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ABSTRACT 

Human brain activity maps are produced by functional MRI (fMRI) research that describes the average 

level of engagement during a specific task of various brain regions. Functional connectivity describes the 

interrelationship, integrated performance, and organization of these different brain regions. This study 

investigates functional connectivity to quantify the interactions between different brain regions engaged 

concurrently in a specific task. The key focus of this study was to introduce and demonstrate task-specific 

functional connectivity among brain regions using fMRI data and decode cognitive states by proposing a 

novel classifier using connectivity features. Two connectivity models were considered: a graph-based task-

specific functional connectivity and a Granger causality-transfer entropy framework. Connectivity 

strengths obtained among brain regions were used for cognitive state classification. The parameters of the 

nodal and global graph analysis from the graph-based connectivity framework were considered, and the 

transfer entropy values of the causal connectivity model were considered as features for the cognitive state 

classification. The proposed model achieved an average accuracy of 95% on the StarPlus fMRI dataset and 

showed an improvement of 5% compared to the existing Tensor-SVD classification algorithm. 

Keywords-functional MRI; functional connectivity; nodal analysis; graph analysis; causal connectivity; 

cognitive state classification 

I. INTRODUCTION 

Functional connection in neuroscience is the covariation 
between spatially dispersed brain regions or brain signals. 
Typically, brain signals are captured using a functional 
neuroimaging technique, such as electroencephalography 
(EEG), functional Near Infrared Spectroscopy (fNIRS), 
functional MRI (fMRI), Magnetoencephalography (MEG), and 
electrocorticography (ECoG). In general, Functional 
Connectivity (FC) experiments are conducted under resting 
state conditions (without any task demands or external 
stimulation). However, understanding how external stimuli 
modulate FC has attracted the research interest. During the 
recent decades, fMRI has been highly successful in establishing 
functional relations between brain regions. Functional MRI is 
the most popular method for learning and delineating human 
brain regions that change their activation level while 
performing a specific task. The brain imaging modality can 
reveal information about neural systems that are functionally 
coupled together for specific stimuli or tasks. Functional 
neuroimaging can provide deep insight into the neurobiological 
underpinnings of disabilities. The concept of finding cognitive 
functions, as referred to by the connectivity networks of brain 
regions, is crucial in interpreting neuroscientific data [1]. The 

FC patterns computed over some time comprise enough details 
to identify the task the individuals are working on [2]. 
However, whether task-specific or resting-state available 
connectivity interactions are two manifestations that arise from 
the same underlying neural phenomenon is still under debate. 

Human cognition generally involves dynamic and complex 
interactions between dispersed cortex and subcortical areas [3]. 
The brain at rest is usually represented in a small number of 
networks compared to the number of functions it performs. 
Revealing the putative correspondence between specific FC 
features and different aspects of task performance is very 
important. The studies on distributed patterns of FC are used to 
classify or decode cognitive states [4]. Task-based connectivity 
studies produce different FC patterns for different cognitive 
tasks. 

Researchers have been measuring functional relationships 
among brain areas using neurophysiological data acquired from 
neural components. Functional and effective connectivity are 
the two aspects of functional interactivity [5]. When the actions 
of two brain components are correlated, they are said to be 
linked. The impact of one neuronal entity on another is referred 
to as an effective connection that establishes a causal 
relationship between the brain areas. FC analysis is a model-
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free approach; on the contrary, effective connectivity is a 
model-based approach [6]. FC is a simple phenomenon 
observed from correlations and represented in terms of 
covariance. The key aspects of the covariance are the patterns 
of correlated activity delimited by pairwise covariances. 
Modeling human brain networks is an essential step in 
determining connectivity patterns. In this work, the human 
brain is shown as a network through graph-based approaches. 
The model provides a graphical representation in the form of 
nodes and edges. The causal connectivity among the brain 
areas is analyzed using a pipeline framework formed by 
Granger causality and entropy. Machine learning classifiers 
have been used for the detection and classification of objects in 
several scientific applications [7-9]. 

