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Abstract— System virtualization is one of the hottest trends in 
information technology today. It is not just another nice to use 
technology but has become fundamental across the business world. 
It is successfully used with many business application classes where 
cloud computing is the most visual one. Recently, it started to be 
used for soft Real-Time (RT) applications such as IP telephony, 
media servers, audio and video streaming servers, automotive and 
communication systems in general. Running these applications on 
a traditional system (Hardware + Operating System) guarantee 
their Quality of Service (QoS); virtualizing them means inserting a 
new layer between the hardware and the (virtual) Operating System 
(OS), and thus adding extra overhead. Although these applications’ 
areas do not always demand hard time guarantees, they require the 
underlying virtualization layer supports low latency and provide 
adequate computational resources for completion within a 
reasonable or predictable timeframe. These aspects are intimately 
intertwined with the logic of the hypervisor scheduler. In this paper, 
a series of tests are conducted on three hypervisors (VMware ESXi, 
Hyper-V server and Xen) to provide a benchmark of the latencies 
added to the applications running on top of them. These tests are 
conducted for different scenarios (use cases) to take into 
consideration all the parameters and configurations of the 
hypervisors’ schedulers. Finally, this benchmark can be used as a 
reference for choosing the best hypervisor-application combination. 

 Keywords: ESXi; Hyper-V; Virtualization; Xen; Real-time  

I. INTRODUCTION  

System virtualization is a technology that allows the 
physical machine resources to be shared among different 
Virtual Machines (VMs) via the use of a software layer called 
hypervisor or Virtual Machine Monitor (VMM). The 
hypervisor can be either Type-1 which runs directly on the 
system hardware and thus is often referred to as bare-metal 
hypervisor, or Type-2 which runs as an application on top of a 
conventional Operating System (OS) and is referred to as 
hosted hypervisor [1, 2].  

Due to the low cost availability of multi-core chips used in 
a symmetrical multiprocessor way, virtualization in the server 
and desktop world has already matured with both software and 
hardware solutions available for several years [3]. Currently, 
there are numerous virtualization products ranging from open-
source hypervisors such as Xen, KVM, and OpenVZ to 

commercial ones as VMware vSphere ESXi, VirtualBox, 
OKL4, Parallels Workstation and Microsoft Hyper-V [3].  

Theoretically speaking, as a bare-metal hypervisor has 
direct access to the hardware resources rather than going 
through a hosting operating system, it is more efficient, 
delivers greater scalability, robustness and performance [4]. 
Therefore, bare-metal hypervisors are our focus in this paper. 

Virtualization is successfully used with many business 
application classes where cloud computing is the most visual 
one. However, the growing set of applications also includes 
soft-real time applications such as media-based ones. It is 
obvious that the hypervisor layer between the hardware and the 
OS running in a VM incurs extra overhead compared to a non-
virtualized system. This overhead can vary from one 
hypervisor type to another. Moreover, there is no quantitative 
benchmark of these overheads (added latencies), which in turn 
makes it difficult for users to choose the hypervisor that fits 
their requirements. 

Currently, there are just some technical publications [5, 6], 
initiated by the hypervisor vendors themselves, comparing 
mainly the hypervisors’ supported features. More recently, a 
number of unbiased scientific papers originated by researchers 
focused on the I/O performance, network throughput and CPU 
utilization, using public benchmark tools which are not really 
adapted for the comparison job [7, 8]. As a consequence, most 
publications are not at all quantifying their statements; others 
give only a limited scientific proof.  

Our contribution started from this point. We want to go 
beyond theoretical statements and quantify the performance 
differences (in matters of latencies) between virtualization 
solutions by focusing on their architectures and internal 
components such as scheduling policies.  

To achieve this, different types of tests (explained further 
on) are executed on the top three market hypervisors: Microsoft 
(MS) Hyper-V Server 2012R2, Xen 4.2.1 and VMware 
VSphere ESXi 5.1U1. All these versions were the latest 
shipping releases at the time of doing this study. The tests are 
conducted for different use cases to take into consideration all 
the parameters and configurations of the hypervisors’ 
schedulers. 
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II. HYPERVISORS ARCHITECTURES 

A. Microsoft Hyper-V Server 2012 R2 

Microsoft Hyper-V is a bare-metal micro-kernerlized 
hypervisor that enables platform virtualization on x86-64 
systems [9]. It exists in two variants: as a stand-alone product 
called Hyper-V Server [10] and as an installable feature in 
Windows Server OS. In both versions, the hypervisor is exactly 
the same and must have at least one parent, or root VM, 
running Windows OS 64-bit Edition [11]. The difference 
between the two products are the features and components 
found in the parent (privileged) VM guest OS. 

