to note that as the number of registers in a design 
increases linearly, the development and verification effort and 
engineering time increase exponentially. Such complexity 
cannot be dealt anymore with traditional design methods such 
as RTL coding/synthesis/simulation, since they suffer from 
highly iterative design flows and prolonged product 
development. Often, due to these problems, the products miss 
the market windows and engineering investment is lost. During 

the last couple of decades, commercial and academic 
organisations have invested in High-Level Synthesis (HLS) in 
order to achieve automation, quality of implementations and 
shortened specification-to-product times [1-5, 7].  However, 
there are a number of practical and engineering issues related to 
the existing HLS tools. First, they produce much lower quality 
of hardware implementations compared to manual techniques. 
Second, their hardware models that are difficult to handle, and 
with a lot of platform assumptions and transformation 
heuristics that assume an ideally-matched target environments, 
failing to produce real-life configurations. 

Existing and well-defined formal methodologies, such as 
logic programming [6], compiler generators, artificial 
intelligence and software compilers etc, can benefit HLS tools. 
The most understood and explored HLS tasks are high-level 
optimizations, scheduling, allocation and binding [1-5, 7].  
High-level transformations resemble software compiler 
optimizations. Allocation is the selection of functional units 
and storing resources for the data and operations objects found 
in high-level program code. Binding is the actual mapping of 
the above units to real hardware elements such as flip-flops, 
latches and combinatorial blocks such as functional operator 
hardware units. Scheduling is the arrangement of elementary 
operations to Finite State Machine (FSM) states or in other 
words real system’s clock cycles. However, the optimization of 
real-world, complex applications and their mapping onto 
custom hardware fail to produce competitive (with the 
manually designed) implementations due to the tools’ inability 
to handle arbitrary, complex, nested control flow and large data 
objects, as well as sophisticated interfaces through complex 
hierarchy and module configuration. 

II. HLS TOOLS, AND ENGINEERING PRACTICE 

High-Level Synthesis research commenced in the 80s, with 
the first academic and industrial linear processing HLS tools 
appearing in the early 90s. Usual problems that HLS 
researchers were called to handle, were allocation, scheduling 
and binding, as mentioned above. The most cumbersome of 
these problems to deal with is the building of a reliable 
scheduler [3]. It is well known that when the system 
complexity increases linearly (e.g. in terms of number of FSM 
states), the complexity of the scheduler increases exponentially. 
For extremely complex applications, scheduling is NP-
complete [3, 7]. The difficulty to handle complex code 
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becomes serious, and even prohibitive especially when 
complex control flow hierarchy (e.g. nested while, if/then and 
for loops) are encountered in the source code model [4, 7].  

Although the need for automation is pressing, HLS tools 
are still not widely accepted in the industrial practice because 
of their low quality of results, particularly for real applications 
with complex module/control-flow hierarchy as stated before. 
Usually, the specification coding style has a severe impact on 
the type, template and quality of the delivered implementation. 
For real-life applications, the execution time of the synthesis 
transformations (front-end compilation, algorithmic 
transformations, optimizing scheduling, allocation and 
binding), increases exponentially with a linear increase of the 
design size [3-5]. This demanded the use of heuristics to cut 
down processing time, leading to suboptimal solutions. 

Most of the available HLS tools impose severe extensions 
or restrictions (e.g. exclusion of while loops) on the 
programming semantic model of the subset that they accept as 
specification. Heuristics are applied on the HLS 
transformations (e.g. guards, speculation, loop shifting, 
trailblazing) [2]. These are suitable for only linear/dataflow 
dominated (e.g. stream-based) applications, such as DSP, 
image processing and video/sound streaming. Once again they 
cannot handle any of the excluded programming constructs, 
such as subprograms, records, while loops, and loop breaks. 

The most popular commercial HLS tools include the 
Catapult-C from Calypto (previously developed by Mentor 
Graphics), and Cynthesizer from Forte Design Systems. They 
all accept as input a small subset of the System-C and C++ 
languages. These tools have very complicated for the average 
user interfaces, and they are the most expensive of their class 
since they are licensed for something less than 300K dollars per 
year. So, these E-CAD systems are inaccessible for most of the 
small and medium sized ASIC/FPGA design SMEs.  

