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ABSTRACT 

Association rule methods are among the most used approaches for Knowledge Discovery in Databases 

(KDD), as they allow discovering and extracting hidden meaningful relationships between attributes or 

items in large datasets in the form of rules. Algorithms to extract these rules require considerable time and 

large memory spaces. This paper presents an algorithm that decomposes this complex problem into 

subproblems and processes items by category according to their support. Very frequent items and fairly 

frequent items are studied together. To evaluate the performance of the proposed algorithm, it was 

compared with Eclat and LCMFreq on two actual transactional databases. The experimental results 

showed that the proposed algorithm was faster in execution time and demonstrated its efficiency in 

memory consumption. 

Keywords-KDD; data mining; association rules; frequent itemset 

I. INTRODUCTION  

Association rule methods [1, 2] are widely used in data 
mining [3, 4] which is the heart of Knowledge Discovery in 
Databases (KDD) [5, 6]. This approach was introduced to 
analyze the shopping cart or transaction data [2]. As each 
database transaction contains all items purchased by a 
customer, an association rule method identifies attributes or 
items that are often purchased together and discovers some 
meaningful dependencies and relationships between items sold 
for making predictions or decisions [7]. These relations are in 
the form of a rule: if X, then Y (X→Y (75%)), where X is the 
condition of the rule and Y is its conclusion. In addition, 75% 
support of the rule indicates that 75% of the customers who 
buy item X also buy item Y at the same time. These rules 
provide a decision support tool [8] in many areas, including the 
commercial sector. The association rule extraction is an 

essential two-step process that discovers frequent item set lists 
and generates association rules from these. The first step is the 
most costly in terms of execution time and memory space [9]. 
In databases that contain thousands of items, the larger the 
number of items, the larger the number of generated itemsets. 
This condition produces an explosion in the number of 
association rules. In a database that contains n items, 2n-1 
itemsets can be generated [10], producing a very large number 
of rules. 

Each item or itemset is characterized by its support (Supp) 
[7]. The Apriori algorithm [11] minimizes calculations and the 
number of itemsets based on the support value. It only 
maintains frequent itemsets, where Supp is above a predefined 
threshold by the user (minimal support, MinSupp). MinSupp 
belongs to the interval [0,1], varies in decreasing order from 1 
to 0, and depends on the database characteristics. The 
complexity of extracting frequent itemsets is sensitive to 
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MinSupp, as it increases rapidly when it decreases, given that 
more items exist. Therefore, the number of generated itemsets 
increases, which implies more complexity in terms of 
computation time and memory space. Several methods were 
developed to extract frequent itemsets and restrict search 
memory space and computation time. These methods can be 
grouped into two categories: the candidate generation approach 
and the pattern growth approach [12]. 

The candidate generation approach generates a list of 
candidate itemsets of size k to find the list of sets of frequent k-
itemsets. Then these itemsets are generated to build a list of 
new candidate itemsets of size k+1. This procedure is repeated 
until the set, k+1-frequent itemsets, is empty. This method 
allows a decrease in the amount of search memory space 
required based on the antimonotone property. If an itemset is 
not frequent, then all its super-itemsets are also not frequent. 
The Apriori algorithm [11] is the most well-known algorithm 
of this family. Nevertheless, other algorithms that belong to the 
same category are DHP [13], DIC [14], Eclat [15], and Bitmap 
[16]. The main drawback of these algorithms is the scanning of 
the transactional database several times. 

The pattern growth approach suggests removing the need to 
generate candidates to extract frequently occurring itemsets. 
This approach uses certain data structures, in particular trees, to 
accurately describe the transactional database. One of the most 
well-known algorithms in this family is the FP (Frequent 
Pattern)-Growth [17], which uses a specialized data structure 
called FP-Tree. The H-Mine [18], AFOPT [19], MFIs [20], and 
LCMFreq [21] are other methods that apply this approach. 
Recently proposed ideas employ prefix trees as a data structure 
to find frequent itemsets [22-26]. These approaches have the 
benefit of not performing candidate generation and avoiding 
multiple database scans. On the contrary, the data structures 
used in these algorithms result in significant memory 
consumption, and the development of these algorithms is more 
complex than in the candidate solution approach. 