Once Hyper-V is installed, VMs atop it are created. All the 
VMs except the parent VM are called child VMs (un-
privileged). Hyper-V supports a number of different types of 
guest OSs running in the child VMs. They can be either Hyper-
V Aware (enlightened/para-virtualized) Windows OSs, Hyper-
V Aware non-Windows OSs and Non Hyper-V Aware OSs  
[12]. The hypervisor needs to deal with CPU scheduling.  The 
CPU scheduler shares the same role as conventional operating 
systems. This role is to assign execution contexts to processors 
in a way that meets system objectives such as responsiveness, 
throughput, and utilization. On conventional operating systems, 
the execution context corresponds to a process or a thread; on 
hypervisor, it corresponds to a VM. 

When a VM is created atop Hyper-V, several 
configurations have to be set to define its behaviour when 
accessing hardware resources. The basic ones are shown in 
Figure 1 below followed by their explanations. 

 

 
Fig. 1.  Hyper-V VM configuration for resources access 

Virtual machine reserve: This setting specifies the 
percentage of the physical machine’s overall CPU resources 
reserved for this particular VM. This value can range from 1-
100% and is relative to the number of processors assigned to 
the virtual machine (a VM can have more than one virtual 
processor). For instance, if a physical machine has four cores 
and you set the VM reserve value to 100 %, then the equivalent 
of an entire processor core will be reserved for a VM. If the 

VM sits idle at 10% most of the time, the other 90% of the 
processing time is still unavailable to any other VMs. 

Note that using the “reserve” setting limits the amount of 
virtual processors that can be shared on a physical machine, 
and therefore limits the number of concurrent virtual machines 
you can power on. For example, if you have 20 VMs where 
each one is configured to have one single virtual processor 
whose “reserve” value is 100%, and the physical machine has 
four cores, then you can only power on only four virtual 
machines. If you try to start a 5th VM, you would get an error 
message stating that you cannot initialize the virtual machine. 
Note that you will get this error even if all four running virtual 
machines are completely idle and are not using any CPU 
resource (reason mentioned before). 

A final interesting note about the virtual machine reserve is 
that by default it is set to “0%” – which means the reserve is 
disabled.  Furthermore – if you have a configuration like the 
one where all CPUs are reserved, you can still start extra virtual 
machines as long as their CPU reserve is set to 0% [13]. 

Virtual machine limit: This setting is the opposite of 
“virtual machine reserve” setting. It allows you to specify the 
maximum amount of processing power that a virtual machine 
can consume and is relative to the number of processors 
assigned to a VM. 

Relative Weight: It specifies how Hyper-V allocates 
resources to a VM when more than one VMs are running and 
compete for resources. This value ranges from 0-10000 and the 
VM with high value receives more CPU time. By default, all 
VMs are assigned the same weight value (100). 

There is no official document explaining the scheduling 
algorithms of Hyper-V. Fortunately, Ben Armstrong, 
virtualization program manager at Microsoft, posted a four part 
article about CPU scheduling in Hyper-V [13]. From these 
articles, the scheduling algorithm of Hyper-V can be 
summarized as follow: 

If there is only one VM which has one virtual CPU (vCPU), 
and the hosting machine has many physical cores, then this 
vCPU shares the processing resources of all the physical cores. 
It runs on all the cores in round-robin way. The parent VM is 
the only VM that stays parked on the first core (core 0) [14]. 

Thus, Hyper-V uses a weighted round-robin scheduling 
algorithm. The time a vCPU spends on one physical core 
before being scheduled to another is not specifically mentioned 
in any of the public resources. This is something we measured 
in the testing phase. 

B. Xen 

Xen is an open source hypervisor developed by Barham et 
al. [30] at the University of Cambridge in 2003. It is released 
under the GNU General Public License (GPL), which means 
that it is open source, free for use and can be modified. It is a 
bare-metal micro-kernelized hypervisor. Its architectural design 
is the same as Hyper-V. The parent VM is termed as Domain0 
(Dom0 for short) and runs Para-Virtualized (Xen-enabled) 
Linux OS. This VM helps in creating/configuring guest VMs 
and has the native device drivers to assist them in performing 
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real I/O operations [15]. All the other VMs atop Xen are guest 
VMs and referred as DomUs. DomU PV guests are modified 
OSs such as Linux, Solaris, FreeBSD, and other UNIX 
operating systems. DomU FV guests run standard Windows or 
any other unchanged operating system. 

Xen’s default scheduler is called Credit [16]. This scheduler 
acts as a referee between the running VMs. In some ways it’s a 
lot like the Linux scheduler. The Xen team designed it to fairly 
share the physical CPUs among guest VMs (minimize wasted 
CPU time). This makes it a "Work-Conserving" (WC) 
scheduler, in that it tries to ensure that the CPU will always be 
working, whenever there is work for it to do. As a 
consequence, if there is more real CPU available than the VMs 
are demanding, all VMs get all the CPU they want. When there 
is contention -- that is, when the VMs in aggregate want more 
CPU than actually exists -- then the scheduler arbitrates fairly 
between the VMs that want CPU [31]. 