Other commercial or industrial HLS tools are the Symfony 
C compiler from Synopsys, the Impulse-C from Impulse 
Accelerated Technologies, the CyberWorkBench from NEC, 
the C-to-silicon from Cadence, and the free web-based tool C-
to-Verilog from an Israel-based group. These tools are mostly 
used only internally by the producing organization, and they 
are otherwise not well-known amongst the engineering 
community for reasons that were explained above. 

The most well-known academic or research-based HLS 
efforts are the SPARK tool [2] which accepts as input a small 
subset of the ANSI-C language (e.g. while loops are not 
accepted), and a conditional guard based optimization method 
[7]. The latter set the basis for optimizing conditional source 
code at the beginning of the previous decade. 

Recent research efforts include a multi-speculative 
approach to synthesize complex adders during datapath 
synthesis, which again contributes only towards linear flow 
oriented designs [8], a fixed-point accuracy analysis and 
optimization of polynomial data-flow graphs with respect to a 
reference model that is found in many DSP applications [9], a 
technique to improve nested loop pipelining for HLS, called 
Polyhedral Bubble Insertion [10], an equivalence checking 
method of FSMs with datapaths based on value propagation 

over model paths, for validation code motion, usually applied 
during the HLS scheduling phase [11], a formal method for 
accurate high-level casting of optimal adders and subtractors 
[12], and an exploration approach, called Spectral-aware Pareto 
Iterative Refinement, that uses response surface models 
(RSMs) and spectral analysis to predict the design quality 
without costly architectural synthesis procedures [13]. 

III. NEED FOR FORMAL TECHNIQUES  

The issues discussed above dictate the need for the 
incorporation of intelligent and formal HLS techniques on the 
source-to-implementation optimizing transformations. In this 
way, the produced hardware implementations become correct-
by-construction. Only top behavioral level verification (e.g. 
with rapid compile and execute of the specs) will be needed, 
against spending weeks and months, on lengthy RTL or 
annotated gate simulations that is required with traditional 
methods. In our approach, constraints and designer options can 
be applied by the user on the automatic HLS transformation, 
such as the number of available resources, the length of the 
desired schedule, the type of the micro-architecture, the 
generated HDL code as well as the inclusion of custom (e.g. 
arithmetic) logic functions throughout the HLS compilation, 
avoiding predefined target platforms or synthesis heuristics. 

IV. THE C-CUBED EDA HLS FRAMEWORK 

The first author has designed and developed an intelligent 
HLS toolset [4] that optimizes operations into control steps, 
achieving the maximum functional parallelism in the 
synthesized implementation [5]. The C-Cubed compiler 
employs an advanced scheduler called PARCS, with formal 
techniques such as logic programming [6] and RDF subject-
predicate-object relations [7]. Thus, the delivered 
implementations are correct-by-construction.  

A detailed description of the prototype optimizing C-Cubed 
synthesizer can be found in [4]. The C-Cubed tool employs 
formal techniques such as predicate logic [6], RDF relations 
and XML schema validation to improve the synthesis results. 
The usability and correctness of the C-Cubed HLS toolset were 
evaluated with a large number of benchmarks, a few of which 
are discussed in the following sections of this paper.  

The C-Cubed ADA/C HLS design and verification flow, 
includes the front-end and back-end HLS tools, and the GNU 
C/ADA integrated compiler, development and verification 
environment, as shown in Figure 1. The standard programming 
set of the ADA and ANSI-C language are accepted by the C-
Cubed synthesizer. The front-end compiler is a compiler-
generator parsing and syntax processing system with all the 
standard software compiler optimizations. The back-end 
compiler is based on logic programming inference engine rules 
and it includes the formal PARCS scheduler and optimizer. 
PARCS attempts always to parallelize as many as possible 
operations in the same control step, obeying to data/control 
dependencies. Nevertheless, the tool can be guided by external 
module and operator specific resource constraints. 

