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ABSTRACT 

The prediction of grain yield is important for sowing, cultivar positioning, crop management, and public 

policy. This study aims to predict maize productivity by applying an artificial neural network and by 

building models of multilayer perceptrons (MLPs) using public data and maize experimental networks. 

The dataset included parameters of climate, soil water balance, and agronomic characteristics from maize 

hybrids of an experimental network of two agricultural years. The climatic and soil balance water 

parameters were divided according to the maize plant development stages. Six databases were obtained by 

combining the imputation of missing data with the agronomic characteristics of the maize hybrids, the 

climatic parameters/soil water balance, and the complete database with both. Hyper parameterization of 

the models was obtained using GridSearch and k-fold cross-validation. The models with imputation were 

more accurate than those without it. The model with climate data/soil water balance and the complete 

model with imputation presented the smallest errors of 71 kg ha
−1

. In all the models, cultivars, locations, 

and their interactions were important, and different climatic conditions had the greatest weight in 

predicting productivity. It was concluded that the MLP models performed adequately and captured the 

non-linear effects of the interaction between the environment and maize hybrids. Climatic and soil balance 

water parameters at different stages of maize plant development explain the productivity of maize hybrids 

more than the agronomic characteristics of the cultivars. 

Keywords-artificial neural networks; deep learning; multilayer perceptron; agricultular productivity 

I. INTRODUCTION  

Interpretation of the genotype x environment interaction is 
essential to increase productivity with the positioning of the 
cultivar in the microregion and its predictability of performance 
according to the sowing date [1]. Traditionally, analysis 
methods of the genotype x environment interaction have been 
used for the positioning of cultivars, however, the 
interpretations obtained after obtaining data and generalizations 
about the environment do not allow the application or 
extrapolation of results for all regions [2-3]. However, when 

the environments are well characterized, conclusions on 
cultivar performance are extrapolatable, as used nitrogen levels 
in rice [4] or used water deficit environments in maize [5]. The 
simulation models of plant growth in response to climate, soil, 
and cultivars allow identifying the best sowing times, which are 
made available annually for different cultures and locations, 
such as the Agricultural Zoning of Climatic Risk, and have 
helped Brazilian farmers in all grain-producing locations [6-7]. 
However, even with agricultural risk zoning, weather 
conditions are unpredictable, and productivity losses are 
common in different regions, locations, and years when this 
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information is not available in real time. Production losses 
caused by drought in the Paraná-La Plata basin, Brazil, have 
reduced soybean and maize production and affected global and 
South American agricultural markets during the past ten years, 
with the 2020-2021 drought imposing a 2.6% reduction in the 
cereal harvest compared to the previous year [8]. 

The multilayer perceptron (MLP) is an Artificial Neural 
Network (ANN) that can be used for productivity estimates. It 
uses the factors that affect productivity as an implicit function 
of the network input. MLPs have been successful in creating 
predictive models using plant development parameters, soil 
characteristics, management, climatic conditions, and 
geographic positions with a small mean error for yield 
prediction [9-11]. The predicting maize productivity using 
ANN can generate information for public policy on the 
production and supply of this important crop for local and 
national food security. The prediction can also generate real-
time information for managing corn crops to increase 
productivity and sustainability. 

ANNs are being applied with different models or 
architectures to solve common problems in plant breeding and 
genotype x environment interactions and other agriculture 
situations. This can be observed when determining drought 
tolerance indices for durum wheat and identifying their 
efficiency in relation to other methods [12], parents for 
crossings in breeding programs [13] and, selected soybean 
plants in segregating populations of different maturity groups 
[14]. A machine learning approach was used in the automatic 
irrigation system based on humidity and temperature in the soil 
in [15]. The deep convolutional neural network architecture is 
very efficient to identify plants in the different stages including 
seedling of weed plants [16]. In addition, the estimate of maize 
productivity as a function of leaf chlorophyll content, measured 
in three stages of plant development, was determined by an 
ARN-MLP and was adequate, considering that in the stage of 
development of the plant with six leaves (V6), it explained 
50% or more of maize productivity data [17]. In turn, arabica 
coffee production was predicted to meet the market demand 
using ANNs with data on productivity, rainfall, relative 
humidity, and minimum and maximum temperatures. An 
adequate prediction accuracy was obtained with an R

2
 of 

0.8524 and RMSE (root-mean-square deviation) of 0.0784 
tons, demonstrating the potential of ANNs in determining the 
yield of the coffee cherry [18]. 