Credit Scheduler algorithm: Xen is a non-preemptive 
scheduler based on the WRR (Weighted Round-Robin) 
scheduling algorithm [17]. It assigns each VM a weight and, 
optionally, a cap. Weight decides the amount of CPU time it 
can get and cap fixes the maximum amount of CPU a VM will 
be able to consume even if the host system has idle CPU 
cycles. If the cap is 0, then the VM can receive any extra CPU 
(Work Conserving-mode). A non-zero cap (expressed as a 
percentage) limits the amount of CPU a VM receives (Non-
WC-mode).  For example, a cap value of 100 means using only 
1 physical CPU, 50 is half a CPU, 400 is 4 CPUs, etc... [18] 

Figure 2 is an example of a VM (Domain-0) which has a 
weight of 256 and cap 0. 

 

 
Fig. 2.  Xen VM properties 

In the Xen Credit scheduler, every physical core has one 
Run Queue (RunQ), which holds all the runnable vCPUs 
(vCPU with a task to run) [16]. The scheduler transforms the 
weight into a credit allocation for each vCPU, using a separate 
accounting thread. VCPUs consume credit as they run, and are 
divided into two categories in the RunQ: UNDER, and OVER. 
A vCPU is put into the UNDER category if it has remaining 
credit, and OVER if it runs out of credit. When inserting a 
vCPU into the queue, it is put after all other vCPUs of equal 
priority to itself [18]. The scheduler picks vCPUs in the order 
of UNDER and then OVER. Within each category, it is 
important to note that vCPUs are scheduled in a round robin 
fashion. Every 10ms, the scheduler ticks, and then subtracts 
credits the vCPU owns. When a vCPU consumes all its 
allocated credits (the value of the credit is negative), the state 
of its priority changes into OVER, and then the vCPU cannot 
be scheduled. Every 30ms, the value of credit each vCPU owns 
is to be accounted again, and all vCPUs will get new value of 
credit [16]. An example would be a vCPUs waiting in two 
queues: one for vCPUs with credits and other for those that are 
over their allocation. Once the first queue is exhausted, the 

CPU will pull from the second. An IDLE vCPU for each 
physical core is also created at boot time. It is always runnable 
and placed at the end of the RunQ. When the IDLE vCPU is 
scheduled, the physical core becomes IDLE. 

Another important setting of the Credit scheduler is called 
“ratelimit”. It is a value in microseconds. It refers to the 
minimum amount of time a VM is allowed to run without being 
preempted. The default value is 1000μs (1ms). So if a VM 
starts running, and a second VM with higher priority wakes up, 
if the first VM has run for less than 1ms, it is allowed to 
continue to run until its 1ms is consumed; only after that will 
the higher-priority VM be allowed to run. 

C. VMware ESXi 

VMware ESXi (Elastic Sky X) is a bare-metal monolithic 
hypervisor developed by VMware Inc. It is an operating 
system-independent hypervisor based on the VMkernel OS, 
interfacing with agents and approved third-party modules that 
run atop it [19]. VMkernel is a POSIX-like (Unix style) 
operating system developed by VMware and provides certain 
functionality similar to that found in other operating systems, 
such as process creation and control, signals, file system, and 
process threads [19]. It is designed specifically to support 
running multiple virtual machines and provides such core 
functionality as resource scheduling, I/O stacks, and device 
drivers  [19]. 

VMware ESXi is the core component of the VMware 
vSphere software suite which in turn has many software 
components such as VMware vCenter Server, VMware 
vSphere Client and vSphere Web Client and many others [20]. 
All the virtual machines are installed on the physical machine 
running ESXi hypervisor. To install, manage and access those 
virtual machines, another part of vSphere suite called vSphere 
client or vCenter is installed on another physical machine [20].  
In earlier versions of VMware vSphere, the hypervisor was 
available in two forms: VMware ESX and VMware ESXi [32]. 
The ESXi Server is an advanced, smaller-footprint version of 
the VMware ESX. Virtualization administrators can configure 
VMware ESXi through its console or the VMware vSphere 
Client and check VMware's Hardware Compatibility List for 
approved, supported hardware on which to install ESXi [21]. 

Due to its architecture, VMware ESXi uses full-
virtualization with Hardware-Assisted approach. The major 
goals of the VMware CPU scheduler are fairness, throughput, 
and responsiveness (how promptly a vCPU is scheduled after it 
becomes ready). ESXi implements a proportional share–based 
scheduling algorithm, which allocates CPU resources to vCPUs 
based on their resource specifications. Users can specify the 
CPU allocation (resource specification) for a VM using three 
settings: shares, reservations, and limits (Figure 3) [22]. 