The C-Cubed design and verification flows are outlined in 
Figure 1. The designer, who should be familiar with either 
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ANSI-C or ADA programming, uses standard programming 
language constructs such as routines, if/then, while/for loops, 
arrays and records (structures) complex control constructs and 
as nested as needed control flow types to build the executable 
specification model in any of these languages. Before 
execution of the C-Cubed compiler, the user verifies the 
correctness of the given algorithm by simply compiling and 
executing the source code model along with any benchmark-
specific code (e.g. file-I/O and conversion routines). After 
debugging his specification code the user passes it to the C-
Cubed framework for hardware synthesis. C-Cubed tools are 
fully automatic, without the slightest code modification, 
delivering provably-correct hardware implementations in 
VHDL or Verilog RTL. This usually takes from seconds to a 
few minutes depending on the complexity of the specification 
model. The applications are optimized with the PARCS 
scheduler and high-quality RTL implementations are 
generated. These RTL code modules are FSM-controlled 
datapaths of optimized operators and functional unit sets.  They 
are fully-synthesizable to hardware with any of the available 
academic or commercial RTL synthesizers without the slightest 
intervention or modification of the synthesized RTL model 

 

 

Fig. 1.  C-Cubed HLS design and verification flow 

. The produced RTL is highly readable and including 
comments and object names reflecting the C or ADA source 
code names and user identifiers. Thus the designer can easily 
trace the code names into the delivered RTL statements and if 
he/she desires to execute RTL simulations for further 
confidence on the produced implementations, although this is 
not needed, due to the formality of the employed synthesis 
transformations by the C-Cubed framework. 

V. EXPERIMENTAL RESULTS 

Arbitrary input ADA or ANSI-C code using any of the 
standard programming language constructs is rapidly and 
automatically synthesized into functionally-equivalent RTL 
VHDL/Verilog hardware implementation, using the C-Cubed 
framework. A great number of applications were synthesized 
with the C-Cubed toolset [4], some of which are discussed 
here. In every case, the functionality of the produced hardware 
implementations matched that of the input subprograms, which 
was expected due to the formal nature of C-Cubed [4].  

After building and verifying the benchmarks in ADA or C 
code, they were synthesized into VHDL/Verilog RTL. Since 
the C-Cubed transformations utilize formal techniques there is 
no need to simulate the generated RTL. Nevertheless for 
proving this argument in experimental practice we have 
simulated all the generated RTL tests to ensure that they are 
functionally equivalent to that of the source code. A RTL 
simulation snapshot of a computer graphics benchmark 
generated HDL code is shown in Figure 2. This algorithm is 
based on the DDA method to draw a straight line on a digitized 
screen with pixels. Figure 2 demonstrates the completion of the  
generated hardware’s function with the synchronized 
done/results_read signal event, as well as all the result data 
storing into the external memory. 

 

 
Fig. 2.  The graphics drawing line benchmark simulation 

All synthesized applications were implemented on Xilinx 
FPGAs using the Mentor Graphics Precision RTL Synthesis 
2013b.15_64-bit (Production Release) tool, and the Xilinx ISE 
place&route utilities, targeting a Xilinx -family VIRTEX-4 -
part 4VSX55FF1148 -speed -12 technology FPGA device. 
Table I shows the state reduction, using the PARCS optimizer 
for six benchmarks, the line drawing algorithm, a MPEG 
engine, a FIR filter, a diff. eq. solver a RSA crypto-algorithm 
and a nested loops benchmark. In some cases with complex 
control flow, the state reduction optimization rate reaches up to 
41 per cent, or the initial FSM. The state reduction for these 
benchmarks is shown graphically in Figure 3. All the tests were 
compiled with C-Cubed in less than 1 minute. 