Therefore, the objective of this study was to predict maize 
productivity by applying ANNs and building MLP models 
while using public data and maize experimental networks. 

II. MATERIAL AND METHODS 

The variables for the analysis in this study were divided 
into agronomic, climatic, and soil water balance parameters.  

The agronomic characteristics of maize hybrids were 
obtained from the Performance of Maize Hybrids at the Second 
Season, with 38 hybrids in 2018 and 32 hybrids in 2019 in 9 
locations and 4 replications/locations in the Bernardino de 
Campos, Capão Bonito, Cândido Mota, Cruzália, Ibirarema, 
Manduri, Maracaí, Palmital, and Pedrinhas Paulista in the 
middle region of the Paranapanema Valley, state of São Paulo 

[19-21]. The agronomic characteristics evaluated were plant 
height, ear height, the ratio between ear height and plant height, 
the number of lodged plants, number of broken plants, number 
of days to flowering, plant population, productivity, grain 
moisture at harvest, and ear index per plant. The daily climate 
parameters were total precipitation, maximum, average, and 
minimum temperatures, average atmospheric pressure, average 
dew point temperature, average and minimum relative 
humidity, average wind speed, and maximum wind gust. The 
daily soil water balance variables included water storage, actual 
evapotranspiration, soil water deficit, soil water surplus, and 
evapotranspiration. Total precipitation, water storage, and 
water surplus in the soil were considered at the cumulative sum 
of each plant development stage. The average for each period 
was considered for the other climate and water balance 
variables. Daily climatic and soil water balance data were 
obtained from automatic stations (Ourinhos A716, Itapeva 
A714, Avaré 725) at the National Institute of Meteorology 
(INMET), which provides a variety of daily meteorological 
data on a platform [22]. As the INMET does not have 
meteorological stations in some municipalities, it was 
necessary to consider data from the nearest stations, covering 
distances from 27 to 95km. Water balance variables were 
subdivided according to the growth and developmental stages 
of the maize plant. 

The developmental stages of the maize were plant 
emergence (VE), 4 leaves with a visible leaf collar (V4), 8 
leaves with a visible leaf collar (V8), tasseling (VT), silk and 
blister (R1 and R2), milky and dough grains (R3 and R4), dent 
grains (R5), and physiological maturity (R6). The cultivars had 
the same 120-day cycle, and the stages were considered with 
the same periods for all cultivars. The days for each stage were 
VE from the emergence to the 10

th
 day, V4 from the 11

th
 to the 

40
th
 day, V8 from the 41

st
 to the 50

th
 day, VT from the 51

st
 to 

the 60
th 

day, R1 and R2 from the 61
st
 to the 75

th
 day, R3 and R4 

from the 76
th
 to the 90

th
 day, R5 from the 91

st
 to the 105

th
 day, 

and R6 from the 106
th

 to the 120
th
 day. 

The database was processed before the effective 
implementation of the models and comprised up to 2392 data 
from 17 experiments on the performance of maize hybrids at 
the second season in 2018 and 2019. The necessary procedures 
for data preparation were the imputation of missing data, 
coding of categorical variables, and normalization (Figure 1). 
The database contained missing data on flowering and grain 
moisture, representing 6% of the total database. The iterative 
imputation algorithm was used to impute these data, and the 
necessary parameterization for the execution of the iterative 
imputation was the neural network's own MLP with a δmin of 
0.1. The parameter δmin defines the number of iterations 
performed by the iterative imputation and the minimum 
acceptable error in relation to previous iterations.  