The aim of these three settings is exactly the same as 
Hyper-V but using different names. 

Limit: places a limit on the CPU consumption for a VM. It 
is specified in MHz (Hyper-V also uses the same word). 

Reservation: This is a guaranteed amount of resources 
reserved for a particular VM. When a VM is powered on, the 
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reserved amount of resources are given to that VM and are 
"eliminated" from the pool of open resources that other VMs 
can use [23]. A VM can (should) not power on if the host it 
resides on does not have enough resources to meet the 
reservations of that VM. Its value is expressed also in Mhz. 
(same naming as Hyper-V) 

 

 
Fig. 3.  VM scheduling settings in ESXi hypervisor 

Shares: They are simply used to prioritize resources for use 
by VMs when there is active resource contention. If you give a 
VM 1000 shares of CPU and another 500, when resource 
contention arises, the VM with 1000 shares will be granted 
access to twice as much CPU as the VM with 500 shares. Same 
idea as relative weight in Hyper-V [23]. 

Scheduler algorithm: In ESXi, a virtual machine consists 
of one or more vCPUs on which guest instructions are 
executed. For example, a 4-vCPU virtual machine has 4 
vCPUs. There are other vCPUs associated with the virtual 
machine that execute management tasks like handling the 
mouse and keyboard, snapshots, and legacy I/O devices. 
Therefore, it is theoretically possible that a 1-vCPU virtual 
machine can consume more than 100% of a processor, 
although this is unlikely because those management vCPUs are 
mostly inactive [22].  

So if you create a VM on top of ESXi and you assign for it 
one vCPU, then this VM has in fact many vCPUs, one for 
executing the guest OS instructions, and other “hidden” vCPUs 
added automatically by the ESXi scheduler for management 
purposes. The number of the “hidden” vCPUs is not specified 
by any documentation. 

There are also VMkernel management vCPUs performing 
management tasks on behalf of the ESXi host. For example, 
there are a number of vCPUs handling the communication with 
a management server. A few vCPUs execute periodic tasks for 
the resource management algorithm. However, the CPU 
demand of the VMkernel management vCPUs is not significant 
and most of the CPU resources are available for virtual 
machines [22].  

ESXi CPU scheduler is invoked when the time quantum 
given to a currently running vCPU expires. Since it is common 
that a vCPU changes its state to WAIT before the current 
quantum expires, the size of a time quantum (50 milliseconds 
by default) does not affect performance much [22]. Time 
quantum expiration or the state change from RUN to WAIT 
invokes the CPU scheduler, which then searches for the next 
ready vCPU to be scheduled. The ready vCPU can be found 
from a local ready queue or from a remote queue. If none is 
found, an idle vCPU is scheduled. 

When a vCPU wakes up and changes its state from WAIT 
to READY, likely from an interrupt or a signal, the CPU 
scheduler is invoked to determine where the newly ready vCPU 
can be scheduled. It may be put into the ready queue waiting to 
be scheduled in the next iteration, migrated to a different 
physical CPU with less contention, or the currently running 
vCPU may be preempted. The decision depends on many 
factors like fairness and execution efficiency [22]. 

III. EXPERIMENTAL CONFIGURATIONS 

As mentioned earlier, the three enterprise hypervisors 
evaluated are: Microsoft (MS) Hyper-V Server 2012R2, Xen 
4.2.1 (OpenSuse 12.3 is running in Dom-0 VM) and VMware 
VSphere ESXi 5.1U1. All these versions were the latest 
shipping releases at the time of doing this study which started 
in May 2012. 

A. Evaluation hardware platform: 

These hypervisors need to run on a physical platform. This 
platform should meet the hardware requirements for all the 
chosen hypervisors. Looking at the vendors technical 
documents [24, 25, 26], the following hardware features are 
needed: 

A 64-bits x86 processor that includes the following: 

• At least two cores. 

• Hardware-assisted virtualization. This is available in 
processors that include a virtualization option—
specifically processors with Intel Virtualization 
Technology (Intel VT) or AMD Virtualization (AMD-V) 
technology. 

• Hardware-enforced Data Execution Prevention (DEP) 
must be available and enabled. 

• A Time Stamp Counter (TSC) running at a constant rate, 
which is the tool used for measuring the time intervals. 

