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ABSTRACT 

In this study, the multi-objective optimization method for thin-wall milling of 6061 aluminum alloy is 

addressed. The technological parameters including the cutting speed Vc, the feed of tooth fz, and the width 

of cut ar are considered input variables, while the manufacturing responses are surface roughness Ra, 

production rate MRR, and flatness deviation FL. The goal is to find the optimum cutting parameters to 

minimize Ra and FL and maximize MRR, at the same time. To solve this problem, the desirability function 

approach was used based on Taguchi orthogonal array. Twenty-seven experiments were conducted and the 

measured data were collected. The mathematical regression models for responses Ra, MRR, and FL were 

then generated and evaluated by using the analysis of variance method. Then, the multiple objective 

optimization problems were solved by using the desirability function approach. The optimum cutting 

parameters set are Vc=120m/min, fz=0.06mm, and ar=0.13131mm, corresponding to Ra=0.1613µm, 

MRR=17197.45cm3/min, and FL=0.0995mm.  

Keywords-thin-walled milling; multiple objective optimization; desirable function approach; Taguchi method; 

6061 aluminum alloy 

I. INTRODUCTION  

The 6061 alloy is an important product line in aluminum 
manufactured products [1]. Aluminum and its alloys rank 
second (after steel) in use as structural metals [2], due to 
properties that make them suitable for many different uses [3]. 

Some of the important properties of 6061 alloy are its light 
weight, high strength, good chemical corrosion resistance, and 
good weldability [4]. Therefore, 6061 alloy is often used in the 
transportation industry (e.g. in auto parts, motorcycles, cycle 
frames, and motorcycle frames) and especially in the marine or 
aerospace industry [5]. The development of the aviation 
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industry has led to an increasing demand for aluminum alloy 
machining, in which the milling of thin-walled parts plays a 
particularly important role [6]. However, the manufacturing of 
thin-walled parts is complicated by the possibility of 
deformation during the machining process [7]. Thin-walled 
products are often difficult to cut due to the complex dynamics 
involved. During the cutting process, the cutting dynamics for 
the products varies however it is invariant for the machine tool 
[8]. On another hand, permanent deformation of the structure 
can occur and this can cause a proportion of rejected products 
[9]. 

In the demand of the growing global market for aluminum 
alloy thin-walled products, there are several studies focused on 
optimizing the structure to improve the surface roughness, the 
load capacity, and the durability of the thin-walled components 
by reducing deformation and vibration during the cutting 
process [7]. Μany studies have been carried out to improve the 
economic and technical efficiency of thin-walled processing. 
Authors in [10] developed an analytical approach to investigate 
the dynamic chip thickness variation in the thin-walled milling 
process. A general model of the removal volume is calculated 
by considering the individual axial depth of cut, the radial 
depth of cut, and the circumferential cross-section of the tool 
radius contact for each tool step performed. Authors in [6] 
presented a technique to improve the surface quality and 
production rate in the thin-walled milling process. The results 
show that double-side milling leads to reduce about 50% in 
cutting time and a decline in the surface roughness and flatness 
deviation of the milling products, simultaneously. The quality 
of thin-walled products when machined can also be improved 
by selecting and using the right jigs and fixtures [11]. Finding 
suitable cutting parameters can also reduce vibration, thereby 
reducing deformation during milling. This can be solved 
through experimentation [12, 13], or mathematical modelling 
[14]. Authors in [8] present a methodology of performing the 
optimization of the entire cutting process for thin-walled parts 
based on the relatively changing kinematics of the machining 
system. According to the comparison between the dynamics of 
the machine tool and the variable thickness part, the critical 
thickness is investigated by an iterative algorithm. This method 
can be used for many other machining processes. 

There are many other studies on machining thin-walled 
parts in general, and aluminum alloys in particular. These 
studies can be applied to improve the quality of processed 
products in practice. However, due to the increasing 
competitive pressure from the global market, the manufacturers 
not only have to improve the quality of processing but at the 
same time have to increase machining productivity and tool 
life. Those are scientific multi-objective optimization problems 
and Multiple Criteria Decision-Making (MCDM) methods such 
as the Technique for Order of Preference by Similarity to Ideal 
Solution (TOPSIS) and Multi-Objective Optimization on the 
basis of Ratio Analysis (MOORA) have been introduced to 
face them [15-19]. They are often applied due to their 
simplicity. However, these methods have a common 
disadvantage, which is the optimal value set is one of the 
experimental values. This means that these techniques select 
one of the data sets that have been used, and in many cases, 
they are not the best [18-20].  