Amongst the above applications, the MPEG engine 
comprises of a FSM with more than 1500 states. It has been 
designed in standard ANSI-C code and the C frontend facility 
of C-Cubed tools (developed by the second author of this 
paper) was used to convert it into ADA for synthesis. Such a 
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complex design is practically impossible to design and verify 
directly in RTL. Therefore the contribution of the C-Cubed 
technology in this direction is invaluable. Tables II and III 
provide resource use statistics of the FPGA hardware of the 
MPEG video compression application. Timing constraints that 
were used for the synthesis and implementation with a clock 
frequency target of 100 MHz, which was achieved with 
sizeable slack. The RTL synthesis with Precision took less than 
3 seconds real time and the C-Cubed frontend optimization was 
completed in 45 seconds for the most complex MPEG test. The 
produced MPEG RTL for the initial schedule included 9145 
VHDL lines, and the optimized by PARCS schedule was a list 
of 8162 VHDL lines. Figure 4 shows the Xilinx resource 
statistics for the initial and the optimized MPEG design 
schedules in a graphical way. 

The C-Cubed HLS compiler can be guided by a number of 
options, such as local and global resource constraints, the target 
HDL, the massively parallel or FSM+datapath architecture, and 
the location of complex data objects (such as arrays) on 
external or embedded memories. This is the reason that Table I 
has multiple experiment lines with “embedded” or “external” 
memory options. Of course fruitful trade-offs can be extracted 
easily, with experimenting with the high performance 
embedded memory vs the more economic and realistic for 
small FPGA devices external memory location of the complex 
data structures. In any case, the location to external memory is 
configured for any of the data objects of the source code, using 
a set of elegant memory options file, and without altering the 
source code as it happens to other, antagonistic HLS tools. 

TABLE I.  STATE REDUCTION OPTIMIZATION USING PARCS 

Hardware Implementation Statistics 

Module name Initial FSM 
states 

PARCS 
parallel FSM 

states 

State 
reduction 

line-drawing design 17 10 41% 

MPEG top routine (with 
external memory) 

1697 1380 19% 

FIR filter main routine 17 10 41% 
Differential equation 

solver 
20 13 35% 

RSA main routine 16 11 31% 
nested loops 1st routine 28 20 29% 
nested loops 2nd routine 

(with embedded memory) 
36 26 28% 

nested loops 2nd routine 
(with external memory) 

96 79 18% 

nested loops 3rd routine 15 10 33% 
nested loops 4th routine 18 12 33% 
nested loops 5th routine 17 13 24% 

 

 
Fig. 3.  State reduction rates of some benchmarks in graphical view 

 
Fig. 4.  Xilinx Implementation Statistics for the intial and the optimized 

(PARCS) FSM state schedule   

TABLE II.  XILINX VIRTEX-4 FPGA IMPLEMENTATION OF THE INITIAL, 
UNOPTIMIZED MPEG SCHEDULE 

Initial (Un-optimized) Schedule 
Xilinx Utilization Statistics 

Resource 
Used 
Parts 

Available 
Parts 

Utilization 
rate 

IOs 3093 640 483.28% 
Global Buffers 1 32 3.13% 

LUTs 6193 49152 12.60% 
CLB Slices 3097 24576 12.60% 

Dffs or Latches 3836 49152 7.80% 

TABLE III.  XILINX VIRTEX-4 FPGA IMPLEMENTATION OF THE OPTIMIZED 
MPEG SCHEDULE 

PARCS (optimized) Schedule Xilinx 
Utilization Statistics 

Resource 
Used 
Parts 

Available 
Parts 

Utilization 
rate 

IOs 3093 640 483.28% 
Global Buffers 1 32 3.13% 

LUTs 6088 49152 12.39% 
CLB Slices 3044 24576 12.39% 

Dffs or Latches 3836 49152 7.80% 

VI. PROSPECTS OF HLS  

What about the future? What should be the future directions 
in order to achieve industrial strength HLS? More input 
programming languages (e.g. C++, System-C, UML, Fortran, 
Delphi-Pascal, Java, SystemC, Python, etc.) and a more 
globalized and integrated use of formal techniques throughout 
the flow of the HLS toolset are needed in order to bring 
practical results with acceptable quality of HLS results. The 
automatic and formal nature of future HLS research is critical 
in order to be accepted by the engineering community. 
Combining formal synthesis with formal verification is the only 
way to deal with the extrapolated complexities of nowadays 
integrated digital systems. Moreover, HLS methodologies need 
to be more general and adaptable to the configuration of 
different engineering environments, to raw programming code 
of high-level popular languages such as C, C++ and ADA and 
to various targeted computing architectures and of course to all 
of the established industrial backend flows. Furthermore, new 
methods need to be investigated for merging multi-cycle 
operation models with pipelined designs and more advanced 
programming constructs such as parallelism in the source code, 
pointers, and dynamic data structures. 