The regressor defined for the predictions in the MLP with 
the hyperparameters for data imputation had three hidden 
layers, 64 neurons per layer, the ReLU (Rectified Linear Unit) 
activation function in the hidden layer, 300 epochs, ADAM 
optimizer, 0.001 rate learning curve, MSE (Mean Squared 
Error) cost function, and the Glorot normal-weight 
initialization method. This regressor was chosen based on the 
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ability of ANNs to capture nonlinear relationships between data 
[23]. The dataset was divided into two groups: one with all 
variables with complete data and the other with only variables 
with missing values. Therefore, two MLP models were built to 
estimate the variables of both sets using the same 
hyperparameters. For model training, each dataset was 
partitioned into training and testing sets. The training set had 
80% of the examples, and the test set had the 20%. After 
inputting the data, transformations were applied to the 
categorical variables, cultivars, and years. The codification 
adopted transformed them as a function of annual productivity, 
given the variable of interest: 

1

1
r i year

i

Location p p
l



     (1) 

where l is the number of observations carried out in the rth
 

Location, pi is the ith
 productivity of the Location, and pyear is 

the average of the observations made. 

1

1
a

s j year

j

Year p p
a



     (2) 

where a is the number of observations carried out in the sth
 

Year, and pj is the jth
 productivity of the Year. 

Ck = pk − pLocation                         (3) 

1

1
e

e k

k

cultivar c
e



      (4) 

where pk is the kth
 observation of the productivity of cultivar ck, 

pLocation is the average productivity of a given location and, e is 
the number of observations of the cultivar, and ck is the kth

 
difference between pk and pLocation. 

In all the above equations, the categorical variables are 
functions of the observed average productivity, allowing the 
attribution of an evaluation to these variables. In the 
normalization procedure, the network input dataset was 
normalized by MinMax scaling. The dataset was separated into 
3 distinct bases: agronomic characteristics, climatic/water 
balance parameters, and complete with all variables with or 
without missing data imputations. In addition, 6 network 
models were implemented for the same purpose, with the task 
of predicting productivity as the model output. The necessary 
hyper parameterization in the 6 models was defined using Grid 
Search and k-fold cross-validation to find a set of 
hyperparameters with the smallest error in the cost function. 
For this purpose, a set of hyperparameters was previously 
considered to be tested by Grid Search and evaluated by k-fold 
cross-validation. k = 5 was considered for k-fold cross-
validation, which is one of the values commonly used in the 
literature [24]. 

The input hyperparameters for GridSearch were 3 hidden 
layers with 32, 64, and 128 neurons per layer, the ReLu 
activation function in the hidden layer, 300, 600, and 900 
epochs, the ADAM optimizer, learning rates of 0.005, 0.003, 
and 0.001, the MSE cost function, and the Glorot normal 
weight initialization method. 

 

Fig. 1.  The proposed methodology. 

The MLP experiments were performed on the services 
provided by Google Research, Google Collaboratory, or Colab, 
which is a host of services based on the Jupyter notebook, 
where it is possible to interactively execute codes in the Python 
language, in addition to having a set of tools for the 
development of deep learning models [25-26]. Six models were 
constructed using TensorFlow and Keras [27-28]. The k-fold 
cross-validation used in model validation matched that of the 
machine learning library scikit-learn,

 
which has a set of tools 

for developing machine learning models [23]. The SHapley 
additive exPlanations (SHAP) method was applied so that the 
model with the best performance could be interpreted 
agronomically [29]. 

III. RESULTS 

The hyperparameters of the models without imputation, 
with the lowest RMSE among the 142 models trained using 
Grid Search and k-fold cross-validation, are listed in Table I. 
The AGR_M model required a greater number of layers and a 
larger batch size than the CLI_M and COP_M models, 
demonstrating a greater requirement of hyperparameters for 
model adjustment. A hidden search is computationally 
expensive, which makes it impossible to apply the method to a 
large number of hyperparameters [30]. Therefore, there is a 
possibility that the hyperparameters are not the global optimum 
but local optima due to the small set of hyperparameters. 
However, the use of the grid search is justified by its 
computational cost [30]. 

