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ABSTRACT 

The purpose of this paper is to present a method for calculating the upper bound limit loads of plate 

bending using a conforming Hsieh-Clough-Tocher (HCT) element. These limit loads can be obtained from 

Koiter’s kinematic shakedown theorem for the case of one load vertex instead of using the kinematic limit 

theorem. When combining this theorem with the approximated displacement field, the limit analysis turns 

into an optimization problem and can be effectively solved by Second-Order Cone Programming (SOCP). 

Several benchmark plate problems such as square, rectangular, and L-shape plates are investigated to 

illustrate the effectiveness of the proposed solution. The results of the proposed method show good 

agreement with the results of previous studies. The maximum error is only 2.91% for the fully clamped 

rectangular plate problem. 

Keywords-plate bending; limit analysis; second-order cone programming; plates; shakedown   

I. INTRODUCTION  

One of the most significant issues in structure engineering 
is the determination of the safety load factors. Limit analysis is 
a well-known efficient approach for resolving the issue. These 
limit loads can be calculated by using the lower- or upper-
bound theorems of limit analysis. However, it is very difficult 
to apply these two theorems to tackle general problems when 
using analytical methods [1]. Therefore, the current research is 
mainly concentrated on computational methods. Authors in [2, 
3] carried out experimental tests in order to understand the 
punching shear behavior of concrete slabs reinforced by steel 
collars and hybrid fibers. Author in [4] studied the limit state of 
local instability of steel column structures under axial 
compression using the energy method combined with the finite 
element method using fiber beam-column elements. Authors in 
[5] employed the shaft-grouted method to improve the bearing 
capacity of barrette piles for high-rise buildings in Ho Chi 
Minh City, Vietnam. Authors in [6] developed a new effective 
finite element modeling for predicting the ultimate strength of 
concrete-filled steel tube columns under axial compression. 
Authors in [7, 8] studied steel frames under static and 
earthquake loadings with limit load analysis methods. Various 
discretization techniques have been developed to treat the limit 
problems such as finite elements [9-12], meshfree methods [13-
17], and isogeometric analysis [18].  

Limit analysis of plate bending has been extensively 
investigated, analytically and numerically [19, 20]. In [19], 

limit loads of plate bending were studied in both Kirchhoff and 
Mindlin plate models based on the upper bound theorem and 
the finite element method. A dual algorithm combined with 
DKQ elements for limit and shakedown analyses of plate 
bending was proposed in [21]. One of the most efficient 
methods to conduct plate bending limit analysis was developed 
by Canh [12, 17], where SOCP was utilized in conjunction 
with conforming the HCT element or the meshless Element‐
Free Galerkin (EFG) method. Based on this approach, the aim 
of this research is to provide a solution to determine the upper 
bound load factors of plate bending with the combination of the 
HCT element and SOCP. However, the limit loads will be 
determined from Koiter’s kinematic shakedown theorem for 
the case of one load vertex instead of using the kinematic 
theorem of limit analysis as in [12]. The advantage of this 
approach is that it can be easily extended to the shakedown 
problem. In addition, having calculated the stress components, 
it is possible to determine the failure mode of structures such as 
alternating plasticity for non-shakedown problems [22]. 

II. LIMIT ANALYSIS FORMULATION OF PLATE 

BENDING BASED ON THE SHAKEDOWN APPROACH 

Consider a rigid-perfectly plastic plate that has a closed 

boundary with plane area A. Let A  and A  denote static 

and kinematic boundaries respectively. Neglecting the shear 
deformation, the kinematic relations of thin plates can be 
described as: 
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where ɺ  denotes the curvature rate vector, ɺ  is the transversal 

velocity, and the operator 
2  is expressed by: 
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bending moments and the transversal load, respectively. The 
equilibrium relation can be defined as: 

 2 0
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In this study, the von Mises yield condition is adopted, and 
the internal dissipation power of the plate bending (or the 
dissipation rate) can be described as: 
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and 2 4p ym h  is the plastic limit moment per unit length 

of a plate section in which h and y  denote the plate thickness 

and the yield stress, respectively. 