• A minimum of 2 GB of physical RAM 

To meet these requirements, the most cheap and convenient 
solution was decided to be the following hardware: Intel® 
Desktop Board DH77KC, Intel® Xeon® Processor E3-1220v2 
with four cores each running at a frequency of 3.1 GHz without 
hyper-threading support. The cache memory size is as follows: 
each core has 32 KB of L1 data cache, 32 KB of L1 instruction 
cache and 256 KB of L2 cache. L3 cache is 8MB accessible to 
all cores. 16 GB of physical RAM is used. 
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B. VM guest OS: 

Evaluating the hypervisors is achieved by executing a test 
suite in a VM running atop each one. This VM is called Under-
Test VM (UTVM). As mentioned earlier, Microsoft Hyper-V 
and Xen support both Full-Virtualization (FV) and Para-
Virtualization (PV) VMs, while ESXi supports only FV. For 
consistency of our evaluation, a guest OS that can be 
configurable for usage as FV and PV VMs is needed. Being 
open source and matching the requirements, Linux is chosen. 
More specifically, a real-time version of Linux called Linux 
PREEMPT-RT is used.  The motive for choosing a real-time 
kernel is to minimize the latencies that could occur in the guest 
OS, which in turn produces more accurate measurements.  
Therefore, Linux PREEMPRT-RT version 3.6.11-rt25 is the 
UTVM guest OS. 

IV. TESTING SETUP 

Although the test metrics explained below are mostly used 
to examine the real-time performance and behaviour of real-
time OSs on bare-machines [27, 28], they are useful to be used 
in other OS test cases. Nowadays, as virtualization together 
with real-time support is used in an increasing amount of use 
cases, these tests are a good fit for this paper evaluation. 

A. Measuring process 

In order to perform our quantitative tests, a tool is needed to 
measure the time intervals. The cheapest solution is to use an 
on-processor chip timer running on the constant frequency of 
the processor clock giving as a value the number of cycles 
occurred on the processor. Its value is set to zero every time the 
processor is reset. This timer is called Time Stamp Counter 
(TSC). It is a 64-bits register present on all x86 processors and 
has an excellent high-resolution. In order to access the TSC, the 
programmer has to call the Read Time-Stamp Counter 
(RDTSC) instruction from assembly language. 

B. Testing metrics 

Below is an explanation of the evaluation tests. Note that 
the tests are initially done on a non-virtualized machine (further 
called Bare-Machine) as a reference, using the same OS as the 
UTVM. 

1) Clock tick processing duration 
Like any time-sharing system, Linux OS allows the 

simultaneous execution of multiple threads by switching from 
one thread to another in a very short time frame. The Linux 
scheduler supports multiple scheduling classes, each using 
different scheduling algorithms. For instance, there are the two 
real-time (strict priority) scheduling classes SCHED_FIFO and 
SCHED_RR, a normal scheduling class (SCHED_OTHER) 
using dynamic and thus non strict priorities, and finally the 
SCHED_BATCH class for background threads. 

To be able to use timeouts, sleeps, round robin scheduling, 
time slicing and etc…, some notion of time is needed. On the 
hardware, there is always a clock responsible for this called the 
clock timer system. It is programmed by Linux PREEMPT-RT 
to generate an interrupt each tick. Depending on the kernel 
configuration used at build time the tick frequency can be 

selected. We used the 1000 Hz configuration, so that the 
interrupts occurs each millisecond. This tick period is 
considered the scheduling quantum. 

The aim of this test is to measure the time needed by the OS 
to handle this clock interrupt. Its results are extremely 
important as the clock tick interrupt - being on a high level 
interrupt on the used hardware platform - will bias all other 
performed measurements. This test helps also in detecting 
“hidden” latencies that are NOT introduced by the clock tick. 
In such cases, the “hidden” latency will be different and its 
event time will not be aligned with the RTOS clock tick 
frequency. 

The test method can be described as follows: a real-time 
thread with the highest priority is created. This thread does a 
finite loop of the following tasks: get the time using RDTSC 
instruction, start a “busy loop” that does some calculations, get 
time again using the same instruction. Having the time before 
and after the “busy loop” provides the time needed to finish its 
job. In case we run this test on the bare-machine, this “busy 
loop” will only be delayed by the interrupt handlers. As we 
remove all other interrupt sources, only the clock tick timer 
interrupt can delay the “busy loop”. When the “busy loop” is 
interrupted, its execution time increases.  

When executing this test in a guest OS (VM) running on 
top of a hypervisor, it can be interrupted or scheduled away by 
the hypervisor as well, which will result in extra delays. Figure 
4 presents the results of this test on the bare-machine, followed 
by an explanation. The X-axis indicates the time when a 
measurement sample is taken with reference to the start of the 
test. The Y-axis indicates the duration of the measured event; 
in this case the total duration of the “busy loop”. 

 
 

 
Fig. 4.  Clock tick processing duration of the bare-machine 

The bottom values (68.1 μs) present the “busy loop” 
execution durations if no clock tick happens. In case of a clock 
tick interruption, its execution is delayed until the clock 
interrupt is handled, which is 76.5 μs (top values). The 
difference between the two values is the delay spent handling 
the clock tick interrupt (executing the handler), which is 8.4 μs. 