The learning curves of the AGR_M, CLI_M, and COP_M 
models with MSE show concise training without much 
variation between training and validation and without 
overfitting to training data, with training time up to 1000 
epochs (Figure 2). In the CLI_M model, closer values were 
obtained between the training and validation sets, as can be 
observed in the distance between the training and validation 
curves. In addition, there was variation at the beginning of the 
adjustment of the models, which is evidenced by the epochs 
where the adjustments of the functions began, remaining below 
100 epochs for AGR_M and COP_M, and close to 250 for 
CLI_M. The possible causes for this are the hyperparameters 
used in the models, such as the batch size, number of layers, 
and database. The COP_M model presented an intermediate 
distance between the training and validation cost functions. 
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This occurred when the data of agronomic characteristics were 
included, bringing data variation to the adjustment of the 
functions. However, they lose the advantage of the greater 
adjustment of the climatic data of the CLI_M model.  

In the model validation dataset, the AGR_M obtained the 
highest RMSE (201 kg ha

−1
) and the CLI_M model had the 

lowest RMSE (191 kg ha 
−1

), demonstrating the best fit in 
relation to the first (Table II). Model-associated errors (MSE) 
were relatively similar, with a tendency to be greater in the 
AGR_M model than in the others, demonstrating the lowest fit 
and highest hyper parameterization of the ANN. Based on 
Pearson's correlation statistics, all models obtained similar 
values close to 1. In the training dataset, the AGR_M model 
presented the lowest RMSE and MSE values, characterizing its 
better performance in the adjustment in relation to the other 
two models that were very similar, with the smallest variation 
of the dataset. In turn, this situation is reversed, in validation, 
when the AGR_M model presented the highest RMSE and 
MSE values. 

TABLE I.  HYPERPARAMETERS OF MODELS WITH LOWER 
ERRORS BY GRID SEARCH AND K-FOLD CROSS-

VALIDATION WITH (I) AND WITHOUT (M) IMPUTATION 
FOR PREDICTING GRAIN YIELD (KG.HA−1) 

Hyper 

parameters 

AGR 

_M 

CLI 

_M 

COP 

_M 

AGRI 

_I 

CLI 

_I 

COP 

_I 

Hidden 

layers 
2 1 1 2 1 1 

Neurons 64 64 64 128 128 64 

Epochs 1000 1000 1000 1000 600 1000 

Batch size 128 32 64 128 32 64 

Learning 

rate 
0.001 0.001 0.001 0.005 0.001 0.001 

 

 
Fig. 2.  Cost function (MSE) training and k-fold cross-validation without 

data imputation for AGR_I, CLI_I and COP_I models. 

When imputing the missing data in the base, another set of 
hyperparameters was needed to reach the local optimum when 
submitted to grid search (Table II). This indicates that the 
missing data complement new standards for the adjustment of 
the models and that each one of them was changed differently 
with a greater number of hidden layers, neurons/layer, epochs, 
and batch size for AGR_I, a smaller number of layers, batch 
size, epochs, and larger neurons/layer for CLI_I, and fewer 

hidden layers and neurons/layer for COP_I among the 142 
models trained by grid search and k-fold validation (Table I). 
The changes between the non-imputed and imputed models 
were in the number of neurons, epochs, batch size, and learning 
rate, requiring a new ANN architecture. Considering that each 
neuron corresponds to a hyperplane, a greater number of 128 
neurons for the AGR_I and COP_I models is necessary to 
properly separate the instance space. Only COP_I remained 
with the same number of neurons as the models without data 
imputation, characterizing the explanation of model adjustment 
using climate variables.    

To predict the behavior of parents for breeding programs, 
the architecture of the ANN was optimized using 3 layers: the 
first with 64 neurons, the second with 32 neurons, and the third 
with 16 neurons, with the ReLU activating function having the 
highest accuracy of prediction [13]. The learning rate of 
AGR_I was 0.005, demonstrating that the model was "stuck" in 
poor locations with a lower learning rate. Only CLI_I managed 
to converge in a smaller number of epochs, and 600 epochs 
reinforced the quality of the climate data for predicting 
productivity with the imputed data. The impact of data 
imputation on model training showed that the MSE in 1000 
epochs was lower than that of the models without data 
imputation for AGR_M and COP_M (Table I). However, the 
training was less consistent, as can be seen by the requirement 
for a greater number of epochs to start the adjustment of the 
imputed models AGR_I, CLI_I, and COP_I compared to the 
non-imputed models AGR_M, CLI_M, and COP_M (Figures 2 
and 3). One possible reason for this is that imputation increases 
data variability. 