Next, consider a structure simultaneously submitted to NL 

linearly independently varying loads  ˆ 1,2,...,kP k NL   

which form a convex polyhedral load domain. According to 
Koiter’s theorem [23], by applying mathematical 
programming theory, an upper bound of the shakedown load 

factor  
 can be rewritten in the form of non-linear 

programming as follows (the superscript p of dissipation rate 
function is skipped for simplicity): 
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where me is the fictitious elastic moment vector of the point x 
on the domain A. 

Note that, when NL = 1 the problem (5) reduces that of 
limit analysis. Then, the formulation for the upper bound limit 
load is determined as follows: 
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Compared to the kinematic theorem of limit analysis as 
presented in [12], the difference of (6) is that the work rate of 
the applied load constraint is replaced by the external work rate 
constraint. In general, problem (6) is complicated because it 
has to calculate the stress components. However, as mentioned 
above, it can be advantageous to develop the shakedown 
problem. In addition, the failure mode of alternating plasticity 
can be determined easily when the structure is subjected to 
repeated loads. 

III. HCT-BASED KINEMATIC FORMULATION  

The conforming HCT element has been detailed in [12, 24]. 
The key idea of the HCT element is to divide an original 
triangular element into three sub-elements as shown in Figure 
1. 

 
Fig. 1.  HCT element. 

The number of the total degrees of freedom of the element 
is 12 including 3 degrees at each corner node and 3 degrees at 
three mid-side nodes. In terms of area coordinates 

 1 2 3, ,    , at each sub-triangle, we can express the 

displacement expansion 
 k

w  as follows: 
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where qe is the element displacement matrix ανδ the partitions 

   k
e L  and 

   0

k L  denote the interpolation functions, 

respectively. F is the matrix determined from compatible 
conditions. Then, the curvatures can be defined by: 
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and we can obtain the plastic dissipation of the plate as: 
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where ne and NG are the total number of elements and 
Gaussian points, respectively. 

The upper-bound limit analysis based on the shakedown 
approach of plate bending is now described as: 
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By formulating the objective function to a form comprising 
a sum of norms, the optimization problem (10) can be re-
expressed as a standard SOCP as follows [25]: 
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where J is defined as: 

2 0 0
1

1 3 0
3

0 0 1

 
 

  
 
 

J     (12) 

It can be seen that J is also the Cholesky factor of Q. 
Finally, by establishing supplementary variables x1, x2,…, 

xne3NG, problem (10) can be stated as follows: 
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where ρk kx  denotes quadratic cones and the k are 

supplementary variables. 

IV. NUMERICAL EXAMPLES 

To illustrate the effectiveness of the proposed solution, in 
this section we investigate various benchmark problems that 
have numerical or analytical solutions. The following 
parameters are adopted for all examples: length a = 10m and 
plate thickness h = 0.1m. The first example considers a square 
plate with side length a, and restraints on all edges that are 

either simply supports or clamped. The plate is subjected to 
uniform pressure p, as shown in Figure 2. Due to symmetry, we 
only modeled the upper-right quarter of the plate as illustrated 
in Figure 3. The results of the proposed method, normalized 
with mp/a

2
, are presented in Table I. It can be observed that 

when the number of the elements increases, the collapse load 
factors reduce and converge. When compared with previous 
results, the present results are in good agreement with those 
obtained numerically in [18, 19, 21], in which the EFG method, 
a C1 continuity plate element, and the the DKQ element were 
used, respectively. In addition, Table I also shows that the 
results of the proposed method are similar to the results 
obtained analytically in [20, 26]. The yield patterns in terms of 
plastic dissipation distribution are plotted in Figure 4. It can be 
seen that they are very consistent with the experiment, for both 
simply supported and clamped plates. 