HLS can play a critical part in the engineering practice via 
the re-use and acceptance as input of existing hardware and 
software IP. To achieve this, a wide compatibility of HLS 
input/output with languages and formats is required, as well as 
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rapid prototyping capability to the future electronics product 
development. Furthermore, arbitrary and complex module and 
control flow program code in the designer’s set of system 
models need to be transformed with ease, speed and 
comparable quality with manual methods, into the required 
software and hardware implementations. In this way, highly-
complex applications will motivate the design engineers to use 
HLS tools and hardware-software co-design, in their everyday 
practice. The most important of all: the HLS transformations 
need to be based on formal techniques so that lengthy RTL and 
gate-level simulations will be avoided and rapid development 
cycles will be realized, with free-of-bugs, and first-time-right 
products. In this way, complete system hardware/software co-
design flows will be realized into every day engineering 
practice. We believe that our C-Cubed approach is an important 
step towards achieving the above goals. 

VII. CONCLUSIONS AND FUTURE WORK 

Very often, the assumptions that many existing HLS tools 
make (about the targeted technology attributes, the architectural 
template, the HDL code style, the timing and power 
consumption, the available operator and data resources as well 
as the type of communication with the external environment 
components such as shared memories), produce disappointing 
synthesis results, since there is still no established methodology 
for feeding target technology characteristics back into the core 
of the HLS transformation process (although some academic 
attempts to model this problem have been made). In most cases 
these target implementation characteristics need to be fed into 
the synthesis flow and guide the complex synthesis 
transformations of the HLS tool, which makes the synthesis 
process manual, heavily interactive, cumbersome, prone to 
errors and very slow. 

This paper contributes towards the understanding of 
practical issues of contemporary HLS tools and underlines the 
future directions and achievements which should be envisaged. 
The most important contribution of this work is a HLS ESL 
tool, that automatically, rapidly, formally and optimally 
transforms input algorithmic, raw, general, arbitrary, widely 
accepted and re-used (from software engineering) high-level 
program code into optimal RTL hardware implementations. 
The C-Cubed synthesizer is making an important step towards 
the requirements for the above achievements and a number of 
related projects are under-way to deliver better synthesis results 
with readable RTL code and better visibility of the design’s 
attributes and algorithmic features. Of course, this is not the 
only attempt to deal with the complexities of the HLS 
transformations and there have been a number of research 
projects that target a better engineering environment to 
alleviate the frustrations of industries about dealing with 
development results that are just too late to hit the market 
window for many electronics products. Moreover, we can learn 
from other research efforts and also guide them with our own 
experience through the complexities and issues of HLS 
research with the aim to deliver better EDA tools to the design 
engineers and alleviate their highly-complex tasks to deliver 
quickly and correctly high-quality hardware and computing 
products. 

Future work for the C-cubed tools include the inclusion of a 
number of input language formats such as ANSI-C, C++, 
SystemC and OpenCL, and a number of output formats like 
SystemC and cycle-accurate C test benches for fast verification. 
Also, a number of source code optimizations such as dynamic 
loop-unrolling and code motion are under development. The 
use of RDF and XML formalisms in the automatic validation of 
the internal state and structures of the C-Cubed compiler is 
under investigation and soon will be integrated into the 
standard C-Cubed framework. Moreover, there is ongoing 
work on the use of parameterized components, libraries, and 
optimized arithmetic units as well as multi-cycle operators to 
help in the direction of advanced pipelined, multi-operational 
chained designs with high performance and optimized nested 
loops. 
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