TABLE II.  METRICS OF MODELS WITH AND WITHOUT 
IMPUTATION FOR PREDICTING GRAIN YIELD (KG.HA−1) 

Metrics 
AGR 

_M 

CLI 

_M 

COP 

_M 

AGR 

_I 

CLI 

_I 

COP 

_I 

RMSE 

Validation 
201 191 197 80 71 74 

MSE 

Validation 
414 365 390 87 60 60 

Correlation 

Validation 
0.99 0.99 0.99 1 1 1 

R2 (%) 

Validation 
0.9875 0.9819 0.9842 0.9978 0.9975 0.9983 

RMSE 

Training 
162 177 172 49 75 69 

MSE 

Training 
264 315 295 25 56 48 

Correlation 

Training 
1 0.99 0.99 1 1 1 

R2 (%) 

Training 
0.9912 0.9890 0.9907 0.9994 0.9986 0.9987 

 

The curves of the models with imputation show that CLI_I 
training and validation are closer than those of AGR_I and 
COP_I (Figure 3). In addition, the number of epochs needed to 
converge was smaller, so, it can be inferred from this model, 
with or without imputation of data, that climate explains the 
behavior of productivity. The imputed model that obtained the 
lowest RMSE was CLI_I with 71 kg.ha

−1
, demonstrating an 

adequate fit with an error of just over one bag of maize per 
hectare (Table II). It is also possible to notice that the training 
and validation errors are similar, demonstrating that the model 
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can generalize productivity prediction. However, AGR_I 
obtained the highest validation RMSE (80 kg ha 

−1
), which 

allows adjusting the model to the training examples. The 
COP_I model obtained a validation RMSE of 74 kg ha 

−1
. 

However, it tended to increase the error (MSE) during training. 
In all models, there was a high correlation, with no significant 
differences with the models without data imputation. The 
AGR_I model, when compared to the AGR_M model, showed 
more overfitting to the training data (Figures 1 and 2). Like 
AGR_M, the AGR I model presents the same situation as the 
agronomic characteristics, which are not sufficient to explain 
productivity. This suggests that more agronomic traits are 
needed to increase grain yield prediction and that climate 
variables are fundamental for hybrid yield estimation. This can 
be confirmed by the COP_I and COP_M models, which 
consider all variables in the database; therefore, the training 
and validation curves are closer to each other.  

 

 
Fig. 3.  Cost function (MSE) training and k-fold cross-validation validation 

with data imputation for AGR_I, CLI_I and COP_I models. 

Based on the metrics of the models, the imputation of data 
obtained superior performance compared to the base with 
missing data. The models with imputation presented RMSE up 
to 3 times lower than those without, which suggests that the 
problem in question requires a reasonable amount of data so 
that the performance of the ANN is increasing, but due to 
database reduction and imputation, the MLP models are 
adequate. The models with and without imputation obtained an 
RMSE very close to 1% and 3% of grain yield which is 
considered very good. In the Syngenta Crop Challenge 2018, 
with a productivity data set of 2,267 maize hybrids in 2,247 
locations between 2008 and 2016, the of [10] was considered 
one of the best, with an RMSE of 12% of the average yield 
using forecast weather data. 

Using another strategy, maize yield prediction was 
performed with machine learning with different models, and 
the best of them, Stacked LASSO, presented a Mean Bias Error 
(MBE) of 53 kg/ha and a Relative RMSE (RRMSE) of 9.5% 
[32]. For the soybean crop, annual productivity was predicted 
in the region of the Brazilian states of Maranhão, Tocantins, 
Piauí, and Bahia as a function of monthly climate variables (air 
temperature, precipitation, and global radiation) and water 

balance components (cultivation evapotranspiration, storage, 
actual cultivation evapotranspiration, water deficiency, and 
surplus) during plant development through a deep artificial 
neural network [33] with a dataset size of 920 examples, the 
obtained RMSE was 167.85 kg.ha

−1
. The unprecedented 

differential in the strategy of using climatic variables 
subdivided into maize plant development stages that are 
differentially sensitive to water stress was assertive. This can 
be the main reason why, even with a smaller database, the 
RMSE of the models was smaller than that found in the 
literature. 

