
Engineering, Technology & Applied Science Research Vol. 13, No. 2, 2023, 10496-10500 10496

www.etasr.com Bouaita et al.: A New Approach for Optimizing the Extraction of Association Rules

A New Approach for Optimizing the Extraction
of Association Rules

Bilal Bouaita

Ferhat Abbas Setif 1 University, Algeria
bilal.bouaita@univ-setif.dz
(corresponding author)

Abdesselem Beghriche

Ferhat Abbas Setif 1 University, Algeria
abdesselem_beghriche@univ-setif.dz

Akram Kout

MISC Laboratory, Ferhat Abbas Setif 1 University, Algeria
akram-kout@univ-setif.dz

Abdelouahab Moussaoui

Ferhat Abbas Setif 1 University, Algeria
abdelouahab.moussaoui@univ-setif.dz

Received: 28 January 2023 | Revised: 19 February 2023 | Accepted: 23 February 2023

ABSTRACT

Association rule methods are among the most used approaches for Knowledge Discovery in Databases

(KDD), as they allow discovering and extracting hidden meaningful relationships between attributes or

items in large datasets in the form of rules. Algorithms to extract these rules require considerable time and

large memory spaces. This paper presents an algorithm that decomposes this complex problem into

subproblems and processes items by category according to their support. Very frequent items and fairly

frequent items are studied together. To evaluate the performance of the proposed algorithm, it was

compared with Eclat and LCMFreq on two actual transactional databases. The experimental results

showed that the proposed algorithm was faster in execution time and demonstrated its efficiency in

memory consumption.

Keywords-KDD; data mining; association rules; frequent itemset

I. INTRODUCTION

Association rule methods [1, 2] are widely used in data
mining [3, 4] which is the heart of Knowledge Discovery in
Databases (KDD) [5, 6]. This approach was introduced to
analyze the shopping cart or transaction data [2]. As each
database transaction contains all items purchased by a
customer, an association rule method identifies attributes or
items that are often purchased together and discovers some
meaningful dependencies and relationships between items sold
for making predictions or decisions [7]. These relations are in
the form of a rule: if X, then Y (X→Y (75%)), where X is the
condition of the rule and Y is its conclusion. In addition, 75%
support of the rule indicates that 75% of the customers who
buy item X also buy item Y at the same time. These rules
provide a decision support tool [8] in many areas, including the
commercial sector. The association rule extraction is an

essential two-step process that discovers frequent item set lists
and generates association rules from these. The first step is the
most costly in terms of execution time and memory space [9].
In databases that contain thousands of items, the larger the
number of items, the larger the number of generated itemsets.
This condition produces an explosion in the number of
association rules. In a database that contains n items, 2n-1
itemsets can be generated [10], producing a very large number
of rules.

Each item or itemset is characterized by its support (Supp)
[7]. The Apriori algorithm [11] minimizes calculations and the
number of itemsets based on the support value. It only
maintains frequent itemsets, where Supp is above a predefined
threshold by the user (minimal support, MinSupp). MinSupp
belongs to the interval [0,1], varies in decreasing order from 1
to 0, and depends on the database characteristics. The
complexity of extracting frequent itemsets is sensitive to

Engineering, Technology & Applied Science Research Vol. 13, No. 2, 2023, 10496-10500 10497

www.etasr.com Bouaita et al.: A New Approach for Optimizing the Extraction of Association Rules

MinSupp, as it increases rapidly when it decreases, given that
more items exist. Therefore, the number of generated itemsets
increases, which implies more complexity in terms of
computation time and memory space. Several methods were
developed to extract frequent itemsets and restrict search
memory space and computation time. These methods can be
grouped into two categories: the candidate generation approach
and the pattern growth approach [12].

The candidate generation approach generates a list of
candidate itemsets of size k to find the list of sets of frequent k-
itemsets. Then these itemsets are generated to build a list of
new candidate itemsets of size k+1. This procedure is repeated
until the set, k+1-frequent itemsets, is empty. This method
allows a decrease in the amount of search memory space
required based on the antimonotone property. If an itemset is
not frequent, then all its super-itemsets are also not frequent.
The Apriori algorithm [11] is the most well-known algorithm
of this family. Nevertheless, other algorithms that belong to the
same category are DHP [13], DIC [14], Eclat [15], and Bitmap
[16]. The main drawback of these algorithms is the scanning of
the transactional database several times.

