
Engineering, Technology & Applied Science Research Vol. 5, No. 4, 2015, 832-840 832

www.etasr.com Perneel et al.: Business Hypervisors for Real-time Applications

Business Hypervisors for Real-time Applications

Luc Perneel H. Fayyad-Kazan Long Peng Fei Guan Martin Timmerman

Department of Electronics
and Informatics, Vrije
Universiteit Brussel,

Belgium
luc.perneel
@vub.ac.be

Department of
Electronics and

Informatics, Vrije
Universiteit Brussel,

Belgium
hafayyad@vub.ac.be

Department of Electronics
and Informatics, Vrije

Universiteit Brussel and
Dedicated-Systems
Experts, Belgium

longpeng@vub.ac.be

Department of
Electronics and

Informatics, Vrije
Universiteit

Brussel, Belgium
feiguan@vub.ac.be

Department of Electronics and
Informatics, Vrije Universiteit

Brussel, Belgium and Dedicated-
Systems Experts, Belgium

martin.timmerman
@vub.ac.be

Abstract— System virtualization is one of the hottest trends in
information technology today. It is not just another nice to use
technology but has become fundamental across the business world.
It is successfully used with many business application classes where
cloud computing is the most visual one. Recently, it started to be
used for soft Real-Time (RT) applications such as IP telephony,
media servers, audio and video streaming servers, automotive and
communication systems in general. Running these applications on
a traditional system (Hardware + Operating System) guarantee
their Quality of Service (QoS); virtualizing them means inserting a
new layer between the hardware and the (virtual) Operating System
(OS), and thus adding extra overhead. Although these applications’
areas do not always demand hard time guarantees, they require the
underlying virtualization layer supports low latency and provide
adequate computational resources for completion within a
reasonable or predictable timeframe. These aspects are intimately
intertwined with the logic of the hypervisor scheduler. In this paper,
a series of tests are conducted on three hypervisors (VMware ESXi,
Hyper-V server and Xen) to provide a benchmark of the latencies
added to the applications running on top of them. These tests are
conducted for different scenarios (use cases) to take into
consideration all the parameters and configurations of the
hypervisors’ schedulers. Finally, this benchmark can be used as a
reference for choosing the best hypervisor-application combination.

 Keywords: ESXi; Hyper-V; Virtualization; Xen; Real-time

I. INTRODUCTION

System virtualization is a technology that allows the
physical machine resources to be shared among different
Virtual Machines (VMs) via the use of a software layer called
hypervisor or Virtual Machine Monitor (VMM). The
hypervisor can be either Type-1 which runs directly on the
system hardware and thus is often referred to as bare-metal
hypervisor, or Type-2 which runs as an application on top of a
conventional Operating System (OS) and is referred to as
hosted hypervisor [1, 2].

Due to the low cost availability of multi-core chips used in
a symmetrical multiprocessor way, virtualization in the server
and desktop world has already matured with both software and
hardware solutions available for several years [3]. Currently,
there are numerous virtualization products ranging from open-
source hypervisors such as Xen, KVM, and OpenVZ to

commercial ones as VMware vSphere ESXi, VirtualBox,
OKL4, Parallels Workstation and Microsoft Hyper-V [3].

Theoretically speaking, as a bare-metal hypervisor has
direct access to the hardware resources rather than going
through a hosting operating system, it is more efficient,
delivers greater scalability, robustness and performance [4].
Therefore, bare-metal hypervisors are our focus in this paper.

Virtualization is successfully used with many business
application classes where cloud computing is the most visual
one. However, the growing set of applications also includes
soft-real time applications such as media-based ones. It is
obvious that the hypervisor layer between the hardware and the
OS running in a VM incurs extra overhead compared to a non-
virtualized system. This overhead can vary from one
hypervisor type to another. Moreover, there is no quantitative
benchmark of these overheads (added latencies), which in turn
makes it difficult for users to choose the hypervisor that fits
their requirements.

Currently, there are just some technical publications [5, 6],
initiated by the hypervisor vendors themselves, comparing
mainly the hypervisors’ supported features. More recently, a
number of unbiased scientific papers originated by researchers
focused on the I/O performance, network throughput and CPU
utilization, using public benchmark tools which are not really
adapted for the comparison job [7, 8]. As a consequence, most
publications are not at all quantifying their statements; others
give only a limited scientific proof.

Our contribution started from this point. We want to go
beyond theoretical statements and quantify the performance
differences (in matters of latencies) between virtualization
solutions by focusing on their architectures and internal
components such as scheduling policies.

To achieve this, different types of tests (explained further
on) are executed on the top three market hypervisors: Microsoft
(MS) Hyper-V Server 2012R2, Xen 4.2.1 and VMware
VSphere ESXi 5.1U1. All these versions were the latest
shipping releases at the time of doing this study. The tests are
conducted for different use cases to take into consideration all
the parameters and configurations of the hypervisors’
schedulers.

Engineering, Technology & Applied Science Research Vol. 5, No. 4, 2015, 832-840 833

www.etasr.com Perneel et al.: Business Hypervisors for Real-time Applications

II. HYPERVISORS ARCHITECTURES

A. Microsoft Hyper-V Server 2012 R2

Microsoft Hyper-V is a bare-metal micro-kernerlized
hypervisor that enables platform virtualization on x86-64
systems [9]. It exists in two variants: as a stand-alone product
called Hyper-V Server [10] and as an installable feature in
Windows Server OS. In both versions, the hypervisor is exactly
the same and must have at least one parent, or root VM,
running Windows OS 64-bit Edition [11]. The difference
between the two products are the features and components
found in the parent (privileged) VM guest OS.

