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ABSTRACT 

The gearbox is one of the critical components of a wind turbine. Proactive maintenance of wind turbine 

gearboxes is crucial to decrease maintenance and operational costs and the long downtime of the complete 

system. As the gearbox is a significant part of the wind turbine, a fault in the gearbox leads to the 

breakdown of the wind turbine system. Hence, it is important to study and analyze the faults in wind 

turbine gearbox systems. In this article, a neural network-based model, a Bidirectional Long Short-Term 

Memory (BLSTM) fused with an autoencoder is intended to categorize the condition of the gearbox into 

good or bad (broken tooth) condition. Feature learning and reduction are achieved extensively through the 

autoencoder. This improves the performance of the BLSTM model regarding time complexity and 

classification accuracy. This model has been applied with time series vibration data of the gearbox in a 

wind turbine system. The suggested model's performance is analyzed using an openly available wind 

turbine gearbox vibration dataset. The result showed that BLSTM accuracy with an under-complete 

autoencoder is highly robust and appropriate for the health monitoring of wind turbine gearbox systems 

using time series data. Also, in order to illustrate the advantage of the projected model for fault analysis 

and diagnosis in wind turbine gearbox, the throughput or time complexity of training and testing of the 

split dataset is compared with the conventional BLSTM model. 

Keywords-autoencoder; bidirectional long short-term memory; fault detection; vibration data; wind turbine 

gearbox

I. INTRODUCTION  

Wind energy is very popular, since it is form of clean 
energy. For the effective production of wind energy, the wind 
turbines must be maintained with less downtime. Gearbox 
failure directly impacts the reliability of the gearbox in the 
wind turbine. The operation and the cost towards the 
maintenance of wind turbines installed at remote locations is 
around 15–35% of the installation cost. Around 80% of this is 
spent on unplanned maintenance issues resulting from defects 
in the wind turbine's various components [1]. Wind turbine 
fault analysis and diagnosis are usually performed manually 
from individuals with a high level of technical expertise. This 
method is inefficient and incapable of meeting the needs of 
wind farm operations and maintenance. It also leads to 
production loss due to the prolonged unavailability of the 

energy production system and requires a large number of fault 
diagnosis analysts. The increase in demand for wind energy 
needs reliable wind farms. To reach the demands, the design of 
low-cost advanced proactive intelligent fault detection systems 
is crucial for better performance. The gearbox is one of the 
most vital and frequently worn parts of the mechanical rotatory 
system of a wind turbine. Wind turbine gearbox failure 
diagnosis is critical in mechanical rotating systems, and 
unpredicted breakdown of this component results in prolonged 
system downtime. Wind turbine energy production unit 
maintenance and operating may determine whether the system 
is cost-efficient or not. Therefore, an intelligent and proactive 
fault detection system, which reduces the downtime of the 
wind turbine energy production system, is essential, since it 
reduces the number of skilled professionals required for 
maintenance. An expert system enables timely intervention and 
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early warnings and hence reduces production loss due to 
prolonged unavailability. As a result, a smart system for 
condition monitoring of wind turbines improves the reliability 
by reducing downtime significantly. In the current work, the 
proposed hybrid Bidirectional Long Short-Term Memory 
(BLSTM) model with an autoencoder achieves an accuracy of 
98.68% in wind turbine gearbox healthiness classification and 
improves the performance by 71.73% in testing and 65.61% in 
training when compared with the original BLSTM model. In 
the next section, various efforts to diagnose and analyze wind 
turbine gearboxes are discussed. 