Despite the generalization of the positioning of cultivars by 
different methodologies, either the traditional methods of 
adaptability and stability or ANN models, the germplasm of the 
species must have a genetic response to the common stress in 
the region, as verified by the authors in [34, 35], who identified 
maize cultivars with different responses to nitrogen. Authors in 
[36] identified the response of maize cultivars as a function of 
organic fertilization, and in [37] identified different responses 
of maize cultivars to irrigation with saline water. Therefore, 
without genetic control of tolerance or resistance to stress, the 
differences between cultivars do not affect productivity, and it 
is simply dependent on the environment, being high when this 
is favorable. However, when tolerance or resistance to stress 
has genetic control, the environment with or without the 
presence of stress does not affect the productivity of the 
cultivar, as it is due to its genes. Due to the importance of the 
cultivar in the models, it can be stated that there are differences 
between the cultivars how they interact with the environment. 

MLP models with different precisions do not allow us to 
identify which agronomic or climatic variables are the most 
important for predicting productivity. This can be achieved 
with SHAP analysis applied to the COP_I model, identifying 
the variables with the greatest impact on the model (Figure 4). 
The most important variables were the cultivar, the average 
productivity of the cultivars/site, and the site itself (edaphic 
conditions), which is consistent with the agronomic 
explanation of the productivity of the cultivar, the physical and 
climatic environment, and the interaction of the cultivar with 
the environment [38]. The cultivar defines the productive 
potential of the environment and its limitations in certain 
environments. The adaptation of cultivars to the environment is 
related to their genetic adaptation to the soil, water regime, 
plant development cycle, absorption and use of nutrients, and 
tolerance to insects, pests, and diseases [39]. Cultivar, 
productivity/location (prod_local), and location had the greatest 
impact on the output of the variable in the COP_I model. The 
prod_local defines the average productivity that can be 
obtained in a given location, showing the effect of the climate× 
soil×cultivar interaction. The local variable defines the edaphic 
conditions, latitude, and altitude of the environment. This 
means that the model was able to capture edaphic effects on 
productivity and the interaction between the cultivar and the 
environment. The environment, represented by the effect of 
climate and local conditions, is an important factor that can 
vary over time, and edaphic conditions are fixed between 
harvests [38]. EPH (ear/plant height) ratio is an important 
characteristic of grain yield and is directly related to plant 
lodging, which directly interferes with harvesting when 
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performed mechanically. However, it should be considered that 
the agronomic characteristics present genetic correlations, 
which are determinants in the expression of the phenotype 
when evaluated under a certain stress, which is also a cause of 
productivity [40]. In the results found, the evaluated agronomic 
characteristics and the cultivars were presented in a similar 
way, not being related to the climatic variables that explain 
productivity. relative humidity (RH), excess precipitation in the 
soil (EP), EPH ratio, total daily precipitation (TP), minimum 
daily temperature (MT), soil water storage (WS), deficit 
precipitation in the soil (DP), wind with maximum daily gust 
(WG), evapotranspiration (EV), emergence (VE), forth leaf 
(V4), eighth leaf (V8), tassel (VT), silk and blister (R1_R2), 
physiological maturity (R6). 

 

 

Fig. 4.  Average impact of the variables on the output of the COP_I model. 

In the emergency stage, only the relative air humidity 
(HR_VE) is important. The emergence of seedlings and their 
establishment provide the formation of a stand, which is the 
main component that explains productivity and is affected by 
HR_VE. Relative air humidity plays an important role in plant 
transpiration and soil evaporation, making plants more 
sensitive to a lack of precipitation [41]. 