Resting-state neuroimaging studies soon identified a list of 
canonical FC patterns that are consistently discovered when at 
rest and FC patterns and task-evoked activation patterns [10]. 
The correlations between functional time series are used to 
assess patterns of brain functional connectivity. Traditional 
correlation techniques can capture FC and provide a 
relationship between two Regions of Interest (ROIs) while 
ignoring the interaction between other ROIs. For instance, the 
second-ordered relations could give a significant understanding 
of neurological processes associated with brain regions [11]. 
As a hypergraph's edges may connect any number of ROIs 
rather than just two, it has been used to specify the high-order 
interactions between many ROIs (or vertices) [12]. Instead of 
simply setting each hyperedge's weight to 1, the hypergraph is 
used to learn adaptively more flexible hyperedge weights, 
assuming that all ROIs at each time point are seen as a smooth 
signal on the hypergraph. 

A typical FC network for different subjects is represented 
by a graph-based hypergraph derived from the fMRI time 
series. The obtained connectivity is further used to classify 
Alzheimer’s disease [13]. Inter-individual variations in resting 
FC patterns have been linked to various phenotypic qualities, as 
well as clinical problems (e.g., mental and neurological 
illnesses), and can be used to predict behavioral performance 
and identity [14]. Beyond what mechanistic insight they may 
(or may not) provide on interregional brain interactions and 
their relation to cognition, FC estimates can be useful, 
according to the results of [15]. 

The graph-based method provides more information on 
topological reconfiguration in response to external stimuli or 
task modification [16-17]. The framework explains how brain 
functions and structure are related. Both functional and 
structural networks have been shown to organize intrinsically 
when information is transferred and related hub regions are 
formatted [18-19]. Most FC methods used with BOLD fMRI 
data are constrained in their ability to provide details on the 
specific topology of the underlying causal graph, but still, they 
restrict the range of network topologies that may be considered 
[20]. Even though resting state FC research has contributed to a 
deeper grasp of how the brain works in various subjects, it has 
been limited by the application of approaches that cannot 
resolve critical motivating difficulties concerning task-specific 
FC in the context of cognitive task categorization and effective 
connectivity among the brain areas. This study used graph-

based FC analysis and entropy-based causal connection for 
connectivity analysis, and the connectivity parameters obtained 
were used as features to decode cognitive states. 

II. PROPOSED TASK-SPECIFIC CONNECTIVITY 

ANALYSIS FOR COGNITIVE STATE CLASSIFICATION  

The study of FC of the human brain has piqued the interest 
of the scientific community. Defining and comprehending how 
various brain regions interact requires identifying functional 
connectivity networks using fMRI data. FC aims to find 
statistical connections between two or more ROIs. The utility 
of connectivity analysis is also applied to the classification of 
fMRI data. The connection characteristics are used to create a 
classifier to categorize cognitive states. Figure 1 shows the 
proposed task-specific connectivity analysis framework. 

 

 
Fig. 1.  Proposed connectivity analysis framework for decoding the 

cognitive states. 

The proposed model is a 5 step approach for cognitive state 
classification. In Step 1, brain regions or ROIS are selected 
from the fMRI dataset. Since fMRI data comprise a significant 
number of ROIs, it is often essential to select appropriate ROIs 
from the pool. Step 2 involves the extraction of the voxel time 
course. As fMRI data are usually represented in ROIs, each 
ROI comprises a voxel time course. Since the proposed model 
operates with time series, the required voxel time course is 
extracted from each ROI to perform connectivity analysis. Step 
3 involves the connectivity analysis over the extracted time 
series. This step performs the functional and causal 
connectivity analyses to find the connectivity relation among 
the ROIs. Connectivity analysis includes the graph-based 
connectivity analysis and the Granger causality Transfer 
Entropy (TE) framework. The details of the graph-based and 
causal connectivity analyses are elaborated below. 

A. Graph-based Connectivity Analysis 

The behavior of networks is described in terms of nodes 
and their connections in a graph theory study on fMRI data. In 
the human brain network, brain areas are nodes and 
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connections are edges. Histological, functional, or anatomical 
parcellation schemes can be used to designate the sections of 
the brain graph nodes. Interactions among the regions are used 
to define the edges. After pooling the pairwise connections 
between nodes in the network, the characteristics of a brain 
graph are assessed to estimate connections at local and global 
levels. Relationships that are both temporal and functional with 
other regions are characterized by these qualities. This study 
investigates the functional connection strengths among the 
brain areas for task-specific fMRI data. The interconnectedness 
between ROIs (nodes) would be quantified once the cohorts for 
each participant and the brain atlas are built. Using brain 
network analysis, the connection between the ROIs (nodes) is 
assessed and the statistical correlation between them is 
measured using graph analysis. This study utilized Pearson's 
correlation for both individual and group analyses. A weighted 
undirected graph was used to create a functional connectivity 
graph and several global and nodal parameters were computed 
for the study. 