This study proposes a new algorithm based on Apriori 
because it is the foundation of other algorithms and is regarded 
as a reference. The proposed algorithm reduces the amount of 
memory space and time required for the discovery of frequent 
itemsets. 

II. BASIC NOTIONS 

Let I = {i0 ,i1,...,in} be a set of n items, T = {t1,...,tm} a 
database of m transactions, where each transaction ti has a 
unique identifier and is a subset of items ti ⊆ I. 

 Definition 1: An itemset X is any item subset of I. For 
example {i1 i5 i8} is an itemset composed of three items. 

 Definition 2: A k-itemset is a set of itemsets, where each 
itemset is composed of k items. For example, the itemset {i1 
i5 i8} is considered an element of the 3-itemset. 

 Definition 3: The support Supp(X) of an itemset X is the 
frequency of appearance of this itemset in the transactions 
of a database T or the ratio between the number of 
transactions t containing X (X ⊆ t) and the total number of 
transactions in the database T. 

����(�) =
|
�∈/� ⊆
�| 

||
    (1) 

where || is the cardinal operator in the sets theory. 

 Definition 4: An itemset X is frequent in a database T if its 
support is greater than or equal to a given threshold: 
Supp(X) ≥ MinSupp. 

 Definition 5: An association rule is an implication 
expression among itemsets of the form X→Y, where X⊂I, 
Y⊂I, and X∩Y=∅. 

III. THE PROPOSED ALGORITHM 

A. Example 

In a transaction database that contains n frequent items, the 
Apriori algorithm can generate a large number of itemsets k-
itemset (a subset of items of size k), which is equal to all 
possible combinations ��

� . For example, for n=100 items, 
3921225 itemsets of size 4 can be generated. The proposed 
algorithm can reduce the number of generated k-itemsets by 
studying the items by category according to their support. To 
better understand the proposed algorithm, its principle of 
operation is illustrated through the following example: Table I 
shows the transaction base T, which contains 10 transactions 
and 14 items (a, b, c, d, e, f, g, h, m, n, p, x, y, z), where each 
transaction contains one or more items. 

TABLE I.  EXAMPLE OF TRANSACTION DATABASE 

Transaction ID Items 

1 a, b, f, n, x 
2 a, n 
3 b, c, d, f, g, h, m 
4 b, c, g, h, m, n 
5 a, b, f, z 
6 a, f, g, y 
7 a, b, c, f, g, n 
8 a, c, d, e, h, y, n, p 
9 a, f, n 
10 a, d, e, g, h, y, p 

 

The support of each item is: Supp(a) = 0.8, Supp(f) = 
Supp(n) = 0.6, Supp(b) = Supp(g)= 0.5, Supp(c) = Supp(h)= 
0.4, Supp(d) = Supp(y)= 0.3, Supp(e) = Supp(m) = Supp(p) = 
0.2, Supp(x) = Supp(z)= 0.1. 

The following parameters are used: MaxSupp1 is the 
greatest support, MinSupp1 is the first minimum support, 
MinSupp is the minimum support, and a parameter α ∈ ]0, 1[. 
In this example, MaxSupp1= 0.8, a = 0.72, MinSupp1 = 0.35, 
and MinSupp= 0.2. Then, instead of processing all items that 
are greater than MinSupp at the same time as the majority of 
the algorithms do, the items are considered by the group of 
intervals [MaxSuppi, MinSuppi], and the intersection between 
two successive intervals must be non-empty. The following 
equations are used to find the MaxSuppi and MinSuppi:  

�������� = � ∗ ����������   (2) 

�������� = � ∗ ����������   (3) 

Table II shows the items obtained in each interval. Table III 
shows the complexity of (��

�) to generate the 2- and 3-itemsets 
by the proposed and the Apriori algorithms: 
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TABLE II.  EXAMPLE OF THE NEW ALGORITHM 