Once Hyper-V is installed, VMs atop it are created. All the
VMs except the parent VM are called child VMs (un-
privileged). Hyper-V supports a number of different types of
guest OSs running in the child VMs. They can be either Hyper-
V Aware (enlightened/para-virtualized) Windows OSs, Hyper-
V Aware non-Windows OSs and Non Hyper-V Aware OSs
[12]. The hypervisor needs to deal with CPU scheduling. The
CPU scheduler shares the same role as conventional operating
systems. This role is to assign execution contexts to processors
in a way that meets system objectives such as responsiveness,
throughput, and utilization. On conventional operating systems,
the execution context corresponds to a process or a thread; on
hypervisor, it corresponds to a VM.

When a VM is created atop Hyper-V, several
configurations have to be set to define its behaviour when
accessing hardware resources. The basic ones are shown in
Figure 1 below followed by their explanations.

Fig. 1. Hyper-V VM configuration for resources access

Virtual machine reserve: This setting specifies the
percentage of the physical machine’s overall CPU resources
reserved for this particular VM. This value can range from 1-
100% and is relative to the number of processors assigned to
the virtual machine (a VM can have more than one virtual
processor). For instance, if a physical machine has four cores
and you set the VM reserve value to 100 %, then the equivalent
of an entire processor core will be reserved for a VM. If the

VM sits idle at 10% most of the time, the other 90% of the
processing time is still unavailable to any other VMs.

Note that using the “reserve” setting limits the amount of
virtual processors that can be shared on a physical machine,
and therefore limits the number of concurrent virtual machines
you can power on. For example, if you have 20 VMs where
each one is configured to have one single virtual processor
whose “reserve” value is 100%, and the physical machine has
four cores, then you can only power on only four virtual
machines. If you try to start a 5th VM, you would get an error
message stating that you cannot initialize the virtual machine.
Note that you will get this error even if all four running virtual
machines are completely idle and are not using any CPU
resource (reason mentioned before).

A final interesting note about the virtual machine reserve is
that by default it is set to “0%” – which means the reserve is
disabled. Furthermore – if you have a configuration like the
one where all CPUs are reserved, you can still start extra virtual
machines as long as their CPU reserve is set to 0% [13].

Virtual machine limit: This setting is the opposite of
“virtual machine reserve” setting. It allows you to specify the
maximum amount of processing power that a virtual machine
can consume and is relative to the number of processors
assigned to a VM.

Relative Weight: It specifies how Hyper-V allocates
resources to a VM when more than one VMs are running and
compete for resources. This value ranges from 0-10000 and the
VM with high value receives more CPU time. By default, all
VMs are assigned the same weight value (100).

There is no official document explaining the scheduling
algorithms of Hyper-V. Fortunately, Ben Armstrong,
virtualization program manager at Microsoft, posted a four part
article about CPU scheduling in Hyper-V [13]. From these
articles, the scheduling algorithm of Hyper-V can be
summarized as follow:

If there is only one VM which has one virtual CPU (vCPU),
and the hosting machine has many physical cores, then this
vCPU shares the processing resources of all the physical cores.
It runs on all the cores in round-robin way. The parent VM is
the only VM that stays parked on the first core (core 0) [14].

Thus, Hyper-V uses a weighted round-robin scheduling
algorithm. The time a vCPU spends on one physical core
before being scheduled to another is not specifically mentioned
in any of the public resources. This is something we measured
in the testing phase.

B. Xen

Xen is an open source hypervisor developed by Barham et
al. [30] at the University of Cambridge in 2003. It is released
under the GNU General Public License (GPL), which means
that it is open source, free for use and can be modified. It is a
bare-metal micro-kernelized hypervisor. Its architectural design
is the same as Hyper-V. The parent VM is termed as Domain0
(Dom0 for short) and runs Para-Virtualized (Xen-enabled)
Linux OS. This VM helps in creating/configuring guest VMs
and has the native device drivers to assist them in performing

Engineering, Technology & Applied Science Research Vol. 5, No. 4, 2015, 832-840 834

www.etasr.com Perneel et al.: Business Hypervisors for Real-time Applications

real I/O operations [15]. All the other VMs atop Xen are guest
VMs and referred as DomUs. DomU PV guests are modified
OSs such as Linux, Solaris, FreeBSD, and other UNIX
operating systems. DomU FV guests run standard Windows or
any other unchanged operating system.

Xen’s default scheduler is called Credit [16]. This scheduler
acts as a referee between the running VMs. In some ways it’s a
lot like the Linux scheduler. The Xen team designed it to fairly
share the physical CPUs among guest VMs (minimize wasted
CPU time). This makes it a "Work-Conserving" (WC)
scheduler, in that it tries to ensure that the CPU will always be
working, whenever there is work for it to do. As a
consequence, if there is more real CPU available than the VMs
are demanding, all VMs get all the CPU they want. When there
is contention -- that is, when the VMs in aggregate want more
CPU than actually exists -- then the scheduler arbitrates fairly
between the VMs that want CPU [31].

Credit Scheduler algorithm: Xen is a non-preemptive
scheduler based on the WRR (Weighted Round-Robin)
scheduling algorithm [17]. It assigns each VM a weight and,
optionally, a cap. Weight decides the amount of CPU time it
can get and cap fixes the maximum amount of CPU a VM will
be able to consume even if the host system has idle CPU
cycles. If the cap is 0, then the VM can receive any extra CPU
(Work Conserving-mode). A non-zero cap (expressed as a
percentage) limits the amount of CPU a VM receives (Non-
WC-mode). For example, a cap value of 100 means using only
1 physical CPU, 50 is half a CPU, 400 is 4 CPUs, etc... [18]

Figure 2 is an example of a VM (Domain-0) which has a
weight of 256 and cap 0.