II. RELATED WORK 

A few efforts have been made to use traditional machine 
learning algorithms to classify the healthiness of the gearbox. 
The time-domain sequence Approximate Entropy (ApEn) 
adaptive strategy, a Wavelet Packet Transform (WPT) filter, 
and a Cross-validated Particle Swarm Optimized (CPSO) 
kernel extreme learning machine were used to develop gearbox 
fault analysis models in [1]. The Discrete Wavelet 
Transformation (DWT) was used to compute wavelet 
coefficients for vibration signals obtained from wind turbines. 
Wavelet coefficients are applied to Phase Space Reconstruction 
(PSR) and singular value decomposition to extract fault 
attributes in [2]. The Supervisory Control and Data Acquisition 
(SCADA) process delivers the most frequently used input data 
for wind turbine anomaly detection [4]. By reducing the feature 
dimension of the time-series data, Dynamic Principal 
Component Analysis (DPCA) was used to identify faults in the 
gearbox of wind turbines in [5]. To extract gearbox vibration 
features from oscillated vibration signals of gearbox fault 
diagnosis, a method combining the Empirical Mode 
Decomposition (EMD) and Time Synchronous Averaging 
(TSA) was used in [6]. To detect anomalies in the wind turbine 
gearbox, Twin Support Vector Machine (TWSVM) and an 
adaptive threshold were used in [7]. To extract features from 
three-axial vibration data for fault diagnosis of a wind turbine 
gearbox, a Deep Enhanced Fusion Network (DEFN) was used 
in [8]. The deep joint variational autoencoder method was used 
in conjunction with wind farm supervisory control and data 
acquisition to diagnose faults in the wind turbine gearbox in 
[9]. By decomposing vibration signals with a wavelet packet, a 
fast deep graph convolutional network model was used to 
analyze the wind turbine gearbox in [10]. The fused vibration 
signals were classified with a multiclass SVM model in [11]. 
Electrical signals from generator terminals were used to find 
faults in the gearbox of the wind turbine in [12]. Using fault 
features of convolution channels and frequency bands of 
wavelet coefficients, the residual network can be used to 
identify a fault in the gearbox of a wind turbine [13]. The 
methods of convolutional neural networks and isolation forests 
were applied to classify the health of the gearbox of a wind 
turbine in [14]. The neighborhood component analysis 
technique for best feature collection was used to evaluate the 
healthiness of wind turbine gearboxes in [15]. The remaining 
useful life of a wind turbine gearbox and its failure can be 
predicted using machine learning methods such as artificial 
neural networks, SVM, and logistic regression [16]. CNN is 
used for feature extraction and representation, and LSTM is 
used to learn the latent time series relationship between 

features in various periods of time [17]. An optimized LSTM 
neural network with cosine loss was used to analyze wind 
turbine gearbox faults in [17]. The Cos-LSTM networks were 
analyzed using the wavelet energy entropy and energy 
sequence features of the vibration signals in [18]. The 
traditional LSTM model was improved using multiple swarm 
intelligence models for classifying failures in the wind turbine 
gearbox using vibration signal data acquired from the faulty 
gearbox in [19]. The Simulated Annealing (SA) algorithm was 
used to optimize the vibration of the powertrain system in [21]. 
To analyze the functional schemes of the selected gears, the 
method for trying to generate a mechanism of kinematics 
equations for signal dependency graphs was used in [22]. 
Industrial bearing, fault detection, and isolation using time 
frequency domain has been applied and compared with the 
theoretical results in [23]. The following are the main 
contributions of the current article: 

 Design of a gearbox diagnostic model using an 
undercomplete autoencoder and the BLSTM deep learning 
model. 

 Analysis of vibration data collected through sensors. 

 Comparison of the proposed model's training and testing 
times to those of the conventional BLSTM model. 

III. PROPOSED MODEL 

The projected model was created on undercomplete 
autoencoder along with a BLSTM-based hybrid model to 
diagnose and classify wind turbine gearbox health conditions. 
The undercomplete autoencoder and BLSTM architectures are 
described below. 

A. Undercomplete Autoencoder 

Autoencoders are unsupervised learning methods used for 
representation learning. The neural network architecture 
denotes autoencoders to impose a bottleneck in the neural 
network, resulting in a compressed feature representation of the 
original input. Autoencoders contain four layers, namely input 
layer, hidden layer, bottleneck layer, and output layer. The 
objective of autoencoders is to minimize the number of nodes 
located in the hidden layer in order to reduce the information 
flow through the neural network. An autoencoder model 
discovers the most important characteristics of the input data. 
The compressed and essential features are extracted at the 
bottleneck layer in order to recreate the original data with 
minimal loss. The number of neurons in the hidden layer is 
lesser than the number of neurons in the input layer. The 
bottleneck layer contains fewer nodes than the hidden layer. 
The reduced features are extracted from the bottleneck layer.  