With the development of computers, many new algorithms 
have been researched and applied, e.g. ANFIS [21], 
Desirability Function Approach (DFA) [22], etc. Many 
publications have demonstrated the effectiveness of these 
methods in comparison with MCDM. In this study, DFA and 
Minitab computed software were applied to solve the multi-
objective optimization problem at hand. The research aims to 
find the optimal cutting parameters set to simultaneously 
maximize the machining productivity MRR, and minimize the 
roughness Ra and flatness deviation FL. 

A. MATERIALS AND METHODS 

B. 6061 Aluminum Alloy 

As mentioned above, 6061 Aluminum Alloy was selected 
because it is largely used. All the specimen workpieces were 
milled with dimensions of 100×50×10mm

3
. The chemical 

composition and mechanical properties of the workpieces are 
shown in Tables I and II [23]. The experiments were conducted 
on a DMU50 CNC Machine. To perform thin-walled milling 
operations, a 3-flute square namely YG ALU - CUTTER 
E5D70100 (15329040K) was used (Figure 1). The Taguchi 
orthogonal array was applied to reduce the number of 
experiments but still ensure reliability in the predictive 
analysis, with the number of input variables being 3, the 
number of levels for each variable being 3, and the number of 
experiments to be performed being 27. The values of the input 
variables corresponding to the levels are depicted in Table III. 
The range of the cutting parameters is chosen based on the 
cutting tool manufacturer’s recommendations.  

TABLE I.  CHEMICAL COMPOSITION OF 6061 ALLOY 

Al (%) Mg (%) Si (%) Cu (%) Cr (%) Others (%) 

97.9 1 0.60 0.28 0.20 0.02 

TABLE II.  THE MECHANICAL PROPERTIES OF 6061 ALLOY 

Tensile strength 310MPa 

Yield strength 276MPa 

Shear strength 207MPa 

Fatigue strength 96.5MPa 

Elastic modulus 68.9GPa 

Poisson's ratio 0.33 

Elongation 12-17% 

Hardness 95 HB 

TABLE III.  INPUT VARIABLE LEVELS 

Parameters Symbol Unit 
Level 

-1 0 1 

Cutting speed Vc m/min 120 150 180 

Feed rate fz mm/tooth 0.04 0.05 0.06 

Width of cut ar mm 0.8 1.0 1.2 

 

C. Experimental data acquisition 

The experimental set up is shown in Figure 2. In this work, 
3 thin-walled cutting responses, including the surface 
roughness Ra, material removal rate MRR, and flatness 
deviation FL are optimized simultaneously by applying the 
Desirable Function Approach (DFA). Based on the EN ISO 
4287 standard, surface roughness Ra is calculated by: 
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�   (2) 

�� = ���	����      (3) 

where Rax is the arithmetical mean roughness in the x-direction 
and Ray is the mean roughness depth in the y-direction.  

 

 
Fig. 1.  The experimental setup. 

 
Fig. 2.  a1: Negative local flatness deviation, a2: Positive local flatness 

deviation, 1: least squares reference plane (STN P CEN ISO/TS 12781-1: 

2008). 

(a) 

 

(b) 

 

Fig. 3.  Measurement systems. (a) Renishaw Equator 300 CMM - High-

Speed Comparative Gauge System, (b) Non-contact flatness deviation 

measurement system. 