Fig. 2. Xen VM properties

In the Xen Credit scheduler, every physical core has one
Run Queue (RunQ), which holds all the runnable vCPUs
(vCPU with a task to run) [16]. The scheduler transforms the
weight into a credit allocation for each vCPU, using a separate
accounting thread. VCPUs consume credit as they run, and are
divided into two categories in the RunQ: UNDER, and OVER.
A vCPU is put into the UNDER category if it has remaining
credit, and OVER if it runs out of credit. When inserting a
vCPU into the queue, it is put after all other vCPUs of equal
priority to itself [18]. The scheduler picks vCPUs in the order
of UNDER and then OVER. Within each category, it is
important to note that vCPUs are scheduled in a round robin
fashion. Every 10ms, the scheduler ticks, and then subtracts
credits the vCPU owns. When a vCPU consumes all its
allocated credits (the value of the credit is negative), the state
of its priority changes into OVER, and then the vCPU cannot
be scheduled. Every 30ms, the value of credit each vCPU owns
is to be accounted again, and all vCPUs will get new value of
credit [16]. An example would be a vCPUs waiting in two
queues: one for vCPUs with credits and other for those that are
over their allocation. Once the first queue is exhausted, the

CPU will pull from the second. An IDLE vCPU for each
physical core is also created at boot time. It is always runnable
and placed at the end of the RunQ. When the IDLE vCPU is
scheduled, the physical core becomes IDLE.

Another important setting of the Credit scheduler is called
“ratelimit”. It is a value in microseconds. It refers to the
minimum amount of time a VM is allowed to run without being
preempted. The default value is 1000μs (1ms). So if a VM
starts running, and a second VM with higher priority wakes up,
if the first VM has run for less than 1ms, it is allowed to
continue to run until its 1ms is consumed; only after that will
the higher-priority VM be allowed to run.

C. VMware ESXi

VMware ESXi (Elastic Sky X) is a bare-metal monolithic
hypervisor developed by VMware Inc. It is an operating
system-independent hypervisor based on the VMkernel OS,
interfacing with agents and approved third-party modules that
run atop it [19]. VMkernel is a POSIX-like (Unix style)
operating system developed by VMware and provides certain
functionality similar to that found in other operating systems,
such as process creation and control, signals, file system, and
process threads [19]. It is designed specifically to support
running multiple virtual machines and provides such core
functionality as resource scheduling, I/O stacks, and device
drivers [19].

VMware ESXi is the core component of the VMware
vSphere software suite which in turn has many software
components such as VMware vCenter Server, VMware
vSphere Client and vSphere Web Client and many others [20].
All the virtual machines are installed on the physical machine
running ESXi hypervisor. To install, manage and access those
virtual machines, another part of vSphere suite called vSphere
client or vCenter is installed on another physical machine [20].
In earlier versions of VMware vSphere, the hypervisor was
available in two forms: VMware ESX and VMware ESXi [32].
The ESXi Server is an advanced, smaller-footprint version of
the VMware ESX. Virtualization administrators can configure
VMware ESXi through its console or the VMware vSphere
Client and check VMware's Hardware Compatibility List for
approved, supported hardware on which to install ESXi [21].

Due to its architecture, VMware ESXi uses full-
virtualization with Hardware-Assisted approach. The major
goals of the VMware CPU scheduler are fairness, throughput,
and responsiveness (how promptly a vCPU is scheduled after it
becomes ready). ESXi implements a proportional share–based
scheduling algorithm, which allocates CPU resources to vCPUs
based on their resource specifications. Users can specify the
CPU allocation (resource specification) for a VM using three
settings: shares, reservations, and limits (Figure 3) [22].

The aim of these three settings is exactly the same as
Hyper-V but using different names.

Limit: places a limit on the CPU consumption for a VM. It
is specified in MHz (Hyper-V also uses the same word).

Reservation: This is a guaranteed amount of resources
reserved for a particular VM. When a VM is powered on, the

Engineering, Technology & Applied Science Research Vol. 5, No. 4, 2015, 832-840 835

www.etasr.com Perneel et al.: Business Hypervisors for Real-time Applications

reserved amount of resources are given to that VM and are
"eliminated" from the pool of open resources that other VMs
can use [23]. A VM can (should) not power on if the host it
resides on does not have enough resources to meet the
reservations of that VM. Its value is expressed also in Mhz.
(same naming as Hyper-V)

Fig. 3. VM scheduling settings in ESXi hypervisor

Shares: They are simply used to prioritize resources for use
by VMs when there is active resource contention. If you give a
VM 1000 shares of CPU and another 500, when resource
contention arises, the VM with 1000 shares will be granted
access to twice as much CPU as the VM with 500 shares. Same
idea as relative weight in Hyper-V [23].

Scheduler algorithm: In ESXi, a virtual machine consists
of one or more vCPUs on which guest instructions are
executed. For example, a 4-vCPU virtual machine has 4
vCPUs. There are other vCPUs associated with the virtual
machine that execute management tasks like handling the
mouse and keyboard, snapshots, and legacy I/O devices.
Therefore, it is theoretically possible that a 1-vCPU virtual
machine can consume more than 100% of a processor,
although this is unlikely because those management vCPUs are
mostly inactive [22].

So if you create a VM on top of ESXi and you assign for it
one vCPU, then this VM has in fact many vCPUs, one for
executing the guest OS instructions, and other “hidden” vCPUs
added automatically by the ESXi scheduler for management
purposes. The number of the “hidden” vCPUs is not specified
by any documentation.