B. Bidirectional LSTM 

The bidirectional LSTM recurrent neural network is made 
up of LSTM cells, which are memory blocks with a hidden 
unit. Such states have the responsibility to transfer immediately 
preceding time step data in the network from the input state to 
the next cell. These cells are made up of input, forget, and 
output gates. The forget gate forgets irrelevant information, the 
input gate updates new information, and the output gate passes 
the updated information to the next cell.  
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C. Design 

Figure 1 depicts the construction of an autoencoder with a 
BLSTM-based model. To design the proposed model for time 
series gearbox vibration data analysis, input samples of 3600 
(1600×2) with a sample size of 500 time steps were fed to the 
undercomplete autoencoder. The output of the encoder tapped 
at the bottleneck has reduced features and contains 350 time 
steps in each sample. The compressed data are loaded into the 
BLSTM model, which is trained for 500 epochs. To achieve 
better results, the model employs the rmsprop optimizer and the 
sigmoid perceptron at the output layer. The metrics are 
recorded and discussed below.  

 

 

Fig. 1.  Proposed autoencoder and BLSTM-based model. 

IV. EXPERIMENTATION AND RESULTS 

The developed autoencoder and BLSTM-based model were 
tested on experimental data collected in a publicly available 
wind turbine gearbox vibration dataset [20]. Spectra Quest's 
Gearbox Fault Diagnostics Simulator was used to generate 
vibration data for two conditions of the gearbox, one for good 
health and the other for a broken tooth, and both were subjected 
to bearing capacity ranging from 0% to 90%. Four sensor 
nodes were positioned in 4 different locations on the body of 
the gearbox. The dataset contains 10 samples with different 
loads of wind turbine gearbox vibration data in good and bad 
conditions. The dataset was created with a 30Hz frequency for 

a total of 6.9s. Each sample was collected at a rate of 12,800 
time steps/s. A total of 69s (6.9×10) for data generation for a 
broken tooth or bad condition and data generation for a healthy 
condition was considered. Table I shows the raw recorded data. 

TABLE I.  WIND TURBINE GEARBOX VIBRATION 
DATASET 

Wind turbine 

gearbox condition 

Number of 

samples 

Time steps 

per second 

Time steps 

per sample 

Good  10 
12800 88320 

Bad (broken tooth) 10 
 

Each sample is made up of 88320 time steps. Because the 
time series sequence is too long, the data have been divided 
into subsamples of 500 time steps. As a result, 176 samples 
from each sample of length 88320 time steps were derived by 
considering 500 time steps for each individual sample. As a 
result, we acquired 1760 (176×10) good-condition gearbox 
samples and 1760 (176×10) bad-condition gearbox samples. 
The derived dataset contains 3520 samples, as shown in Table 
II. The purpose of choosing 500 as the subsample's time step is 
to facilitate experiments, however the size of the sample set can 
vary. We chose 3200 sample data at random from a total of 
3520 for experiments. 

TABLE II.  GENERATED WIND TURBINE GEARBOX 
VIBRATION DATASET 

Wind turbine 

gearbox condition 

Number of 

samples 

Total number 

of samples 

Good  1760 
3520 

Bad  1760 
 

To collect vibration data, 4 sensors were placed on the body 
of the gearbox in 4 different directions. Table III displays the 
Accuracy, Precision, Recall, F1-score, Training Time (time 
taken to train a total 80% of the 3200 (i.e. 2560) training 
samples, and Testing or Execution Time (time taken to test a 
total of 640 testing samples (20% of 3200)). It is tested with 
data frequency (dataset sample size in time steps) equal to 500 
time steps and a trained dataset with 500 epochs. The results 
were captured on a machine with the following architecture: 
GPU: NVIDIA-SMI 460.32.03, CUDA Version:11.2, Tensor 
Core GPU: A100-SXM4-40GB with a runtime memory of 
89.6GB. 

TABLE III.  PERFORMANCE OF THE BLSTM MODEL 

Sensor Precision Recall F1-Score Training Time (s) Testing Time (s) Classification Accuracy 

S-1 0.9875 0.9783 0.9828 8697.74 9.76 98.28% 

S-2 0.9838 0.8892 0.9341 8121.10 8.17 93.28% 

S-3 0.6451 0.8695 0.8480 8722.22 13.30 78.12% 

S-4 0.9062 0.6904 0.7837 8200.48 19.03 75.00% 

TABLE IV.  PERFORMANCE OF THE UNDERCOMPLETE AUTOENCODER WITH THE BLSTM MODEL TESTED WITH VIBRATION DATA 
FROM SENSOR-1 

No. of time steps tapped at the bottleneck Precision Recall F1-Score Training Time (s) Testing Time (s) Classification Accuracy 

