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observations have been developed to predict cutting forces [2].
In [3, 4], an investigation was presented for a tool condition
monitoring system which consisted of a fast Fourier transform
preprocessor for generating features from online Acousto-Optic
Emission (AOE) signals to develop a database for appropriate
decisions. The drawback of modern Computer Numerical
Control (CNC) systems is that the machining parameters, such
as feed rate, speed, and depth of cut, are programmed offline
[5]. As a result, many CNC systems are inefficient to operate
under operating conditions that are far from optimal. To ensure
the quality of machining products, reduce machining costs, and
increase machining efficiency, it is necessary to adjust the
machining parameters in real-time to satisfy the optimal
machining conditions at any given time as per modern
condition monitoring strategies [6, 7]. The control of CNC
machining processes is presently receiving significant attention
due to the potential economic benefits associated with
automated machining. Control techniques that have been
developed for machining traditionally require some form of
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parameter adaptation, and the solution to this problem is
adaptive control. An adaptive control system was introduced to
the cutting process in [8].

The most commonly used systems are Model Reference
Adaptive Control (MRAC) and Self-Turning Regulations
(STR). In [9], an investigation was presented on an adaptive
model reference controller approach, simulating, evaluating,
and physically implementing it. Continuous monitoring of the
machining is necessary for effective automatization where the
process takes place without human interference. Most
frequently, it is materialized by measuring the cutting forces
because they contain more information about the process and
the tool condition [10-12]. Despite the initial difficulties in
development, a trend towards equipping the CNC machine with
modern adaptive systems can be observed [13-15]. The most
commonly used Adaptive Control (AC) systems use Adaptive
Control Constraint (ACC), with the constraints being the
cutting force, displacement due to vibration, spindle deflection,
current, and cutting torque. Operating parameters are usually
the feed rate, depth of cut, and spindle speed. This study
implemented an online adaptive control in conjunction with
offline optimization. In this AC system, the feed rate and depth
of cut are adjusted online to maintain a constant displacement
and cutting force despite variations in cutting conditions.

The modern market forces producers to meet the demands
of customers, but the accelerating technological progress still
makes this goal very difficult to achieve. The manufacturer
must provide a product that meets customers' expegtati
while maintaining a satisfactory price on both
Manufacturing costs have a key influence on the final p
the product, so it is very important to develop new method
estimate the manufacturing cost and improve the existing ones?

of the effective rake angle.

II. FUNDAMENTALP,
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A. Geometric Model of

cutting forces af
from the oblig 3
tangential and ections together with chip thickness
vary during the ion of a single chip in milling.
Consequently, a dynamie{fmedel must account for these
variations in the magnitude and*direction of cutting forces.

B. Cutting-Force Model

The cutting forces acting on the helical flute's rake face
depend on the undeformed chip_thickness. If dl is a portion of
the developed cutting edge g ength, then dz may be
considered as the width oblique tool with
inclination angle S [16]:

dz =dl.cos 8
and the differential

ey

where 1(¢;) i
tangential

e total energy per unit volume u.
ct of undeformed chip thickness and
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100/ \t;(9p)

itial total cutting energy per unit volume, ae
e effective rake face, o,y (in degrees) is the
e rake angle, and ¢, is the initial undeformed chip
thickness. To develop the total force applied on the whole
differential forces are resolved into the feed (y) and
(x) directions. The differential cutting-force
omponents are just opposite to the corresponding directions of
the curvilinear coordinate system (¢, , a).

For Down-Milling
(Fix = —u'fiR cot § (0.5¢; — 0.25sin 2 ¢;
4 +0.5556.c.sin'® ¢))| $j

Fiy ~ Wf,R cot f (0.5556 sin*® g, — 050,
L +0.25.c.sin2 ;)| e
Because:
0<9p<yY, ¢, =¢—w+(-1)(2n/m) and 0 < @; <Q
Qs = max (O, -wt+(i-1) %n) (6)
9 = min (Q,p - wt+(-1)Z) e

2) For Up-Milling:
F;, = —u'fR cot B (0.5¢; — 0.25sin 2 §;
—0.5556.c.sin'® &) | gse
Fiy ~ —wf,R cot f (0.5556 sin'® &, + 0.5§,
l ~025.c.5in2§)| &
Also:
0<@ <y, &=-¢+wt-(i-1)(2n/m) and 0 <& <N

gives the extreme values of the parametric angle ¢; as:
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£, = max (0, P+ mt-(i-l)%ﬂ) 9)
£, = min (n, wt-(i-l)%") (10)

Summing up the cutting forces acting on all the m helical flutes
gives the total force applied on the whole cutter:

{F = ’L"lF-
F,=Y"F,

III.  ESTIMATION OF CUTTING-FORCE
COEFFICIENTS

The cutter, workpiece material, and cutting conditions of
this study were:

e Cutter: a single-fluted carbide end-mill with a helix angle
£=30°, a rake angle a,=12° and a diameter of 19.06mm.

e Material properties of the carbide cutter: 90% WC, 10%
Co, hardness 92 Rockwell.

e Material properties of the titanium alloy: 6% Al, 4% V,
Young’s modulus=110GPa, Poisson’s ratio=0.34, tensile
strength=900Mpa.

e Cutting parameters: axial depth of cut ba=7.62mm, radial
depth of cut d=19.06mm (slotting), y=26.45°, Q=mr, spindle
rotation speed n=500rpm (cutting speed V=498.99 mm.s-1),
with a feed rate ranging from 0.0127mm per tooth to
0.2030mm per tooth.

IV. RESULTS AND DISCUSSION

This section presents the simulation results in Matlab f
number of partlcular examples. Figure 1 shows the results

of the cutting edge, the ploughing force is
cutting-force model must be modified.

found as shown in Figure 2 but
Adjusting the initial total cutting e
the cutting-force ratio to

Figure 3. A comparison of th
shown in Figure 1 shows t
Figure 3 shows that w
0.0254mm per tooth, the
approximations of the
improved dynamic cutting-
the cutting forces. .

very good agreement.
rate is greater than

d rate is less than
forces are smaller

dge, the ploughing force
orce model must be modified.

ONCLUSION
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force control analys1s estl g gthod based on dynamic

tandard values of
any publications.
lated based on a
ng process. The

These values were co

dito the operation should
kind of cut type, e.g. rough and

f the proposed method based
on cost this method could help in

securing

D02 mmimddent
O.0127 emidant |

=0 A} mrmddiand
—— 00254 mmident
0008 mmitdent [ 7]
D02 meridiard
I:ID‘I"" mmn'dyn’

Fly) [N}

a oo om oo ooa o [l 3 oar
tamos is)

Fig. 1. Predicted cutting forces for a full immersion up-milling test,
m=1, uy =3.51%10°m™3, a, = 12°, b, = 7.62mm, d = 19.06mm,
P = 26.45°.

This study investigated the size effect of undeformed chip
thickness and the influence of the effective rake angle in
peripheral milling. Verification results showed that the model
is suitable for general peripheral milling when the feed rate is
greater than the radius of the cutting edge. For fine milling,
when the feed rate is less than the radius of the cutting edge,
the measured cutting force will be greater than the cutting force
predicted by the model. This result shows that the ploughing
force is dominant in this condition and the general cutting force
model is no longer effective. Case studies reveal that the model
may be very effective in reducing the surface form error due to
tool deflection if flute number, axial depth of cut, and radial
depth of cut are selected carefully.
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