There are also VMkernel management vCPUs performing
management tasks on behalf of the ESXi host. For example,
there are a number of vCPUs handling the communication with
a management server. A few vCPUs execute periodic tasks for
the resource management algorithm. However, the CPU
demand of the VMkernel management vCPUs is not significant
and most of the CPU resources are available for virtual
machines [22].

ESXi CPU scheduler is invoked when the time quantum
given to a currently running vCPU expires. Since it is common
that a vCPU changes its state to WAIT before the current
quantum expires, the size of a time quantum (50 milliseconds
by default) does not affect performance much [22]. Time
quantum expiration or the state change from RUN to WAIT
invokes the CPU scheduler, which then searches for the next
ready vCPU to be scheduled. The ready vCPU can be found
from a local ready queue or from a remote queue. If none is
found, an idle vCPU is scheduled.

When a vCPU wakes up and changes its state from WAIT
to READY, likely from an interrupt or a signal, the CPU
scheduler is invoked to determine where the newly ready vCPU
can be scheduled. It may be put into the ready queue waiting to
be scheduled in the next iteration, migrated to a different
physical CPU with less contention, or the currently running
vCPU may be preempted. The decision depends on many
factors like fairness and execution efficiency [22].

III. EXPERIMENTAL CONFIGURATIONS

As mentioned earlier, the three enterprise hypervisors
evaluated are: Microsoft (MS) Hyper-V Server 2012R2, Xen
4.2.1 (OpenSuse 12.3 is running in Dom-0 VM) and VMware
VSphere ESXi 5.1U1. All these versions were the latest
shipping releases at the time of doing this study which started
in May 2012.

A. Evaluation hardware platform:

These hypervisors need to run on a physical platform. This
platform should meet the hardware requirements for all the
chosen hypervisors. Looking at the vendors technical
documents [24, 25, 26], the following hardware features are
needed:

A 64-bits x86 processor that includes the following:

• At least two cores.

• Hardware-assisted virtualization. This is available in
processors that include a virtualization option—
specifically processors with Intel Virtualization
Technology (Intel VT) or AMD Virtualization (AMD-V)
technology.

• Hardware-enforced Data Execution Prevention (DEP)
must be available and enabled.

• A Time Stamp Counter (TSC) running at a constant rate,
which is the tool used for measuring the time intervals.

• A minimum of 2 GB of physical RAM

To meet these requirements, the most cheap and convenient
solution was decided to be the following hardware: Intel®
Desktop Board DH77KC, Intel® Xeon® Processor E3-1220v2
with four cores each running at a frequency of 3.1 GHz without
hyper-threading support. The cache memory size is as follows:
each core has 32 KB of L1 data cache, 32 KB of L1 instruction
cache and 256 KB of L2 cache. L3 cache is 8MB accessible to
all cores. 16 GB of physical RAM is used.

Engineering, Technology & Applied Science Research Vol. 5, No. 4, 2015, 832-840 836

www.etasr.com Perneel et al.: Business Hypervisors for Real-time Applications

B. VM guest OS:

Evaluating the hypervisors is achieved by executing a test
suite in a VM running atop each one. This VM is called Under-
Test VM (UTVM). As mentioned earlier, Microsoft Hyper-V
and Xen support both Full-Virtualization (FV) and Para-
Virtualization (PV) VMs, while ESXi supports only FV. For
consistency of our evaluation, a guest OS that can be
configurable for usage as FV and PV VMs is needed. Being
open source and matching the requirements, Linux is chosen.
More specifically, a real-time version of Linux called Linux
PREEMPT-RT is used. The motive for choosing a real-time
kernel is to minimize the latencies that could occur in the guest
OS, which in turn produces more accurate measurements.
Therefore, Linux PREEMPRT-RT version 3.6.11-rt25 is the
UTVM guest OS.

IV. TESTING SETUP

Although the test metrics explained below are mostly used
to examine the real-time performance and behaviour of real-
time OSs on bare-machines [27, 28], they are useful to be used
in other OS test cases. Nowadays, as virtualization together
with real-time support is used in an increasing amount of use
cases, these tests are a good fit for this paper evaluation.

A. Measuring process

In order to perform our quantitative tests, a tool is needed to
measure the time intervals. The cheapest solution is to use an
on-processor chip timer running on the constant frequency of
the processor clock giving as a value the number of cycles
occurred on the processor. Its value is set to zero every time the
processor is reset. This timer is called Time Stamp Counter
(TSC). It is a 64-bits register present on all x86 processors and
has an excellent high-resolution. In order to access the TSC, the
programmer has to call the Read Time-Stamp Counter
(RDTSC) instruction from assembly language.

B. Testing metrics

Below is an explanation of the evaluation tests. Note that
the tests are initially done on a non-virtualized machine (further
called Bare-Machine) as a reference, using the same OS as the
UTVM.

1) Clock tick processing duration
Like any time-sharing system, Linux OS allows the

simultaneous execution of multiple threads by switching from
one thread to another in a very short time frame. The Linux
scheduler supports multiple scheduling classes, each using
different scheduling algorithms. For instance, there are the two
real-time (strict priority) scheduling classes SCHED_FIFO and
SCHED_RR, a normal scheduling class (SCHED_OTHER)
using dynamic and thus non strict priorities, and finally the
SCHED_BATCH class for background threads.

To be able to use timeouts, sleeps, round robin scheduling,
time slicing and etc…, some notion of time is needed. On the
hardware, there is always a clock responsible for this called the
clock timer system. It is programmed by Linux PREEMPT-RT
to generate an interrupt each tick. Depending on the kernel
configuration used at build time the tick frequency can be

selected. We used the 1000 Hz configuration, so that the
interrupts occurs each millisecond. This tick period is
considered the scheduling quantum.