The pattern growth approach suggests removing the need to
generate candidates to extract frequently occurring itemsets.
This approach uses certain data structures, in particular trees, to
accurately describe the transactional database. One of the most
well-known algorithms in this family is the FP (Frequent
Pattern)-Growth [17], which uses a specialized data structure
called FP-Tree. The H-Mine [18], AFOPT [19], MFIs [20], and
LCMFreq [21] are other methods that apply this approach.
Recently proposed ideas employ prefix trees as a data structure
to find frequent itemsets [22-26]. These approaches have the
benefit of not performing candidate generation and avoiding
multiple database scans. On the contrary, the data structures
used in these algorithms result in significant memory
consumption, and the development of these algorithms is more
complex than in the candidate solution approach.

This study proposes a new algorithm based on Apriori
because it is the foundation of other algorithms and is regarded
as a reference. The proposed algorithm reduces the amount of
memory space and time required for the discovery of frequent
itemsets.

II. BASIC NOTIONS

Let I = {i0 ,i1,...,in} be a set of n items, T = {t1,...,tm} a
database of m transactions, where each transaction ti has a
unique identifier and is a subset of items ti ⊆ I.

 Definition 1: An itemset X is any item subset of I. For
example {i1 i5 i8} is an itemset composed of three items.

 Definition 2: A k-itemset is a set of itemsets, where each
itemset is composed of k items. For example, the itemset {i1
i5 i8} is considered an element of the 3-itemset.

 Definition 3: The support Supp(X) of an itemset X is the
frequency of appearance of this itemset in the transactions
of a database T or the ratio between the number of
transactions t containing X (X ⊆ t) and the total number of
transactions in the database T.

����(�) =
|
�∈/� ⊆
�|

||
 (1)

where || is the cardinal operator in the sets theory.

 Definition 4: An itemset X is frequent in a database T if its
support is greater than or equal to a given threshold:
Supp(X) ≥ MinSupp.

 Definition 5: An association rule is an implication
expression among itemsets of the form X→Y, where X⊂I,
Y⊂I, and X∩Y=∅.

III. THE PROPOSED ALGORITHM

A. Example

In a transaction database that contains n frequent items, the
Apriori algorithm can generate a large number of itemsets k-
itemset (a subset of items of size k), which is equal to all
possible combinations ��

� . For example, for n=100 items,
3921225 itemsets of size 4 can be generated. The proposed
algorithm can reduce the number of generated k-itemsets by
studying the items by category according to their support. To
better understand the proposed algorithm, its principle of
operation is illustrated through the following example: Table I
shows the transaction base T, which contains 10 transactions
and 14 items (a, b, c, d, e, f, g, h, m, n, p, x, y, z), where each
transaction contains one or more items.

TABLE I. EXAMPLE OF TRANSACTION DATABASE

Transaction ID Items

1 a, b, f, n, x
2 a, n
3 b, c, d, f, g, h, m
4 b, c, g, h, m, n
5 a, b, f, z
6 a, f, g, y
7 a, b, c, f, g, n
8 a, c, d, e, h, y, n, p
9 a, f, n
10 a, d, e, g, h, y, p

The support of each item is: Supp(a) = 0.8, Supp(f) =
Supp(n) = 0.6, Supp(b) = Supp(g)= 0.5, Supp(c) = Supp(h)=
0.4, Supp(d) = Supp(y)= 0.3, Supp(e) = Supp(m) = Supp(p) =
0.2, Supp(x) = Supp(z)= 0.1.