This test detects all the delays that may occur in a system 
together with its behaviour for a short period. To have a long-
time view of the system behaviour, we execute the same test 
but for a long period. We call the long-duration test as 

Clock tick processing duration = 
76.5 – 68.1 =8.5 µs 
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“Statistical clock tick processing duration”. The importance of 
the figure obtained by “clock tick processing duration” test is to 
show the exact tracing values and the moments of their 
occurrence while the figures of “Statistical clock tick 
processing duration” test (explained below) show their 
distribution over time and the predictability of the system 
latencies. 

2) Statistical clock tick processing duration 
This test is exactly the same as the previous one except that 

it is done for a longer period. It is executed 5 times, each time 
for one hour. The motivation for this (5 times) is to take into 
consideration all the circumstances that may happen in and 
around the system, like the room temperature, running the test 
immediately after the machine start-up, run it after one day of 
keeping the machine on, etc. After 5 tests, the variance was 
negligible showing the stability of the system. The test with the 
greatest worst case value was then taken for further processing. 

Figure 5 below presents the statistical distribution of the 
samples obtained during the 1 hour test on the bare-machine. 
Before looking at the figure results, we first provide an 
explanation of how we obtain the statistical samples. The 
measured delay values are counted in binary based bins. This 
can be done without much overhead as an assembler instruction 
exists to find the highest bit set in the measured delay. The 
highest bit set is used as first level bin selection, while the next 
couple of lower bits are used for the second level bin selection. 
This makes it possible to statistically collect a huge amount of 
samples without significant overhead caused by the 
measurement system itself. 

 

 
Fig. 5.  Statistical clock tick processing duration for a bare-machine 

Note that the bin distribution using this method is presented 
in logarithmic way. Sixty million samples are captured during 
the 1-hour test. The X-Axis represents the delay values in the 
binary bins, while the Y-Axis is a logarithmic presentation of 
the number of obtained samples and their corresponding 
percentage. For the benchmark provided further on, only the 
“statistical test” results are used. 

After explaining the tests and executing them on the bare-
machine, now it is time to run them on the selected hypervisors 
using several scenarios (use cases). 

V. SCENARIOS 

Seven scenarios are used in the evaluation of each selected 
hypervisor. Below is a detailed description of each scenario. It 
should be reminded that Hyper-V and Xen supports FV and PV 
VMs. Therefore, in all the scenarios, the evaluation tests are 
executed in both VMs types, whereas only in FV VM for 
VMware ESXi hypervisor. 

1) Scenario 1: One-To-All (No-Affinity) 
The aim of this scenario is to measure the extra overhead 

added to the VM performance, compared to the bare-machine, 
due to the insertion of the virtualization layer.  Also, we aim to 
discover the following scheduling behaviour: Does the 
hypervisor keep the UTVM running permanently on the same 
CPU or switches it over all the available cores? In this scenario, 
the UTVM (always with one vCPU) is the only running VM. In 
case of MS Hyper-V, the UTVM “virtual machine reserve” 
parameter is set to 100 % (means one physical CPU is 
dedicated to it). The aim of this parameter is to ensure that no 
other services (or VMs) share the same processor with UTVM 
which may influence its performance.  A similar parameter 
(Reserve) is set for the UTVM atop VMware ESXi. There is no 
such parameter for VMs on Xen. Note that in MS Hyper-V and 
Xen, there is also a parent partition (Dom-0) running but in idle 
state. The parent partition in Hyper-V runs by default on CPU0 
[29]. In Xen, we manually configured it to run permanently on 
CPU0.  The scenario setup is illustrated in Figure 6a. 

2) Scenario 2: One-to-One (Affinity) 
The aim of this scenario is similar to the previous one 

except that the UTVM vCPU is explicitly assigned to run 
permanently on one physical CPU using the affinity (pinning) 
configuration options of ESXi and Xen. Hyper-V does not 
support affinity, and therefore three CPUs are disabled from the 
BIOS. The aim of this scenario is to show the performance 
(latencies) difference (if any) between Affinity and No-Affinity 
cases. The scenario setup (considering Hyper-V as example) is 
shown in Figure 6b. 

3) Scenario 3: Contention with one CPU-Load VM 
This scenario simulates the real life situation where the 

number of VMs running atop hypervisor can be higher than the 
available physical cores, which causes resource contention. Its 
setup has two VMs: UTVM and CPU-Load VM which are both 
configured to run on the same physical CPU (Figure 6c). The 
CPU-Load VM is running a CPU-stress program which is an 
infinite loop of mathematical calculations. The aim of this 
scenario is to explore the scheduling mechanism of the 
hypervisor between competing VMs. 