The aim of this test is to measure the time needed by the OS
to handle this clock interrupt. Its results are extremely
important as the clock tick interrupt - being on a high level
interrupt on the used hardware platform - will bias all other
performed measurements. This test helps also in detecting
“hidden” latencies that are NOT introduced by the clock tick.
In such cases, the “hidden” latency will be different and its
event time will not be aligned with the RTOS clock tick
frequency.

The test method can be described as follows: a real-time
thread with the highest priority is created. This thread does a
finite loop of the following tasks: get the time using RDTSC
instruction, start a “busy loop” that does some calculations, get
time again using the same instruction. Having the time before
and after the “busy loop” provides the time needed to finish its
job. In case we run this test on the bare-machine, this “busy
loop” will only be delayed by the interrupt handlers. As we
remove all other interrupt sources, only the clock tick timer
interrupt can delay the “busy loop”. When the “busy loop” is
interrupted, its execution time increases.

When executing this test in a guest OS (VM) running on
top of a hypervisor, it can be interrupted or scheduled away by
the hypervisor as well, which will result in extra delays. Figure
4 presents the results of this test on the bare-machine, followed
by an explanation. The X-axis indicates the time when a
measurement sample is taken with reference to the start of the
test. The Y-axis indicates the duration of the measured event;
in this case the total duration of the “busy loop”.

Fig. 4. Clock tick processing duration of the bare-machine

The bottom values (68.1 μs) present the “busy loop”
execution durations if no clock tick happens. In case of a clock
tick interruption, its execution is delayed until the clock
interrupt is handled, which is 76.5 μs (top values). The
difference between the two values is the delay spent handling
the clock tick interrupt (executing the handler), which is 8.4 μs.

This test detects all the delays that may occur in a system
together with its behaviour for a short period. To have a long-
time view of the system behaviour, we execute the same test
but for a long period. We call the long-duration test as

Clock tick processing duration =
76.5 – 68.1 =8.5 µs

Engineering, Technology & Applied Science Research Vol. 5, No. 4, 2015, 832-840 837

www.etasr.com Perneel et al.: Business Hypervisors for Real-time Applications

“Statistical clock tick processing duration”. The importance of
the figure obtained by “clock tick processing duration” test is to
show the exact tracing values and the moments of their
occurrence while the figures of “Statistical clock tick
processing duration” test (explained below) show their
distribution over time and the predictability of the system
latencies.

2) Statistical clock tick processing duration
This test is exactly the same as the previous one except that

it is done for a longer period. It is executed 5 times, each time
for one hour. The motivation for this (5 times) is to take into
consideration all the circumstances that may happen in and
around the system, like the room temperature, running the test
immediately after the machine start-up, run it after one day of
keeping the machine on, etc. After 5 tests, the variance was
negligible showing the stability of the system. The test with the
greatest worst case value was then taken for further processing.

Figure 5 below presents the statistical distribution of the
samples obtained during the 1 hour test on the bare-machine.
Before looking at the figure results, we first provide an
explanation of how we obtain the statistical samples. The
measured delay values are counted in binary based bins. This
can be done without much overhead as an assembler instruction
exists to find the highest bit set in the measured delay. The
highest bit set is used as first level bin selection, while the next
couple of lower bits are used for the second level bin selection.
This makes it possible to statistically collect a huge amount of
samples without significant overhead caused by the
measurement system itself.

Fig. 5. Statistical clock tick processing duration for a bare-machine

Note that the bin distribution using this method is presented
in logarithmic way. Sixty million samples are captured during
the 1-hour test. The X-Axis represents the delay values in the
binary bins, while the Y-Axis is a logarithmic presentation of
the number of obtained samples and their corresponding
percentage. For the benchmark provided further on, only the
“statistical test” results are used.

After explaining the tests and executing them on the bare-
machine, now it is time to run them on the selected hypervisors
using several scenarios (use cases).

V. SCENARIOS

Seven scenarios are used in the evaluation of each selected
hypervisor. Below is a detailed description of each scenario. It
should be reminded that Hyper-V and Xen supports FV and PV
VMs. Therefore, in all the scenarios, the evaluation tests are
executed in both VMs types, whereas only in FV VM for
VMware ESXi hypervisor.

1) Scenario 1: One-To-All (No-Affinity)
The aim of this scenario is to measure the extra overhead

added to the VM performance, compared to the bare-machine,
due to the insertion of the virtualization layer. Also, we aim to
discover the following scheduling behaviour: Does the
hypervisor keep the UTVM running permanently on the same
CPU or switches it over all the available cores? In this scenario,
the UTVM (always with one vCPU) is the only running VM. In
case of MS Hyper-V, the UTVM “virtual machine reserve”
parameter is set to 100 % (means one physical CPU is
dedicated to it). The aim of this parameter is to ensure that no
other services (or VMs) share the same processor with UTVM
which may influence its performance. A similar parameter
(Reserve) is set for the UTVM atop VMware ESXi. There is no
such parameter for VMs on Xen. Note that in MS Hyper-V and
Xen, there is also a parent partition (Dom-0) running but in idle
state. The parent partition in Hyper-V runs by default on CPU0
[29]. In Xen, we manually configured it to run permanently on
CPU0. The scenario setup is illustrated in Figure 6a.

2) Scenario 2: One-to-One (Affinity)
The aim of this scenario is similar to the previous one

except that the UTVM vCPU is explicitly assigned to run
permanently on one physical CPU using the affinity (pinning)
configuration options of ESXi and Xen. Hyper-V does not
support affinity, and therefore three CPUs are disabled from the
BIOS. The aim of this scenario is to show the performance
(latencies) difference (if any) between Affinity and No-Affinity
cases. The scenario setup (considering Hyper-V as example) is
shown in Figure 6b.