The following parameters are used: MaxSupp1 is the
greatest support, MinSupp1 is the first minimum support,
MinSupp is the minimum support, and a parameter α ∈]0, 1[.
In this example, MaxSupp1= 0.8, a = 0.72, MinSupp1 = 0.35,
and MinSupp= 0.2. Then, instead of processing all items that
are greater than MinSupp at the same time as the majority of
the algorithms do, the items are considered by the group of
intervals [MaxSuppi, MinSuppi], and the intersection between
two successive intervals must be non-empty. The following
equations are used to find the MaxSuppi and MinSuppi:

�������� = � ∗ ���������� (2)

�������� = � ∗ ���������� (3)

Table II shows the items obtained in each interval. Table III
shows the complexity of (��

�) to generate the 2- and 3-itemsets
by the proposed and the Apriori algorithms:

Engineering, Technology & Applied Science Research Vol. 13, No. 2, 2023, 10496-10500 10498

www.etasr.com Bouaita et al.: A New Approach for Optimizing the Extraction of Association Rules

TABLE II. EXAMPLE OF THE NEW ALGORITHM

Step

(i)

MaxSuppi MinSuppi Items of each

interval

Number of

items

1 0.8 0.35 a, f, n, b, g, c, h 7
2 0.576 0.252 b, g, c, h, d, y 6
3 0.414 0.181 c, h, d, y, e, m, p 7

STOP MinSupp = 0.181 < 0.2

TABLE III. COMPUTATIONAL COMPLEXITY

Algorithm k=2 k=3

Proposed �
!+�"

!+�
!=

21+10+21=42
�

#+�"
#+�

!#=
35+20+35=90

Apriori ��!
! =66 ��!

=220

The Apriori algorithm builds up to 220 3-itemsets, whereas

the proposed algorithm builds 90. Thus, the proposed algorithm
reduced the number of generated itemsets, implying a reduction
in the number of product association rules and, therefore,
reducing calculation time.

B. Constraints

The parameters α and MinSupp1 must be selected in a way
to have acceptable and non-disjoint intervals to maintain the
association between the items of the different intervals.

 Disjoint intervals: for example, α = 0.6, MaxSupp1= 0.7,
and MinSupp1=0.6 gives the first interval [0.7, 0.6].
MaxSupp2= α × MaxSupp1 = 0.6 × 0.7 = 0.42 and
MinSupp2 = α × MinSupp1 = 0.6 × 0.6 =0.36 gives the
second interval [0.42, 0.36]. Therefore, the items that
support the interval]0.6, 0.42[are ignored and the
association between the items of the two intervals [0.7, 0.6]
and [0.42, 0.36] is lost.

 Acceptable intervals: avoid intervals that are sufficiently
close to each other to ignore the same items (repetitive
intervals). For MaxSupp1=0.7, MinSupp1=0.6, and α=0.98,
the next interval is [0.686, 0.588]. Therefore, the same
items of the interval [0.7, 0.6] can be studied.

The selection of α and MinSupp1 must be studied.

C. The Proposed Algorithm

The principles of the proposed algorithm are:

1. The following parameters are set in advance:
MaxSupp1, MinSupp1, MinSupp (MinSupp1>MinSupp),
α ∈]0, 1[.

2. The Apriori algorithm is applied to the items with
support in [MaxSupp1, MinSupp1] to find the generated
k-itemsets.

3. Step 2 is repeated for the intervals [MaxSuppi,
MinSuppi] until MinSupp > MinSuppi, using (2) and
(3).

The final global set of k-itemsets obtained is the union of
the sets of k-itemsets obtained in each interval. The pseudocode
representation for this algorithm is:

Algorithm frequent_itemsets

Input: T, α, MinSupp1, MaxSupp1, MinSupp

//Knowing that MinSupp<MinSupp1<MaxSupp1, 0<α<1)

Output: List of Frequent Itemsets (LFI)

1. Repeat

2. L1i = list of items ∈ [MaxSuppi, MinSuppi]

3. Apply the Apriori algorithm on L1i to find the

LFIi list that represents the set of frequent k-
itemsets in the interval [MaxSuppi, MinSuppi]

4. i++

5. MaxSuppi= α×MaxSuppi-1

6. MinSuppi= α×MinSuppi-1

7. Until (MinSupp>MinSuppi)

8. LFI= UiLFIi

IV. EXPERIMENTAL RESULTS AND EVALUATION

A. Dataset Description

To measure the performance of the proposed against the
Apriori algorithm, their computational complexity was
compared on two real benchmark databases of different sizes
(i.e. different numbers of items and transactions) [27]. Table IV
shows the characteristics of these databases.