TABLE IV.  EXPERIMENTAL RESULTS 

Run 
Vc 

m/min 

fz 

mm/ 

ar 

mm 

Ra 

µm 

MRR 

mm3/min 

FL 

mm 

1 120 0.04 0.8 0.228 8025.48 -0.031 

2 120 0.05 1 0.128 14331.21 -0.060 

3 120 0.06 1.2 0.152 20636.94 -0.044 

4 150 0.04 0.8 0.294 10031.85 0.100 

5 150 0.05 1 0.274 17914.01 0.063 

6 150 0.06 1.2 0.345 25796.18 0.131 

7 180 0.04 0.8 0.157 11369.43 -0.015 

8 180 0.05 1 0.170 20302.55 -0.045 

9 180 0.06 1.2 0.271 29235.67 0.039 

10 180 0.04 1 0.150 16242.04 0.050 

11 180 0.05 1.2 0.205 24363.06 0.085 

12 180 0.06 0.8 0.206 17054.14 0.029 

13 120 0.04 1 0.190 11464.97 0.033 

14 120 0.05 1.2 0.172 17197.45 0.048 

15 120 0.06 0.8 0.170 12038.22 -0.023 

16 150 0.04 1 0.275 14331.21 0.085 

17 150 0.05 1.2 0.300 21496.82 0.192 

18 150 0.06 0.8 0.300 15047.77 0.130 

19 150 0.04 1.2 0.292 17197.45 0.368 

20 150 0.05 0.8 0.279 12539.81 0.058 

21 150 0.06 1 0.309 21496.82 0.055 

22 180 0.04 1.2 0.175 19490.45 0.253 

23 180 0.05 0.8 0.163 14211.78 -0.050 

24 180 0.06 1 0.227 24363.06 -0.046 

25 120 0.04 1.2 0.196 13757.96 0.234 

26 120 0.05 0.8 0.181 10031.85 -0.084 

27 120 0.06 1 0.161 17197.45 -0.099 

 

In this experiment, the surface roughness value of each 
experiment was measured 3 times on a Renishaw Equator 300 
CMM - High-Speed Comparative Gauge System (Figure 3) 
according to the EN ISO 4287 standard. The flatness deviation 
(FL, mm) is measured using a non-contact measurement 
system (Figure 3). According to STN P CEN ISO/TS 12781-2: 
2008 standard, the flatness zone was divided into negative and 
positive (Figure 2) local zones based on the least squares 
reference plane, which is a plane such that the sum of the 
squares of the local flatness deviations is minimum. The 
measured results are summarized in Table IV. 

The Material Removal Rate-MRR (mm
3
/min) of each 

experiment is calculated by: ��� = �� × �� × � × � × ��   (4) 

where ap is the depth of cut (mm). In this experimental work, 
ap=10mm for all runs. ar is the width of cut (mm), N is the 
number of cut flutes (N=3), S is the spindle speed (rpm), and fz 
is the feed of tooth (mm/tooth). 

The matrix of the experiment design with the input factors 
and the response data is presented in Table IV. These data were 
utilized to develop the regression models for Ra, MRR, and FL.  

D. The Optimization Problem 

The machining parameters, i.e. cutting speed Vc, feed rate fz, 
and width of cut ar, and their corresponding levels are listed in 
Table III. The target of this research is to decrease the flatness 
deviation FL and improve the MRR concerning the predefined 
Ra. Consequently, the optimizing issue can be described as (5): 
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Find X={Vc, fz, ar} to minimize {Ra; FL}, and maximize 
MRR subjected to 120 ≤ Vc ≤ 180 (m/min); 0.04 ≤ fz ≤0.06 
(mm/tooth) and 0.8 ≤ ar ≤ 1.2 (mm)   (5) 

To solve this multi-object problem, the DFA was adopted. 
The desirability package contains S3 classes to optimize 
multiple variables simultaneously using the DFA of Harrington 
[24-26] (1965) with the functions described in [24, 25]. 
Basically, the method is to translate the functions to a common 
scale ([0, 1]), combine them using the geometric mean and 
optimize the overall index. For each function R, an individual 
"desirability" function is constructed to be high when fr(x) is at 
the desired level (such as maximum, minimum, or target) and 
low when the fr(x) is at an unwanted level value. Authors in 
[27] proposed three forms of these functions, corresponding to 
the type of optimization goal. To maximize fr(x), ����� , ������  are obtained for maximization and minimization 

purposes, while ��!��"�!
 represents for the best solution.  

����� = # 0                    if ��'() < +,-.'�)/01/0 23    if + ≤ ��'() ≤ 51                if ��'() > 5   (6) 

����� = # 0                    if ��'() > 5,-.'�)/10/1 23    if + ≤ ��'() ≤ 51                 if ��'() < +   (7) 

��!��"�! =
⎩⎪⎨
⎪⎧ ,-.'�)/0!</0 23=   if + ≤ ��'() ≤ >?,-.'�)/1!</1 23�    if >? ≤ ��'() ≤ 50                otherwise

 (8) 

II. RESULTS AND DISCUSSION  

A. Regression models 

The regression models for Ra, MRR, and FL were generated 
using Minitab Software. Equations (9)-(11) show the fully 
developed regression models. �� = −1.609 + 0.04550NO − 38.20�� − 1.066�� −0.000188NO� + 173.9��� + 0.2767��� + 0.1307NO�� +0.002964NO . �� + 2.53����   (9) MRR = 16932 − 115.4NO − 338641�� − 17516�� −0.0000NO� + 0.0000��� + 0.0000��� + 2309NO�� +119.43NO . �� + 340318����   (10) VW = −2.390 + 0.05237NO − 33.26�� − 1.267�� −0.000188NO� + 465.7��� + 1.470��� + 0.0490NO�� +0.00407NO . �� − 26.42����   (11) 

To assess the adequacy of these models, analysis of 
variance (ANOVA) was adopted. The ANOVA was conducted 
with 95% of confidence and 5% significance. The ANOVA 
results for the predictive models are presented in Tables V-VII. 