B. Task-Specific Connectivity Analysis using Granger-
Causality and Transfer Entropy Framework. 

Causal connectivity is the comprehension of the causal 
connection between different brain areas. To conduct task-and 
disease-specific research, it is assumed that fMRI-based causal 
connectivity approaches would shed light on these connection 
differences. The results of a causal connection study show a 
causal or significant reliance between ROIs. Effective 
connection explores the causal chain between different brain 
areas. The co-activation of brain regions is the basis for FC. 
Understanding the causal connection between various brain 
areas is referred to as causal connectivity. Effective connection 
analysis is provided by the Granger Causality (GC) [21] 
technique using a data-driven methodology. Each ROI is 
regarded as a variable for the GC analysis when assessing 
causal connection. A time series T1 impacts T2 if the 
information from T1's history may be used to anticipate the 
values of T2's future observations. When this criterion is met, 
information flows from T1 to T2. A time series-based brain 
connectivity estimate was carried out to investigate the 
functional interconnections between the ROIs. In this 
connection investigation, the primary goal was to estimate the 
Granger causality-based task-specific causal interactions 
between the ROIs. TE calculates the causal strength in a given 
situation. The suggested human brain cognitive connectivity 
analysis was applied to StarPlus fMRI data and the Granger 
causality technique was used to assess the influential 
connections among brain areas.  

In Step 4, the feature vectors were formed from the nodal 
and global parameters of functional connectivity analysis, and 
TE values were obtained for the Granger causality. The 
obtained features were treated as attributes for cognitive state 
classification. In Step 5, a classifier was developed using 
features extracted in the previous step. Three classifiers, 
namely Gaussian Naïve Bayes, Support Vector Machine, and 
KNN classifiers, were built for cognitive state classification. 
The proposed classification model based on the connectivity 
features was verified on standard StarPlus fMRI data. 

III. STARPLUS FMRI DATA  

The suggested approach was confirmed based on the 
StarPlus fMRI data [22], which provide easily accessible fMRI 
data for the categorization and study of the human brain's 
cognitive states. The captured brain volumes are divided into a 
set of trials in the two-phase experimental design. For each 
trial, subjects are required to determine if a statement or 
symbol was followed by a different sentence or symbol and 
negotiate properly. 

The first phase involved displaying one of two sentences to 
the subject: "The Star is above the Plus" or "The Star is below 
the Plus." After 4 seconds, this will disappear from the screen 
and an empty screen will appear. An image stimulus will be 
shown for 4 seconds following 4 seconds of the screen being 
blank. The individual is required to touch the button after 4 
seconds of visual stimulation to indicate whether or not the 
statement accurately describes the image. Brain images are 
captured during the experiment every 0.5 seconds. Throughout 
the experiment, each participant has a 15-second rest or 
fixation interval. The experiment is repeated in the second 
phase, but this time, the picture and phrase stimuli are 
exchanged. The subjects in the dataset have approximately 
5000 voxels marked as 25 ROIs. As reported in the literature, 7 
out of 25 ROIs, CALC, LDLPFC, LIPS, LIPL, LOPER, LT, 
and LTRIA, are used for the classification and analysis of the 
cognitive behavior of the brain. 

IV. RESULTS AND DISCUSSION  

Functional brain networks show how the brain's 
architecture and behavior are related. Functional networks built 
using fMRI data tailored to a certain activity aid in gaining 
insight into how multitasking affects brain structure. In [23], 
the graph-based connectivity model was used to determine the 
connectivity strengths among the cognitive tasks. The graph-
based connectivity model has not been used to build the 
classifier for cognitive state classification. In [24], the causal 
connectivity model was used for cognitive state classification, 
where the model considered 11 ROIs from a similar StarPlus 
dataset. This study combined both connectivity model 
parameters as features for the classification of cognitive states. 
There are several disciplines in which graph theory and GC 
analysis are useful. Nevertheless, graph theory and GC are new 
when applied to cognitive fMRI data. For cognitive data, nodal 
and global parameters are used to evaluate the 
interconnectedness between ROIs, and TE is used to assess the 
causal potency of those connections. The StarPlus fMRI dataset 
voxels are grouped into 25 ROIs. Of these, the 7 most 
important ROIs were chosen for further study. The ROI level 
analysis reveals two distinct functional networks for image and 
sentence tasks, as shown in Figure 2. The connectivity graphs 
are defined from nodal measurements for each task. Figure 3 
shows the correlation matrix for each task (visual and verbal) 
for the StarPlus fMRI data. 
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(a) (b) 