TABLE IV. CHARACTERISTICS OF EXPERIMENTAL DATA

Dataset name Number of items Number of transactions

Chess 75 3196
Mushroom 119 8124

B. Experiments and Validation

Different values of α, MinSupp1, and MinSupp were
examined for each database to find the lower computational
complexity. Table V presents the obtained experimental results.

TABLE V. DATABASE TEST RESULTS

Dataset
Minimum support

(MinSupp)

Apriori algorithm Proposed algorithm

Number of frequent

items
Settings α, MinSupp1 Intervals

Number of items in the interval
[MaxSuppi, MinSuppi]

Chess 0.6020 34
α = 0.9

MinSupp1 =0.85

[0.9997, 0.85]
[0.8998, 0.765]
[0.8098, 0.6885]
[0.7288, 0.6020]

16
9
8

10

Mushroom 0.0666 66
α = 0.55

MinSupp1= 0.4

[0.9654, 0.4]
[0.5310, 0.22]

[0.2921, 0.121]
[0.1607, 0.0666]

21
28
25
20

Engineering, Technology & Applied Science Research Vol. 13, No. 2, 2023, 10496-10500 10499

www.etasr.com Bouaita et al.: A New Approach for Optimizing the Extraction of Association Rules

The computational complexity according to the k items
appearing in the itemsets for the two algorithms was studied.
Table VI shows the results of applying the two algorithms on
the two datasets, pointing out the performance of the proposed
algorithm in the reduction of the number of generated itemsets,
indicating time-saving. For example, the number of 3-itemsets
generated from the Mushroom database was 45760 itemsets for
Apriori and 8046 itemsets for the proposed algorithm. Further
experiments were carried out to compare execution time and
memory space required by the proposed algorithm, Eclat, and
LCMFreq. The total runtime was determined in seconds (s) and
the memory space in megabytes (MB) at the end of each
algorithm for the two databases. Tables VII and VIII show the
obtained results.

TABLE VI. COMPUTATIONAL COMPLEXITY COMPARISON
FOR k=2 AND k=3

Dataset

Computational complexity ($%
&)

k=2 k=3

Apriori Proposed Apriori Proposed

Chess 561 229 5984 820
Mushroom 2145 1078 45760 8046

TABLE VII. TOTAL RUNTIME COMPARISON

Dataset Proposed Eclat LCMFreq

Chess 15.054 17.565 52.245
Mushroom 26.192 40.419 81.292

TABLE VIII. USED MEMORY SPACE COMPARISON

Dataset Proposed Eclat LCMFreq

Chess 312.33 743.16 631.90
Mushroom 531.14 814.19 749.27

Figures 1 and 2 show the execution time and the memory
space used by the three algorithms applied to the two
transaction databases. Figure 1 shows that the time obtained by
the proposed algorithm is less than the other two algorithms
with times of ~15s and ~26s for the Chess and Mushroom
databases, respectively. Figure 2 shows that the proposed
algorithm is more efficient in terms of memory space used
during execution, as it consumed only ~312MB and ~531MB
for the Chess and Mushroom databases, respectively.

Fig. 1. Total runtime of each algorithm.

Fig. 2. Memory consumption of each algorithm.

V. CONCLUSION

This paper presented a new, based on Apriori, algorithm
that allows the optimization of the extraction of association
rules from databases. This optimization was based on the
classification of items by categories according to their support.
Experiments were carried out using the two transactional
databases Chess and Mushroom [27] to compare the
performance of the proposed algorithm with the Eclat and
LCMFreq algorithms, showing that the proposed algorithm was
faster in both cases and consumed less memory space. For
example, the proposed algorithm can save more than half of the
memory on the Chess database compared to the Eclat and
LCMFreq algorithms. In future extensions of this study on
improving the process of extracting frequent itemsets, the best
value of the parameter α and the optimal number of intervals
for reducing computational complexity in terms of execution
time and memory consumption should be determined
automatically. Furthermore, data structures, such as trees, could
be investigated for the data representation of each interval of
the transaction database instead of generating itemsets.