 

  
(a)  (b)  

Fig. 2.  Square slabs: geometry and loading. (a) Simply supported plate, 

(b) clamped plate. 

 

Fig. 3.  Square slab: finite element mesh. 

TABLE I.  LIMIT LOAD FACTOR OF THE SQUARE PLATE 
(pa2/mp)  

Method 
Simply supported Clamped 

UB LB UB LB 

Proposed 

Ne = 50 25.18 - 51.83 - 

Ne = 200 25.06 - 48.17 - 

Ne = 800 25.03 - 46.19 - 

Ne = 1800 25.03 - 45.58 - 

[19] 25.02 - 45.29 - 

[17] 25.01 - 45.07 - 

[21] 25.04 25.04 45.06 45.06 

[20] 26.54 24.86 49.25 42.86 

[26] 27.71 23.81 52.01 - 

Ne: number of elements, LB – Lower bound, UB – Upper bound 
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(a)  (b)  

Fig. 4.  Square slabs: plastic dissipation distribution. (a) Simply supported 

plate, (b) clamped plate. 

 

Fig. 5.  Rectangular slab: geometry and loading. 

 

Fig. 6.  Rectangular slab: finite element mesh. 

TABLE II.  LIMIT LOAD FACTOR OF THE RECTANGULAR 
PLATE (pab/mp) 

Method Simply supported Clamped 

Proposed 29.90 56.20 

[19] 29.88 - 

[17] 29.88 54.61 
 

(a) 

 

(b) 

 

Fig. 7.  Rectangular slabs: plastic dissipation distribution. (a) Simply 

supported plate, (b) clamped plate. 

Next, we consider the rectangular slab of Figure 5 

(dimensions ab and b/a = 2). Similar to the previous example, 
only the upper-right quarter of the plate is modeled by 800 

elements (Figure 6). Limit load factors are reported in Table II. 
When compared with the previously obtained results, the 
proposed method provides better solutions than in [17, 19] by 
0.07% and 2.91% for the case of simply supported and 
clamped edges, respectively. The plastic dissipation 
distribution of rectangular slabs is plotted in Figure 7. 

The last example is an L-shape plate, investigated in the 
case of uniform load. The geometry and uniform mesh of the 
L-shape plate are shown in Figure 8 and the limit load factors 
are shown in Table III. Again, the results of the proposed 
method show good agreement with previous studies. The 
maximum error is only 2.59% for the case of clamped edges. 
The plastic dissipation distribution using 2400 elements is 
plotted in Figure 9. 

 

  
(a) (b) 

Fig. 8.  L-shape plate. (a) Geometry, (b) Mesh. 

TABLE III.  LIMIT LOAD FACTOR OF THE L-SHAPE PLATE 
(pa2/mp) 

Method Simply supported Clamped 

Proposed 6.20 16.24 

[10] 6.29 - 

[15] 6.17/6.04 15.83/15.69 

 

  
(a) (b) 

Fig. 9.  L-shape slabs: Plastic dissipation distribution. (a) Simply 

supported, (b) clamped. 

V. CONCLUSION 

This paper presented a numerical solution for the 
computation of the limit loads of bending plates. Using von 
Mises yield criterion and the conforming HCT element, the 
upper bound limit load can be derived from Koiter’s kinematic 
shakedown theorem for the case of one load vertex instead of 
using the upper bound theorem of limit analysis. Based on this 
approach, the work rate of the applied load constraint in the 
kinematic theorem of limit analysis is replaced by the external 
work rate constraint. The formulation based on Koiter’s 
kinematic shakedown theorem is more complicated than the 
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formulations for the upper bound of the limit load, however, it 
can be developed to the shakedown problem and the failure 
mode of alternating plasticity can be determined easily. One 
benefit of this research is that the problems can be formulated 
as SOCP, so that they can be solved rapidly, even when many 
variables are involved. The accuracy and reliability of the 
proposed solution method were proven by numerical examples. 
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