3) Scenario 3: Contention with one CPU-Load VM
This scenario simulates the real life situation where the

number of VMs running atop hypervisor can be higher than the
available physical cores, which causes resource contention. Its
setup has two VMs: UTVM and CPU-Load VM which are both
configured to run on the same physical CPU (Figure 6c). The
CPU-Load VM is running a CPU-stress program which is an
infinite loop of mathematical calculations. The aim of this
scenario is to explore the scheduling mechanism of the
hypervisor between competing VMs.

4) Scenario 4: Contention with one Memory-Load VM
Two VMs sharing the same CPU means also sharing the

caches. The aim of this scenario is to detect the effect of CPU
caches on the UTVM performance. Its setup is exactly the
same as scenario 3 except that a Memory-Load VM is used
instead of a CPU-Load VM (Figure 6d). This Memory-Load
VM is running an infinite loop of memcpy() function which
copies 9 MB (a value that is larger than the total cache size)
from one object to another. With this memory load, the caches
are always flushed.

Engineering, Technology & Applied Science Research Vol. 5, No. 4, 2015, 832-840 838

www.etasr.com Perneel et al.: Business Hypervisors for Real-time Applications

Fig. 6. (a) Scenario 1: One-to-All (b) Scenario 2: One-to-One (affinity) in

Hyper-V (c) Scenario 3: Contention with 1 CPU-Load VM atop Hyper-V
(d) Scenario 4: Contention with one Memory-Load VM atop Hyper-V

5) Scenario 5: All-to-All with 3 CPU-Load VMs
In this scenario (Figure 7), we run concurrently four VMs:

the UTVM and three CPU-Load VMs. Theoretically, with such
setup, each VM should run on a different physical CPU. The
aim of this scenario is to confirm whether this expected
behavior occurs. In case it is true, then the results of this
scenario should be close to the ones of scenario 1. The answer
for this is provided in the benchmark table.

Fig. 7. Scenario 5: All-to-All with three CPU-Load VMs

6) Scenario 6: All-to-All with three Memory-Load VMs
This scenario setup (8) is exactly the same as scenario 5

except using Memory-Load VMs instead of CPU-Load VMs.
The aim of this scenario is to clarify whether the type of
workload in the VMs has any effect on the performance of the
UTVM (Figure 8).

7) Scenario 7: Two-to-All with one Memory-Load VM
This scenario (Figure 9) has two running VMs: the UTVM

and a Memory-Load VM. The aim of this scenario and
executing it as the last one is justified in the analysis of the
benchmark.

Fig. 8. Scenario 6: All-to-All with three memory-Load VMs

Fig. 9. Scenario 7: Two-to-All with one memory-Load VMs

The tests were executed on the hypervisors using the
described scenarios. The results are provided in a benchmark
table in the next section together with a detailed analysis.

VI. THE BENCHMARK

This section provides the benchmark table and analysis of
the results. Table I shows the tested hypervisors together with
the type of used UTVM (Fully-Virtualized or Para-Virtualized)
and the experimental scenarios. Microsoft uses the name
Emulated for Full-Virtualization, and Enlightened for Para-
Virtualization, which are shown in the Hyper-V fields.

A. Analysis of each hypervisor through the scenarios

Hyper-V:

• Our analysis for the scheduling behaviour of Hyper-V
especially in scenario 1 showed that its policy is to run a
VM on one specific CPU for one second before switching
it to the other. This value if obtained by running the short
clock test many times. Thus, this value is not obtained
from the benchmark table.

• Scenario 2 has a similar setup as scenario 1 except that the
VM is explicitly fixed to run permanently on the same
CPU. With this configuration, the overheads in scenario 2
are almost double the ones of scenario 1. Therefore, fixing
a VM to run all the time on a specific physical CPU is a
non-desirable mechanism in Hyper-V.

• The scheduling quantum (the time a VM is allowed to run
before being preempted) in case of contention (scenario 3)
is nearly doubled (10 ms) for emulated VM compared to
enlightened (5 ms). These values are obtained by
comparing the values of scenario 2 (the VM is fixed to run
on same CPU) and scenario 3.

(a) (b)

(c) (d)

Engineering, Technology & Applied Science Research Vol. 5, No. 4, 2015, 832-840 839

www.etasr.com Perneel et al.: Business Hypervisors for Real-time Applications

TABLE I. BENCHMARK TABLE FOR RESULTS ON ALL THE TESTED HYPERVISORS

Maximum overhead by statistical clock tick duration test
Bare machine value = 10 μs

Hyper-V Server 2012R2 Xen 4.2.1 VMware ESXI 5.1 Hypervisor

Scenario Emulated VM Enlightened VM Fully-Vitualized VM Para-Virtualized VM Fully-Vitualized VM

1: One-to-All 4.25 ms 1.62 ms 35 μs 23 μs 59.61 ms

2: One-to-One 7.19 ms 4.08 ms 35 μs 23 μs 185.7 ms

3: Contention
with one CPU-
Load

18.56 ms 9.16 ms
30.16 ms

Customized
= 7.44 ms

30.13 ms
Customized
= 6.74 ms

281.71 ms

4: Contention
with one
Memory-Load

21.03 ms 11.8 ms
30.18 ms

Customized
= 8.53 ms

30.15 ms
Customized

= 7.4 ms
286.5 ms

5: All-to-All with
three CPU-Load

5.21 ms 2.55 ms 35 μs 23 μs 51.4 ms

6: All-to-All with
three Memory-
Load

15.18 ms 4.53 ms 102 μs 62 μs 70.79 ms

7: Two-to-All
with one
Memory-Load

5.3 ms 2.12 ms 49 μs 32 μs 60.14 ms

• The overheads in scenario 4 are increased by 3 ms due to

the effect of the memory load VM on the shared CPU
caches. Therefore, the CPU caches have an effect on the
system performance (degradation of 3 ms).