REFERENCES

[1] A. Alqahtani, H. Alhakami, T. Alsubait, and A. Baz, "A Survey of Text
Matching Techniques," Engineering, Technology & Applied Science
Research, vol. 11, no. 1, pp. 6656–6661, Feb. 2021, https://doi.org/
10.48084/etasr.3968.

[2] R. Agrawal, T. Imieliński, and A. Swami, "Mining association rules
between sets of items in large databases," in Proceedings of the 1993
ACM SIGMOD international conference on Management of data, New
York, NY, USA, Mar. 1993, pp. 207–216, https://doi.org/10.1145/
170035.170072.

[3] S. Chakraborty, S. H. Islam, and D. Samanta, "Introduction to Data
Mining and Knowledge Discovery," in Data Classification and
Incremental Clustering in Data Mining and Machine Learning, S.
Chakraborty, S. H. Islam, and D. Samanta, Eds. Cham, Switzerland:
Springer International Publishing, 2022, pp. 1–22.

[4] H. Alizadeh and B. M. Bidgoli, "Introducing A Hybrid Data Mining
Model to Evaluate Customer Loyalty," Engineering, Technology &
Applied Science Research, vol. 6, no. 6, pp. 1235–1240, Dec. 2016,
https://doi.org/10.48084/etasr.741.

[5] C. Kenneth and O. Chinecherem, "Knowledge Discovery in Databases
(KDD): An Overview," International Journal of Computer Science and
Information Security, vol. 15, no. 12, pp. 13–16, Dec. 2017.

[6] U. Fayyad, G. Piatetsky-Shapiro, and P. Smyth, "Knowledge discovery
and data mining: towards a unifying framework," in Proceedings of the

Engineering, Technology & Applied Science Research Vol. 13, No. 2, 2023, 10496-10500 10500

www.etasr.com Bouaita et al.: A New Approach for Optimizing the Extraction of Association Rules

Second International Conference on Knowledge Discovery and Data
Mining, Portland, OR, USA, May 1996, pp. 82–88.

[7] B. Bouaita, A. Moussaoui, and N. E. I. Bachari, "Rainfall estimation
from MSG images using fuzzy association rules," Journal of Intelligent
& Fuzzy Systems, vol. 37, no. 1, pp. 1357–1369, Jan. 2019,
https://doi.org/10.3233/JIFS-182786.

[8] N. Benmoussa, M. F. Amr, S. Ahriz, K. Mansouri, and E. Illoussamen,
"Outlining a Model of an Intelligent Decision Support System Based on
Multi Agents," Engineering, Technology & Applied Science Research,
vol. 8, no. 3, pp. 2937–2942, Jun. 2018, https://doi.org/10.48084/
etasr.1936.

[9] H. Li and P. C.-Y. Sheu, "A scalable association rule learning heuristic
for large datasets," Journal of Big Data, vol. 8, no. 1, Jun. 2021, Art. No.
86, https://doi.org/10.1186/s40537-021-00473-3.

[10] K. Fujioka and K. Shirahama, "Generic Itemset Mining Based on
Reinforcement Learning," IEEE Access, vol. 10, pp. 5824–5841, 2022,
https://doi.org/10.1109/ACCESS.2022.3141806.

[11] R. Agrawal, R. Srikant, H. Road, and S. Jose, "Fast Algorithms for
Mining Association Rules," in Proceedings of the 20th International
Conference on Very Large Data Bases, 487-499, 1994.

[12] A. Ceglar and J. F. Roddick, "Association mining," ACM Computing
Surveys, vol. 38, no. 2, Apr. 2006, https://doi.org/10.1145/1132956.
1132958.

[13] J. S. Park, M. S. Chen, and P. S. Yu, "An effective hash-based algorithm
for mining association rules," ACM SIGMOD Record, vol. 24, no. 2, pp.
175–186, Feb. 1995, https://doi.org/10.1145/568271.223813.