Step 

(i) 

MaxSuppi MinSuppi Items of each 

interval 

Number of 

items 

1 0.8 0.35 a, f, n, b, g, c, h 7 
2 0.576 0.252 b, g, c, h, d, y 6 
3 0.414 0.181 c, h, d, y, e, m, p 7 

STOP MinSupp = 0.181 < 0.2 

TABLE III.  COMPUTATIONAL COMPLEXITY 

Algorithm k=2 k=3 

Proposed  � 
!+�"

!+� 
!= 

21+10+21=42 
� 

#+�"
#+� 

!#= 
35+20+35=90 

Apriori  ��!
! =66 ��!

# =220 

 
The Apriori algorithm builds up to 220 3-itemsets, whereas 

the proposed algorithm builds 90. Thus, the proposed algorithm 
reduced the number of generated itemsets, implying a reduction 
in the number of product association rules and, therefore, 
reducing calculation time. 

B. Constraints 

The parameters α and MinSupp1 must be selected in a way 
to have acceptable and non-disjoint intervals to maintain the 
association between the items of the different intervals. 

 Disjoint intervals: for example, α = 0.6, MaxSupp1= 0.7, 
and MinSupp1=0.6 gives the first interval [0.7, 0.6]. 
MaxSupp2= α × MaxSupp1 = 0.6 × 0.7 = 0.42 and 
MinSupp2 = α × MinSupp1 = 0.6 × 0.6 =0.36 gives the 
second interval [0.42, 0.36]. Therefore, the items that 
support the interval ]0.6, 0.42[ are ignored and the 
association between the items of the two intervals [0.7, 0.6] 
and [0.42, 0.36] is lost. 

 Acceptable intervals: avoid intervals that are sufficiently 
close to each other to ignore the same items (repetitive 
intervals). For MaxSupp1=0.7, MinSupp1=0.6, and α=0.98, 
the next interval is [0.686, 0.588]. Therefore, the same 
items of the interval [0.7, 0.6] can be studied. 

The selection of α and MinSupp1 must be studied. 

C. The Proposed Algorithm 

The principles of the proposed algorithm are: 

1. The following parameters are set in advance: 
MaxSupp1, MinSupp1, MinSupp (MinSupp1>MinSupp), 
α ∈ ]0, 1[. 

2. The Apriori algorithm is applied to the items with 
support in [MaxSupp1, MinSupp1] to find the generated 
k-itemsets. 

3. Step 2 is repeated for the intervals [MaxSuppi, 
MinSuppi] until MinSupp > MinSuppi, using (2) and 
(3). 

The final global set of k-itemsets obtained is the union of 
the sets of k-itemsets obtained in each interval. The pseudocode 
representation for this algorithm is: 

Algorithm frequent_itemsets 

Input: T, α, MinSupp1, MaxSupp1, MinSupp  

//Knowing that MinSupp<MinSupp1<MaxSupp1, 0<α<1) 

Output: List of Frequent Itemsets (LFI) 

1. Repeat 

2. L1i = list of items ∈ [MaxSuppi, MinSuppi] 

3. Apply the Apriori algorithm on L1i to find the 

LFIi list that represents the set of frequent k-
itemsets in the interval [MaxSuppi, MinSuppi] 

4. i++  

5. MaxSuppi= α×MaxSuppi-1 

6. MinSuppi= α×MinSuppi-1 

7. Until (MinSupp>MinSuppi) 

8. LFI= UiLFIi 

IV. EXPERIMENTAL RESULTS AND EVALUATION 

A. Dataset Description 

To measure the performance of the proposed against the 
Apriori algorithm, their computational complexity was 
compared on two real benchmark databases of different sizes 
(i.e. different numbers of items and transactions) [27]. Table IV 
shows the characteristics of these databases. 