In the vegetative phase, during the fourth-leaf stage, only 
excess precipitation (PS_V4) was highlighted, and in the 
eighth-leaf stage, the total daily precipitation (PT_V8), 
minimum daily temperature (MT_V8), water storage 
(WS_V8), and precipitation deficit (PD_V8) were highlighted. 
MT_V8 and PS_V4 act together in plant growth and 
development, where the number of plants per hectare and plant 
height is defined. Relative air humidity plays an important role 
in plant transpiration and soil evaporation, rendering the lack of 
precipitation more sensitive [41]. The minimum daily 
temperature is an important factor for the metabolism of corn 
and the entire C4 plant, inhibiting the rubisco enzyme that 
affects carbohydrate production, which is closely related to 
productivity [42]. The variables PS_V4, PT_V8, WS-V8, and 
PD_V8 related to precipitation are fundamental for the 
development of the plant and the prediction of productivity, 
requiring 3–4 mm in the initial stages of the corn plant and 
reaching the need close to 6-8 mm being the main parameters 
associated with the limitation of grain yield [43].  

In tasseling, relative air humidity (AH_T), wind with 
maximum daily gust (WG_T), and precipitation deficit (PD_T) 
were important. The variable AH_T during this phase can 
affect grain production by reducing plant fertility in dry 

environments typical of the second crop sowing in February in 
São Paulo State, Brazil [44-45]. Wind gusts can damage maize 
plant leaves, break plant culms, or bed down plants, causing a 
direct loss of harvest [46]. These results are consistent in 
predicting the performance of maize productivity and 
temperature in the flowering phase, and the frequency and the 
amount of water received during the vegetative phase, and 
grain filling were identified as the main environmental factors 
[47]. The lack of precipitation is considered the most important 
environmental parameter in bolting, delaying the coincidence 
of receptivity between male and female flowers and preventing 
fertilization [44, 48].  

In the reproductive phase, in the silk and blister stage, 
relative humidity (RH_R1_R22), water storage (WS_R1_R22), 
and evapotranspiration (EV_R1_R22) were important. At the 
physiological maturity stage, total daily precipitation (TP_R6), 
minimum daily temperature (MT_R6), and excess precipitation 
(EP_R6) were important for predicting the model in the final 
stage of maturation and were related to plant physiology at this 
stage. This is justified by the intense water, thermal, and 
relative humidity requirements of the air at the beginning of 
filling and grain formation of the corn plant. Note that the 30 
days referring to the reproductive stages R3 to R5 did not 
influence productivity prediction. 

Different climatic and water balance variables had different 
impacts on the stages of maize plant development, indicating 
that the partitioning of these variables must be carried out to 
increase the accuracy of the models.   

IV. DISCUSSION 

The different ANN architectures of the models demonstrate 
a greater need for data or hyper parameterization for the 
AGR_M model than for the other models due to the greater 
number of hidden layers and batch size. The CLI_M model had 
the lowest data requirement for productivity prediction, 
characterizing the importance of environmental data in relation 
to hybrids when they were evaluated in groups with the same 
cycle. However, all three models without imputation showed 
good error estimates with values around 200 kg.ha

-1
, which is 

considered small in yields that reach at least 6000 kg.ha
-1

, 
representing only 3%.  

The AGR_M, CLI_M, and COP_M models with 3 hidden 
layers did not obtain optimal hyperparameters defined by the 
grid search and k-fold cross-validation in the databases without 
data imputation. Only the models with 1 or 2 hidden layers 
obtained optimal hyperparameters, and therefore, the models 
with 3 layers were discarded. This may have occurred because 
the model tended to overfit the training data.  

The AGR_M model required a larger batch size than the 
other two models for more consistent training, because the 
agronomic characteristics of the hybrids, such as the same 
cycle, height of plants and spikes, and grain productivity, are 
similar or very close, because Brazilian legislation requires that 
the new cultivars must be at least equal to those on the market 
in terms of productivity, even though the germplasms that 
originated from different hybrids have some similarity between 
the companies. Therefore, the agronomic characteristics of the 
hybrids do not concisely explain the different yields between 
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the environments since none of the hybrids capitalized on the 
genotype×environment interaction between the evaluated 
microregions. This similarity between the hybrids required 
different batch sizes of the CLI_M and COP_M models for 
adjustment.  