[14] S. Brin, R. Motwani, J. D. Ullman, and S. Tsur, "Dynamic itemset
counting and implication rules for market basket data," in Proceedings
of the 1997 ACM SIGMOD international conference on Management of
data, New York, NY, USA, Mar. 1997, pp. 255–264, https://doi.org/
10.1145/253260.253325.

[15] M. J. Zaki, "Scalable algorithms for association mining," IEEE
Transactions on Knowledge and Data Engineering, vol. 12, no. 3, pp.
372–390, Feb. 2000, https://doi.org/10.1109/69.846291.

[16] G. Gardarin, P. Pucheral, and F. Wu, "Bitmap based algorithms for
mining association rules," presented at the 14ème Journées Bases de
Données Avancées, Hammamet, Tunis, 1998.

[17] J. Han, J. Pei, and Y. Yin, "Mining frequent patterns without candidate
generation," ACM SIGMOD Record, vol. 29, no. 2, pp. 1–12, Feb. 2000,
https://doi.org/10.1145/335191.335372.

[18] J. Pei, J. Han, H. Lu†, S. Nishio, S. Tang, and D. Yang, "H-Mine: Fast
and space-preserving frequent pattern mining in large databases," IIE
Transactions, vol. 39, no. 6, pp. 593–605, Mar. 2007, https://doi.org/
10.1080/07408170600897460.

[19] G. Liu, H. Lu, W. Lou, Y. Xu, and J. X. Yu, "Efficient Mining of
Frequent Patterns Using Ascending Frequency Ordered Prefix-Tree,"
Data Mining and Knowledge Discovery, vol. 9, no. 2, pp. 249–274, Nov.
2004, https://doi.org/10.1023/B:DAMI.0000041128.59011.53.

[20] G. Grahne and J. Zhu, "Fast algorithms for frequent itemset mining
using FP-trees," IEEE Transactions on Knowledge and Data
Engineering, vol. 17, no. 10, pp. 1347–1362, Jul. 2005,
https://doi.org/10.1109/TKDE.2005.166.

[21] T. Uno, M. Kiyomi, and H. Arimura, "LCM ver. 2: Efficient Mining
Algorithms for Frequent/Closed/Maximal Itemsets," presented at the The
Fourth IEEE International Conference on Data Mining (ICDM '04),
Brighton, UK, Nov. 2004.

[22] Z. Deng, Z. Wang, and J. Jiang, "A new algorithm for fast mining
frequent itemsets using N-lists," Science China Information Sciences,
vol. 55, no. 9, pp. 2008–2030, Sep. 2012, https://doi.org/10.1007/
s11432-012-4638-z.

[23] Z. H. Deng and S. L. Lv, "Fast mining frequent itemsets using
Nodesets," Expert Systems with Applications, vol. 41, no. 10, pp. 4505–
4512, Aug. 2014, https://doi.org/10.1016/j.eswa.2014.01.025.

[24] Z. H. Deng and S. L. Lv, "PrePost+: An efficient N-lists-based algorithm
for mining frequent itemsets via Children–Parent Equivalence pruning,"
Expert Systems with Applications, vol. 42, no. 13, pp. 5424–5432, Aug.
2015, https://doi.org/10.1016/j.eswa.2015.03.004.

[25] Z.-H. Deng, "DiffNodesets: An efficient structure for fast mining
frequent itemsets," Applied Soft Computing, vol. 41, pp. 214–223, Apr.
2016, https://doi.org/10.1016/j.asoc.2016.01.010.

[26] N. Aryabarzan, B. Minaei-Bidgoli, and M. Teshnehlab, "negFIN: An
efficient algorithm for fast mining frequent itemsets". In Expert Systems
with Applications, vol. 105, pp. 129-143, Sep. 2018. https://doi.org/
10.1016/j.eswa.2018.03.041.

[27] "Chess and Mushroom datasets," Frequent Itemset Mining Dataset
Repository. http://fimi.uantwerpen.be/data/.