50 0.9617 0.9123 0.9364 1175.35 2.16 93.59% 

100 0.9593 0.8924 0.9246 1334.07 2.68 92.19% 

150 0.9693 0.9080 0.9376 1776.15 2.70 93.44% 

200 0.9660 0.9260 0.9456 1997.61 2.61 94.38% 

250 0.9670 0.9376 0.9571 2188.04 2.31 95.12% 

300 0.9793 0.9776 0.9421 2792.95 2.46 96.53% 

350 0.9895 0.9783 0.9857 2991.74 2.76 98.68% 
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Since the Classification Accuracy using Sensor-1 and 
Sensor-2 vibration data is optimum, the significance of Sensor-
3 and Sensor-4 vibration data analysis has less importance. 
Hence, the diagnosis of the gearbox fault can be achieved with 
an exemption of Sensor-3 and Sensor-4 vibration data as these 
two sensors yield less Accuracy. Hence, the proposed model 
was tested only on Sensor-1 vibration data. 

Table IV shows different test cases with varied numbers of 
features extracted at the bottleneck layer of the autoencoder 
with data frequency equal to 500 (number of time steps in each 
sample), tested with Sensor-1 vibration data. The results clearly 
show that at the bottleneck output of 350 time steps 
outperforms the model with respect to Accuracy and Training 
and Testing Times. 

 

 
Fig. 2.  ROC curve for vibration data from Sensor-1 with 80-20% split 

ratio BLSTM model. 

 
Fig. 3.  ROC curve for vibration data from Sensor-2 with 80-20% split 

ratio BLSTM model. 

The proposed method outperforms the BLTSM algorithm 
model in Classification Accuracy, Training Time, and Testing 
Time. Based on the experimental observations; the results 
indicate that the gearbox fault vibration data features can be 
learned to improve the generalization and the model's accuracy 
by fusing the undercomplete autoencoder and BLSTM models. 
However, the result comparison in Tables V-VI shows that the 
proposed model achieves 98.68% Accuracy with reduced 
features (350 time steps) in the samples, and the performance is 
increased by 71.73% in testing time and 65.61% in training 
time when compared to the BLSTM model. As a result, the 
fused model of autoencoder with BLSTM outperforms the 
conventional BLSTM. 

 

Fig. 4.  ROC curve for vibration data from Sensor-3 with 80-20% split 

ratio BLSTM model. 

 
Fig. 5.  ROC curve for vibration data from Sensor-4 with 80-20% split 

ratio BLSTM model. 

TABLE V.  PERFORMANCE COMPARISON OF THE 
PROPOSED MODEL WITH BLSTM 

Sensor 

Conventional BLSTM model with 500 time steps per 

sample 

Training 

Time (s) 

Testing 

Time (s) 

Classification 

Accuracy 

S-1 8697.74 9.76 98.28% 

Undercomplete autoencoder with BLSTM model with 350 time steps 

per sample 

 
Training 

Time (s) 

Testing 

Time (s) 

Classification 

Accuracy 

S-1 2991.74 2.76 98.68% 

TABLE VI.  GEARBOX HEALTH DIAGNOSIS METHOD 
COMPARISON 

Ref. Method Accuracy 

[2] WPT-PSO-KELM 94.17% 

[18] Cos-LSTM 
98.55% with 

550 samples 

[19] 
LSTM with firefly, cuckoo, PSO and ACO 

and relu activation function 
87.5% 

[5] 

Support vector machine model used to detect 

and isolate gear faults. It performs better than 

the Dynamic Principle Component Analysis 

(DPCA) using MLP 

91.24% 

[24] 

A technique for feature extraction based on 

CNN and LSTM for categorization was used 

to estimate gearbox faults using a better 

prediction method based on the early fusion 

of multisource sensing data 

97.9% 

Proposed Undercomplete autoencoder with BLSTM 98.68% 
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Fig. 6.  Performance of the undercomplete autoencoder with BLSTM. 

V. CONCLUSION 

This article provides the analysis of wind turbine gearbox 
vibration data for fault classification. The proposed hybrid 
model, combines the bidirectional LSTM neural network 
algorithm with the undercomplete autoencoder and is used for 
wind turbine gearbox fault detection and diagnosis. The 
experimental results demonstrate that the suggested model 
gives an Accuracy of 98.68% in wind turbine gearbox fault 
classification and improves the performance by 71.73% in the 
dataset testing samples and 65.61% in the dataset training 
samples, when compared to the traditional bidirectional LSTM 
model. With respect to Testing and Training Time, as well as 
Classification Accuracy, the proposed model outperforms the 
known models that was compared with. 
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