• Scenario 5 proved its theory by having very close values
compared to scenario 1.

• The results of scenario 6 are around three times greater
than the ones of scenario 5 even though the same number
of VMs is running. Therefore, this scenario’s results
confirm our hypothesis about the effect of VM workload
type on others performance. The reason for this
performance degradation is due to “system memory bus”
bottleneck in a Symmetric Multiprocessor System (SMP).
i.e. : Comparing the workload of both scenarios (5 and 6),
scenario 5 is not causing high overheads because the CPU
stress program in the CPU-Load VMs is quite small and
fits in the core cache together with its data. Therefore, the
three CPU-Loading VMs are not intensively loading the
system memory bus which in turn will not highly affect the
UTVM. In scenario 6, the three Memory-Load VMs are
intensively using the system memory bus. The UTVM is
also running and requires the usage of system bus from
time to time. Therefore, the system bus is shared most of
the time between four VMs (UTVM and three Memory-
Load VMs), which causes extra contention. Thus, the more
cores in the system that are accessing the system bus
simultaneously, the more contention will occur and thus
the overhead increases. To explicitly show this effect,
scenario 7 was created where only one Memory-Load VM
is sharing the resources with the UTVM. Scenario 7 values
clearly show the big performance enhancement if less
memory-load VMs are running simultaneously and
competing for the system bus.

Xen:

• The values or scenarios 1 and 2 are exactly the same,
which means that Xen uses same scheduling policy in both

cases (affinity and non-affinity). These values are very
close to the bare-machine ones.

• For scenarios 3 and 4, there are 2 values in each field. As
already mentioned before, Xen uses the Credit scheduler
where each vCPU of a VM is scheduled to run for a
quantum of 30 ms in a round-robin fashion. But, as Xen is
an open source hypervisor, this quantum can be changed
depending on the usage arena, with a minimum value of 1
ms. Therefore, in these two scenarios, we conducted the
tests on Xen using the default and minimum scheduler
quantum values (30 ms and 1 ms).

• The analysis of the other scenarios is exactly the same as
explained for Hyper-V.

The analysis of VMware ESXi results is also the same as
Hyper-V. The high values in VMs atop VMware ESXi are due
to it scheduling policy, which was explained earlier in this
paper (section 2, C).

B. General conclusion about each hypervisor

As presented in this paper, MS Hyper-V is tested first. The
evaluation results indicated the following findings:

• A PV VM atop Hyper-V performs on average twice better
than FV VM. Despite that, PV VM performance is slower
than the bare-machine to a big extent.

• The performance of any VM atop Hyper-V is
unpredictable with unbounded worst-case latencies (the
evaluation test was done 5 times, each with different
value).

Xen is tested next, indicating the following findings:

• PV VM atop Xen is on average 1.5 times better than FV
VM.

• PV VM performance is very close to the bare-machine.

Engineering, Technology & Applied Science Research Vol. 5, No. 4, 2015, 832-840 840

www.etasr.com Perneel et al.: Business Hypervisors for Real-time Applications

• VM performance atop Xen is always predictable and with
bounded worst case latencies.

VMware ESXi is tested lastly ending up with the following
findings:

• VM performance is not comparable to the bare-machine
due to the huge difference. Even though, VM performance
is predictable with bounded worst case latencies

VII. CONCLUSION

The work done in this paper aims to measure the latencies
that happen in a virtualized system, especially when used for
hosting real-time applications. To achieve this, a test suite was
executed on the top three market hypervisors, VMware ESXi,
Microsoft Hyper-V and Xen. These tests are conducted in
different scenarios to take into consideration all the parameters
and configurations of the hypervisors’ schedulers, which are
the main sources for influencing the latencies. A benchmark is
provided where the results show that the Xen VMs incur the
lowest latencies, and its application latencies are comparable to
the bare-machine (non-virtualized system) ones. VMs atop
VMware incur the highest latencies and is ranked as the last,
while Microsoft Hyper-V is the second. This ranking does not
intend to eliminate any hypervisor from being qualified for soft
real-time applications usage, but gives a clear idea on whether
a certain hypervisor can be used for a specific real-time
application. Moreover, these values can help users choose the
best hypervisor that meets their application requirements. Also,
this benchmark provides the scenarios where the best
performance of a real-time application can be obtained. Finally,
the work shows that latencies in a system are not only software
related, but also hardware-related especially in share-memory
Symmetric Multiprocessor Systems (SMPs).

REFERENCES
[1] F. Bazargan, C. Y. Yeun, M. J. Zemerly, “State-of-the-Art of

Virtualization, its Security Threats and Deployment Models”,
International Journal for Information Security Research,Vol. 2, No. 3-4,
pp. 335-343, 2012

[2] A. Desai, R. Oza, P. Sharma, B. Patel, “Hypervisor: A Survey on
Concepts and Taxonomy”, International Journal of Innovative
Technology and Exploring Engineering, Vol. 2, No. 3, pp. 222-225,
2013

[3] A. J. Younge, R. Henschel, J. Brown, G. Von Laszewski, J. Qiu, G. Fox,
"Analysis of Virtualization Technologies for High Performance
Computing Environments", IEEE International Conference on Cloud
Computing (CLOUD), Washington, USA, pp. 9-16, July 4-9, 2011

[4] VMware, "Understanding Full Virtualization, Paravirtulization, and
Hardware Assist", http://www.vmware.com/files/pdf/VMware_
paravirtualization.pdf