The coefficients of mathematical regression models, 
including "R

2
", "adjusted R

2
," and "predicted R

2
," reveal the 

accuracy of the developed models. In this work, the values of 
"R

2
", "adjusted R

2
," and "predicted R

2
," for Ra, MRR, and FL 

the are fluctuated in the range of [96.66%, 99.93%], [94.89%, 

99.89%], and [89.78%, 99.76%] mean a good fitting between 
the experimental and the predicted values. Hence, it is 
concluded that the developed models of Ra, MRR, and FL can 
be used for predicting the optimal process parameters.  

TABLE V.  ANOVA FOR THE PREDICTIVE MODELS OF Ra 

Term DF Adj SS Adj MS F-Value P-Value 

Regression 9 0.102879 0.011431 54.64 0 

Vc 1 0.039154 0.039154 187.14 0 

fz 1 0.006102 0.006102 29.16 0 

ar 1 0.003528 0.003528 16.86 0.001 

Vc*Vc 1 0.079044 0.079044 377.8 0 

fz*fz 1 0.001814 0.001814 8.67 0.009 

ar*ar 1 0.001452 0.001452 6.94 0.017 

Vc*fz 1 0.012573 0.012573 60.09 0 

Vc*ar 1 0.004044 0.004044 19.33 0 

fz*ar 1 0.000413 0.000413 1.97 0.178 

Error 17 0.003557 0.000209     

Total 26 0.106436       

"R2"=96.66%, "Adjusted R2"=94.89% and "predicted R2"=89.78% 

TABLE VI.  ANOVA FOR THE PREDICTIVE MODELS OF MRR 

Term DF Adj SS Adj MS F-Value P-Value 

Regression 9 728005304 80889478 2553.25 0 

Vc 1 199266 199266 6.29 0.023 

fz 1 720212 720212 22.73 0 

ar 1 1209228 1209228 38.17 0 

Vc*Vc 1 1999162 1999162 63.1 0 

fz*fz 1 0 0 0 1 

ar*ar 1 4602114 4602114 145.26 0 

Vc*fz 1 3998324 3998324 126.21 0 

Vc*ar 1 6685664 6685664 211.03 0 

fz*ar 1 9204227 9204227 290.53 0 

Error 17 538577 31681     

Total 26 728543881       

"R2"=99.93%, "Adjusted R2"=99.89% and "predicted R2"=99.76% 

TABLE VII.  ANOVA FOR THE PREDICTIVE MODELS OF FL 

Term DF Adj SS Adj MS F-Value P-Value 

Regression 9 0.315328 0.035036 97.42 0 

Vc 1 0.058999 0.058999 164.04 0 

fz 1 0.002633 0.002633 7.32 0.015 

ar 1 0.006217 0.006217 17.28 0.001 

Vc*Vc 1 0.08127 0.08127 225.96 0 

fz*fz 1 0.013011 0.013011 36.17 0 

ar*ar 1 0.03372 0.03372 93.75 0 

Vc*fz 1 0.001546 0.001546 4.3 0.054 

Vc*ar 1 0.000111 0.000111 0.31 0.585 

fz*ar 1 0.054928 0.054928 152.72 0 

Error 17 0.006114 0.00036   

Total 26 0.321442     

"R2"= 98.10%, "Adjusted R2"=97.09% and "predicted R2"=96.09% 

 

B. Multiple Objective Optimization results 

As mentioned above, the DFA was adopted for solving the 
multiple objective problem (Figure 4). The Composite Desire 
Values (D) corresponding to 27 experiments were computed 
using the Minitab 19 software with the constrain from (5). The 
results are shown in Table VIII.  
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(a) 

   

Hold value: ar=1 Hold value: fz=0.05 Hold value: Vc=150 

(b) 

 

 

 

Hold value: ar=1 Hold value: fz=0.05 Hold value: Vc=150 

(c) 

 

 

 

Hold value: ar=1 Hold value: fz=0.05 Hold value: Vc=150 

Fig. 4.  Surface plot of (a) FL, (b) Ra, (c) MRR vs Vc, fz, ar. 