The MLP-ANN models with imputation (I) showed lower 
errors than the models without imputation (M), lower ANN 
architecture requirements, and even fewer epochs. The set of 
routines for maize hybrid evaluation is more suitable for use in 
MLP-ANN models when data imputation is applied. Different 
architectures of the MLP-ANN models with smaller batch 
sizes, layers, or epochs occur for the CLI_M and CLI-I models. 
They also present the smallest errors and converge in models 
more assertively even with climate data from distant 
meteorological stations, from 27 to 100 km. This characterizes 
the robustness of the MLP-RNA models and the importance of 
climate data in predicting productivity in relation to the 
agronomic data of hybrids that present significant differences 
in their productivity [17, 18].  

The AGR_M and AGR_I models that are based only on the 
agronomic data of corn hybrids require a greater process 
capacity and more complex models with larger batch sizes, 
layers, and times. The AGR_I model had the lowest precision 
(0.005) among all models. The accuracy of the models 
characterizes their adequacy. It was also found that, in several 
scientific publications in experiments evaluating the 
productivity of maize hybrids, the coefficients of variation 
were equal to or less than 12%, which can characterize minimal 
significant differences between the hybrids than 600 kg.ha

-1
, 

considering yields from 5 ton.ha
-1

. Significant differences 
between corn hybrids in experiments as to their yields were 
detected when their differences were greater than 12%, as 
verified in 143 experiments in 15 years of publications with the 
maize crop for the grain yield, in which the average coefficient 
of variation was 11.87% [49].  

When dealing with both agronomic and climatic 
characteristics, the COP_M and COP_I models bring to their 
iterations the difficulties encountered with the AGR models. 
However, with data imputation, the AGR_I model presents an 
MSE close to the COP_I's but requires a greater number of 
epochs. The low RMSE values can be explained by the 
methodology used to evaluate the climatic data in the different 
stages of plant development, which were strategically correct 
and possibly the cause of the success of the ARN used. This 
was confirmed by the importance of different climatic 
parameters and water balance as variables of importance in the 
construction of the model. This also allows the model to be 
used in advance according to the stages of development of the 
plant, allowing for more assertive decision-making in different 
scenarios and moments of the crop. Therefore, those in charge 
of the crop can obtain new information at the time of sowing 
and at the time of cultural practices and fertilization during the 
vegetative phase, where it is still possible to manage the crops 
when they are not irrigated. When crops are irrigated, it is 
possible to manage the application throughout the plant's 
development, especially at the most critical times, such as grain 
filling. 

The models can detect the non-linear effects between 
climate, soils, and genotypes, especially when climate 
information is included in the model or when they are sufficient 
to predict grain yield, even with several hybrids that have the 
same cycle.  

The results of the models are adequate, even considering 
the limited amount of data analyzed on the ANNs and their 
application in the processes of the improvement programs 
without the need for modifications in the processes. The ANN 
models can identify important variables during the 
development stage of the plant, and it is observed that climatic 
and water balance variables are important. The water balance 
variables are important at all the stages of maize plant 
development and demonstrate the availability of water that is 
stored in the soil and that can be used by the plant, being the 
main environmental parameter limiting productivity [48].  

New environmental parameters can be incorporated into the 
ANN models, further increasing their accuracy. An ANN based 
on a graph-based framework developed by Graph Neural 
Network-Recurrent Neural Network (GNN-RNN), using 
geospatial and temporal information to predict crop 
productivity was proposed in [11].  

V. CONCLUSION 

 The implemented ANNs managed to extract a pattern in the 
data even if the locations of the experiments and cultivars 
were different, which shows the capacity of the ANNs in 
the generalization of productivity prediction. 

 The ANN models are well suited for predicting corn yield 
and present concise training, even with a limitation in the 
amount of data, when exclusively using the agronomic 
characteristics of the hybrids. This limitation is overcome 
when climatic data are incorporated into the model because 
most of the variation in productivity is due to these 
parameters.  

 The imputed climate model was the most homogeneous in 
its performance and was the most suitable for productivity 
prediction. 

 The SHAP analysis is important for the agronomic 
understanding of the results and is completely consistent 
with the knowledge of the ecophysiology of corn plants 
under stress.  

 Multilayer perceptron models present adequate 
performance and capture the non-linear effects of the 
interaction between the environment and maize cultivars.  

 The climatic parameters of each stage of maize plant 
development explain the productivity of the cultivars more 
than their agronomic characteristics.  
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