4) Scenario 4: Contention with one Memory-Load VM 
Two VMs sharing the same CPU means also sharing the 

caches. The aim of this scenario is to detect the effect of CPU 
caches on the UTVM performance. Its setup is exactly the 
same as scenario 3 except that a Memory-Load VM is used 
instead of a CPU-Load VM (Figure 6d). This Memory-Load 
VM is running an infinite loop of memcpy() function which 
copies 9 MB (a value that is larger than the total cache size) 
from one object to another. With this memory load, the caches 
are always flushed. 
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Fig. 6.  (a) Scenario 1: One-to-All (b) Scenario 2: One-to-One (affinity) in 

Hyper-V (c) Scenario 3: Contention with 1 CPU-Load VM atop Hyper-V  
(d) Scenario 4: Contention with one Memory-Load VM atop Hyper-V 

5) Scenario 5: All-to-All with 3 CPU-Load VMs 
In this scenario (Figure 7), we run concurrently four VMs: 

the UTVM and three CPU-Load VMs. Theoretically, with such 
setup, each VM should run on a different physical CPU. The 
aim of this scenario is to confirm whether this expected 
behavior occurs. In case it is true, then the results of this 
scenario should be close to the ones of scenario 1. The answer 
for this is provided in the benchmark table. 

 

 
Fig. 7.  Scenario 5: All-to-All with three CPU-Load VMs 

6) Scenario 6: All-to-All with three Memory-Load VMs 
This scenario setup (8) is exactly the same as scenario 5 

except using Memory-Load VMs instead of CPU-Load VMs. 
The aim of this scenario is to clarify whether the type of 
workload in the VMs has any effect on the performance of the 
UTVM (Figure 8). 

7) Scenario 7: Two-to-All with one Memory-Load VM 
This scenario (Figure 9) has two running VMs: the UTVM 

and a Memory-Load VM. The aim of this scenario and 
executing it as the last one is justified in the analysis of the 
benchmark. 

 

 
Fig. 8.  Scenario 6: All-to-All with three memory-Load VMs 

 

 
Fig. 9.  Scenario 7: Two-to-All with one memory-Load VMs 

The tests were executed on the hypervisors using the 
described scenarios. The results are provided in a benchmark 
table in the next section together with a detailed analysis. 

VI. THE BENCHMARK 

This section provides the benchmark table and analysis of 
the results.  Table I shows the tested hypervisors together with 
the type of used UTVM (Fully-Virtualized or Para-Virtualized) 
and the experimental scenarios. Microsoft uses the name 
Emulated for Full-Virtualization, and Enlightened for Para-
Virtualization, which are shown in the Hyper-V fields. 

A. Analysis of each hypervisor through the scenarios 

Hyper-V: 

• Our analysis for the scheduling behaviour of Hyper-V 
especially in scenario 1 showed that its policy is to run a 
VM on one specific CPU for one second before switching 
it to the other. This value if obtained by running the short 
clock test many times. Thus, this value is not obtained 
from the benchmark table. 

• Scenario 2 has a similar setup as scenario 1 except that the 
VM is explicitly fixed to run permanently on the same 
CPU. With this configuration, the overheads in scenario 2 
are almost double the ones of scenario 1.  Therefore, fixing 
a VM to run all the time on a specific physical CPU is a 
non-desirable mechanism in Hyper-V. 

• The scheduling quantum (the time a VM is allowed to run 
before being preempted) in case of contention (scenario 3) 
is nearly doubled (10 ms) for emulated VM compared to 
enlightened (5 ms). These values are obtained by 
comparing the values of scenario 2 (the VM is fixed to run 
on same CPU) and scenario 3. 

(a) (b) 

(c) (d) 
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TABLE I.  BENCHMARK TABLE FOR RESULTS ON ALL THE TESTED HYPERVISORS 

Maximum overhead by statistical clock tick duration test 
Bare machine value = 10 μs 

Hyper-V Server 2012R2 Xen 4.2.1 VMware ESXI 5.1          Hypervisor 
 
Scenario Emulated VM Enlightened VM Fully-Vitualized VM Para-Virtualized VM Fully-Vitualized VM 

1: One-to-All 4.25 ms 1.62 ms 35 μs 23 μs 59.61 ms 

2: One-to-One 7.19 ms 4.08 ms 35 μs 23 μs 185.7 ms 

3: Contention 
with one CPU-
Load 

18.56 ms 9.16 ms 
30.16 ms 

Customized 
= 7.44 ms 

30.13 ms 
Customized 
= 6.74 ms 

281.71 ms 

4: Contention 
with one 
Memory-Load 

21.03 ms 11.8 ms 
30.18 ms 

Customized 
= 8.53 ms 

30.15 ms 
Customized 

= 7.4 ms 
286.5 ms 

5: All-to-All with 
three CPU-Load 

5.21 ms 2.55 ms 35 μs 23 μs 51.4 ms 

6: All-to-All with 
three Memory-
Load 

15.18 ms 4.53 ms 102 μs 62 μs 70.79 ms 

7: Two-to-All 
with one 
Memory-Load 

5.3 ms 2.12 ms 49 μs 32 μs 60.14 ms 

      
• The overheads in scenario 4 are increased by 3 ms due to 

the effect of the memory load VM on the shared CPU 
caches. Therefore, the CPU caches have an effect on the 
system performance (degradation of 3 ms). 