[5] E. Yuen, “How would explain the core differences in Hyper-V from
VMware’s offerings?”, http://itknowledgeexchange.techtarget.com/
itanswers/how-would-explain-the-core-differences-in-hyper-v-from-
vmwares-offerings/

[6] A. Syrewicze, “VMware vs. Hyper-V: Architectural Differences”,
http://syrewiczeit.com/vmware-vs-hyper-v-architectural-differences/

[7] J. Hwang, S. Zeng, F. Wu, T. Wood, “A Component-Based Performance
Comparison of Four Hypervisors", 13th IFIP/IEEE International
Symposium on Integrated Network Management (IM) Technical
Session, Ghent, Belgium, pp. 269 – 276, May 27-31, 2013

[8] J. Li, Q. Wang, D. Jayasinghe, J. Park, T. Zhu, C. Pu, "Performance
overhead among Three Hypervisors: An experimental study using

Hadoop Benchmarks", IEEE International Congress on Big Data, Santa
Clara, USA, pp. 9-16, June 27-July 2, 2013

[9] Microsoft, "Hyper-V architecture", http://msdn.microsoft.com/enus/
library/cc768520%28v=bts.10%29.aspx

[10] Microsoft, "Windows Server 2012 R2”, http://www.microsoft.com/en-
us/server-cloud/products/windows-server-2012r2/#fbid=NQBnX04C5st

[11] Microsoft Technet Blogs, "Hyper-V: Microkernelized or Monolithic",
http://blogs.technet.com/b/chenley/archive/2011/02/23/hyper-v-
microkernelized-or-monolithic.aspx.

[12] Virtuatopia, "An Overview of the Hyper-V Architecture”,
http://www.virtuatopia.com/index.php/An_Overview_of_the_Hyper-
V_Architecture.

[13] B. Armstrong, "Hyper-V CPU Scheduling–Part 1 - Ben Armstrong - Site
Home - MSDN Blogs”, http://blogs.msdn.com/b/virtual_pc_guy/
archive/2011/02/14/hyper-v-cpu-scheduling-part-1.aspx.

[14] Microsoft TechNet Articles, "Hyper-V Concepts - vCPU (Virtual
Processor)", http://social.technet.microsoft.com/wiki/contents/articles/
1234.hyper-v-concepts-vcpu-virtual-processor.aspx?wa=wsignin1.0.

[15] Xen Project Software Overview, http://wiki.xen.org/wiki/
Xen_Project_Software_Overview

[16] Linux Foundation, "Credit Scheduler”, http://wiki.xen.org/
wiki/Credit_Scheduler

[17] S. Yoo, K. H. Kwak, J. H. Jo, C. Yoo, "Toward Under-Millisecond I/O
Latency in Xen-ARM", Second Asia-Pacific Workshop on Systems,
APSys 2011, Shanghai, China, July 11-12, 2011

[18] X. Xu, P. Sha, J. Wan, J. Yucheng, "Performance Evaluation of the CPU
Scheduler in XEN", International Symposium on Information Science
and Engineering, pp. 68-72, Shanghai, China, December 20-22, 2008

[19] VMware, "The Architecture of VMware ESXi”,
http://www.vmware.com/files/pdf/ESXi_architecture.pdf

[20] MustBeGeek, "Difference between vSphere, ESXi and vCenter”,
http://www.mustbegeek.com/difference-between-vsphere-esxi-and-
vcenter/

[21] C. Janssen, "What is VMware ESXi Server? - Definition from
Techopedia”, http://www.techopedia.com/definition/25979/vmware-
esxi-server

[22] VMware, "The CPU Scheduler in VMware vSphere 5.1", Performance
study-technical report

[23] VMware, "vSphere Resource Management”, http://pubs.vmware.com/
vsphere51/topic/com.vmware.ICbase/PDF/vsphere-esxi-vcenter-server-
51-resource-management-guide.pdf.

[24] Microsoft, "Hyper-V Overview”, http://technet.microsoft.com/en-
us/library/hh831531.aspx

[25] Linux Foundation, "Xen Project Beginners Guide”,
http://wiki.xenproject.org/wiki/Xen_Project_Beginners_Guide.

[26] VMware, "Minimum system requirements for installing ESX/ESXi",
http://kb.vmware.com/selfservice/microsites/search.do?language=en_US
&cmd=displayKC&externalId=1003661

[27] L. Perneel, H. Fayyad-Kazan, M. Timmerman, “Android and Real-Time
Applications: Take Care!”, Journal of Emerging Trends in Computing
and Information Sciences, Vol. 4, No. ICCSII, pp. 38-47, 2013

[28] H. Fayyad-Kazan, L. Perneel, M. Timmerman, “Linux PREEMPT-RT
vs. commercial RTOSs: how big is the performance gap?”, GSTF
Journal of Computing, Vol. 3, No. 1, 2013

[29] M. T. Wiki, “Hyper-V Concepts - vCPU (Virtual Processor)”,
http://social.technet.microsoft.com/wiki/contents/articles/1234.hyper-v-
concepts-vcpu-virtualprocessor.aspx?wa=wsignin1.0

[30] P. Braham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R.
Neugebauer, I. Pratt, A. Warfield, "Xen and the art of virtualization",
SOSP '03 Proceedings of the nineteenth ACM symposium on Operating
systems principles, pp. 164-177, 2003

[31] C. Takemura, L. Crawford, in THE BOOK OF XEN, A Practical Guide
for the System Administrator, San Francisco, William Pollock, 2010.

[32] WindowsAdmins, "Introduction of vSphere 5 and its components",
2011, http://winadmins.wordpress.com/page/29/