TABLE VIII.  COMPOSITE DESIRABILITY VALUE (D) 

Solution Vc fz ar FL fit MRR fit Ra Fit D 

1 120 0.060 1.131 -0.07 19829.00 0.145 0.769 

2 120 0.060 1.180 -0.04 20596.40 0.149 0.763 

3 120 0.060 1.199 -0.03 20866.70 0.151 0.758 

4 120 0.060 1.200 -0.03 20879.10 0.151 0.757 

5 180 0.058 1.052 -0.04 24881.10 0.223 0.718 

6 180 0.060 1.034 -0.04 25165.70 0.233 0.699 

7 180 0.060 1.012 -0.04 24533.80 0.230 0.698 

8 180 0.060 1.137 0.00 27867.10 0.255 0.662 
 

The higher the value of D, the more optimal the experiment 
is. In this study, the optimal parameter set Vc = 120m/min, fz = 
0.06mm, ar = 1.13131mm correspond to Ra = 0.144601µm, 
MRR = 19829cm

3
/min, and FL = -0.00699460mm. 

Comparing the optimization results with the resurged 
results shown in Table I, it is easy to see that the optimization 
results are quite close to the experiment number 27. However, 
the difference is that the predicted ar value is larger than the 
selected ar value, at 1mm and 1.131mm, respectively. This 
increase in the width of the cut led to an increase in production 
rate by about 15.30%, from 17197.45 to 19829cm

3
/min. At the 

same time, the surface roughness value Ra decreased by 
13.10%, from 0.1613 to 0.1446µm and the FL also decreased 
by -0.07mm, a decrease of 29.65%. 

The results of this study show the advantages of DFA in 
comparison with DCDM. The disadvantage of DCDM is that 
the optimal parameter set is calculated, ranked, and selected 

from one of the experimental runs, in this case, experiment 
number 27. With the DFA method, the optimal parameters do 
not necessarily coincide with the selected parameters. The 
comparison results are clearly depicted in Table IX. 

TABLE IX.  OPTIMIZATION RESULT COMPARISON 

 

Cutting parameters Responses 

Vc 

(m/min) 

fz 

(mm) 

ar 

(mm) 

Ra 

(µm) 

MRR 

(cm3/min) 

FL 

(mm) 

Actual 

value 
120 0.06 1 0.1613 17197.45 -0.0995 

Predicted 

value 
120 0.060 1.131 0.145 19829.00 -0.07 

Comparison    13.10% 15.30% 29.65% 
 

III. CONCLUSION  

Due to the increasing competitive pressure from the global 
market, the need to maintain or increase product quality while 
simultaneously increasing productivity is important. This is a 
multi-objective optimization problem. In this article, the 
multiple objective optimization issue in thin-walled milling of 
6061 aluminum alloy for reducing flatness deviation FL and 
surface roughness Ra while improving production rate MMR 
simultaneously, has been addressed. Predictive mathematical 
regression models of the three responses have been developed 
to model the highly non-linear relations between the cutting 
parameters (i.e. Vc, fz, and ar) and the machining responses. The 
Desirability Function Approach (DFA) was employed to 
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generate the optimum parameters. The main results of this 
work can be concluded, as follows: 

The "R
2
", "adjust-R

2
" and "predicted-R

2
" of Ra, MRR, and 

FL fluctuated around 90-99%, illustrating the good relationship 
between cutting parameters and response. Hence, these 
mathematical regression models could be applied in the actual 
manufacturing process to predict the cutting parameters set 
corresponding to the desired response. The obtained optimal 
cutting parameters set of thin-walled milling of 6061 aluminum 
alloy processes is (Vc=120m/min, fz=0.06mm, and 
ar=1.13434mm), corresponding to the Ra, MRR, and FL values 
of 0.14269µm, 19614.6mm

3
/min, and -0.0653mm, 

respectively.  

The findings in this research work can contribute to a 
broader understanding of aluminum alloy thin-walled milling 
and can be extended to research with other materials and 
machining processes. In future works, other cutting parameters 
such as tool nose radius, tool coaching material, lubrication 
method, number of inserts, number of flutes, and other 
responses including cutting force, cutting variation, tool wear, 
and tool life will be taken into consideration.  
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