TABLE IV.  CHARACTERISTICS OF EXPERIMENTAL DATA 

Dataset name Number of items Number of transactions 

Chess 75 3196 
Mushroom 119 8124 

 

B. Experiments and Validation 

Different values of α, MinSupp1, and MinSupp were 
examined for each database to find the lower computational 
complexity. Table V presents the obtained experimental results. 

TABLE V.  DATABASE TEST RESULTS 

Dataset 
Minimum support 

(MinSupp) 

Apriori algorithm Proposed algorithm 

Number of frequent 

items 
Settings α, MinSupp1 Intervals 

Number of items in the interval 
[MaxSuppi, MinSuppi] 

Chess 0.6020 34 
α = 0.9 

MinSupp1 =0.85 

[0.9997, 0.85] 
[0.8998, 0.765] 
[0.8098, 0.6885] 
[0.7288, 0.6020] 

16 
9 
8 

10 

Mushroom 0.0666 66 
α = 0.55 

MinSupp1= 0.4 

[0.9654, 0.4] 
[0.5310, 0.22] 

[0.2921, 0.121] 
[0.1607, 0.0666] 

21 
28 
25 
20 
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The computational complexity according to the k items 
appearing in the itemsets for the two algorithms was studied. 
Table VI shows the results of applying the two algorithms on 
the two datasets, pointing out the performance of the proposed 
algorithm in the reduction of the number of generated itemsets, 
indicating time-saving. For example, the number of 3-itemsets 
generated from the Mushroom database was 45760 itemsets for 
Apriori and 8046 itemsets for the proposed algorithm. Further 
experiments were carried out to compare execution time and 
memory space required by the proposed algorithm, Eclat, and 
LCMFreq. The total runtime was determined in seconds (s) and 
the memory space in megabytes (MB) at the end of each 
algorithm for the two databases. Tables VII and VIII show the 
obtained results. 

TABLE VI.  COMPUTATIONAL COMPLEXITY COMPARISON 
FOR k=2 AND k=3 

Dataset 

Computational complexity ($%
&) 

k=2 k=3 

Apriori  Proposed  Apriori  Proposed  

Chess 561 229 5984 820 
Mushroom 2145 1078 45760 8046 

TABLE VII.  TOTAL RUNTIME COMPARISON 

Dataset Proposed  Eclat LCMFreq 

Chess 15.054 17.565 52.245 
Mushroom 26.192 40.419 81.292 

TABLE VIII.  USED MEMORY SPACE COMPARISON 

Dataset Proposed Eclat LCMFreq 

Chess 312.33 743.16 631.90 
Mushroom 531.14 814.19 749.27 

 

Figures 1 and 2 show the execution time and the memory 
space used by the three algorithms applied to the two 
transaction databases. Figure 1 shows that the time obtained by 
the proposed algorithm is less than the other two algorithms 
with times of ~15s and ~26s for the Chess and Mushroom 
databases, respectively. Figure 2 shows that the proposed 
algorithm is more efficient in terms of memory space used 
during execution, as it consumed only ~312MB and ~531MB 
for the Chess and Mushroom databases, respectively. 

 

 
Fig. 1.  Total runtime of each algorithm. 

 
Fig. 2.  Memory consumption of each algorithm. 

V. CONCLUSION 

This paper presented a new, based on Apriori, algorithm 
that allows the optimization of the extraction of association 
rules from databases. This optimization was based on the 
classification of items by categories according to their support. 
Experiments were carried out using the two transactional 
databases Chess and Mushroom [27] to compare the 
performance of the proposed algorithm with the Eclat and 
LCMFreq algorithms, showing that the proposed algorithm was 
faster in both cases and consumed less memory space. For 
example, the proposed algorithm can save more than half of the 
memory on the Chess database compared to the Eclat and 
LCMFreq algorithms. In future extensions of this study on 
improving the process of extracting frequent itemsets, the best 
value of the parameter α and the optimal number of intervals 
for reducing computational complexity in terms of execution 
time and memory consumption should be determined 
automatically. Furthermore, data structures, such as trees, could 
be investigated for the data representation of each interval of 
the transaction database instead of generating itemsets. 
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