• Scenario 5 proved its theory by having very close values 
compared to scenario 1. 

• The results of scenario 6 are around three times greater 
than the ones of scenario 5 even though the same number 
of VMs is running. Therefore, this scenario’s results 
confirm our hypothesis about the effect of VM workload 
type on others performance. The reason for this 
performance degradation is due to “system memory bus” 
bottleneck in a Symmetric Multiprocessor System (SMP). 
i.e. : Comparing the workload of both scenarios (5 and 6), 
scenario 5 is not causing high overheads because the CPU 
stress program in the CPU-Load VMs is quite small and 
fits in the core cache together with its data. Therefore, the 
three CPU-Loading VMs are not intensively loading the 
system memory bus which in turn will not highly affect the 
UTVM. In scenario 6, the three Memory-Load VMs are 
intensively using the system memory bus. The UTVM is 
also running and requires the usage of system bus from 
time to time. Therefore, the system bus is shared most of 
the time between four VMs (UTVM and three Memory-
Load VMs), which causes extra contention. Thus, the more 
cores in the system that are accessing the system bus 
simultaneously, the more contention will occur and thus 
the overhead increases. To explicitly show this effect, 
scenario 7 was created where only one Memory-Load VM 
is sharing the resources with the UTVM. Scenario 7 values 
clearly show the big performance enhancement if less 
memory-load VMs are running simultaneously and 
competing for the system bus. 

Xen: 

• The values or scenarios 1 and 2 are exactly the same, 
which means that Xen uses same scheduling policy in both 

cases (affinity and non-affinity). These values are very 
close to the bare-machine ones. 

• For scenarios 3 and 4, there are 2 values in each field. As 
already mentioned before, Xen uses the Credit scheduler 
where each vCPU of a VM is scheduled to run for a 
quantum of 30 ms in a round-robin fashion. But, as Xen is 
an open source hypervisor, this quantum can be changed 
depending on the usage arena, with a minimum value of 1 
ms. Therefore, in these two scenarios, we conducted the 
tests on Xen using the default and minimum scheduler 
quantum values (30 ms and 1 ms). 

• The analysis of the other scenarios is exactly the same as 
explained for Hyper-V. 

The analysis of VMware ESXi results is also the same as 
Hyper-V. The high values in VMs atop VMware ESXi are due 
to it scheduling policy, which was explained earlier in this 
paper (section 2, C). 

B. General conclusion about each hypervisor 

As presented in this paper, MS Hyper-V is tested first. The 
evaluation results indicated the following findings: 

• A PV VM atop Hyper-V performs on average twice better 
than FV VM. Despite that, PV VM performance is slower 
than the bare-machine to a big extent. 

• The performance of any VM atop Hyper-V is 
unpredictable with unbounded worst-case latencies (the 
evaluation test was done 5 times, each with different 
value). 

Xen is tested next, indicating the following findings: 

• PV VM atop Xen is on average 1.5 times better than FV 
VM. 

• PV VM performance is very close to the bare-machine. 
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• VM performance atop Xen is always predictable and with 
bounded worst case latencies. 

VMware ESXi is tested lastly ending up with the following 
findings: 

• VM performance is not comparable to the bare-machine 
due to the huge difference. Even though, VM performance 
is predictable with bounded worst case latencies 

VII. CONCLUSION  

The work done in this paper aims to measure the latencies 
that happen in a virtualized system, especially when used for 
hosting real-time applications. To achieve this, a test suite was 
executed on the top three market hypervisors, VMware ESXi, 
Microsoft Hyper-V and Xen. These tests are conducted in 
different scenarios to take into consideration all the parameters 
and configurations of the hypervisors’ schedulers, which are 
the main sources for influencing the latencies. A benchmark is 
provided where the results show that the Xen VMs incur the 
lowest latencies, and its application latencies are comparable to 
the bare-machine (non-virtualized system) ones. VMs atop 
VMware incur the highest latencies and is ranked as the last, 
while Microsoft Hyper-V is the second. This ranking does not 
intend to eliminate any hypervisor from being qualified for soft 
real-time applications usage, but gives a clear idea on whether 
a certain hypervisor can be used for a specific real-time 
application. Moreover, these values can help users choose the 
best hypervisor that meets their application requirements. Also, 
this benchmark provides the scenarios where the best 
performance of a real-time application can be obtained. Finally, 
the work shows that latencies in a system are not only software 
related, but also hardware-related especially in share-memory 
Symmetric Multiprocessor Systems (SMPs). 
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