Fig. 2.  (a) Obtained FC network for a sentence task, (b) obtained 

connectivity network for a visual task. 

 
(a)     (b) 

Fig. 3.  (a) Acquired binary weighted matrix for the visual task,  

(b) acquired a binary weighted matrix for the verbal task. 

The causal connectivity analysis was conducted using the 
GC approach, and the corresponding causal strengths were 
obtained from Transfer Entropy (TE). Although it is used to 
analyze neuroimage data, the GC-TE framework is unique in 
the context of task-specific connectivity analysis. 
Consequently, 6 subjects from the StarPlus fMRI data were 
subjected to the GC test. An analysis utilizing a Vector 
Autoregressive Model (VARM) can characterize GC. The 
model’s order was set to 2, meaning the ROI time course will 
be modeled using the previous two values of the time series 
data. This study used a classifier based on graph analysis and 
causal connection characteristics to identify the cognitive states 
in the StarPlus fMRI data. Voxels selected using a maximum 
margin criterion based on clustering define the ROI time series. 
Feature vectors are formed by the concatenation of graph 
analysis, such as nodal and global parameters, and TE values 
from causal connectivity analysis. Table I shows the 
classification accuracy for the SVM, GNB, and KNN 
classifiers. The classification was carried out in a Leave-One-
Out fashion. Table II shows the classification accuracy results 
for the training-test scheme, where 80% of the data was utilized 
for training and 20% for testing. The proposed classification 
framework achieved an average accuracy of 95% for the 6 
subjects in the StarPlus fMRI data. These results were 
compared with those reported in [25] using the tensor Singular 
Value Decomposition (t-SVD) framework for the classification 

of cognitive states. The t-SVD framework achieved a 
classification accuracy of 90%. 

TABLE I.  LEAVE ONE OUT CLASSIFICATION ACCURACY 
(%) FOR STARPLUS FMRI DATA ACROSS THE 

CLASSIFIERS  

S. N. Subject SVM (%) KNN (%) GNB (%) 

1 05710 78 95 84 

2 05680 78 96 78 

3 05675 82 98 95 

4 04847 64 94 80 

5 04799 74 92 70 

6 04847 76 94 75 

Average 75.3 94.8 80.3 

TABLE II.  TRAINING-TEST SCHEME CLASSIFICATION 
ACCURACY (%) FOR STARPLUS FMRI DATA ACROSS THE 

CLASSIFIERS 

S. N. Subject SVM (%) KNN (%) GNB (%) 

1 05710 60 98 75 

2 05680 75 96 78 

3 05675 82 95 94 

4 04847 60 93 78 

5 04799 75 94 72 

6 04847 64 94 76 

Average 69.3 95 78.8 
 

V. CONCLUSION 

The classification of cognitive states is achieved using 
connectivity features. The functional connectivity models 
considered in this work included the graph analysis framework 
and the Granger causal connectivity analysis framework. The 
analysis was conducted using functional MRI data having a 
pair of cognitive states. The ROI connectivity analysis provides 
insight into the ROI connectivity strengths. This work was 
identified by a graph analysis method. Data from ROIs’ voxel 
time series were fed into the system, a brain atlas was 
developed, and both global and nodal factors were considered 
while calculating connection strengths. In the case of causal 
connectivity analysis, the Granger causality transfer entropy 
paradigm was applied to assess the strength of causal 
connections between ROIs. Connectivity analysis was carried 
out using the StarPlus fMRI data. The connection of each ROI 
was evaluated and Granger causal connectivity was used to 
perform causal or influential connectivity. Nodal and global 
graph analysis parameters of the graph-based connectivity 
framework were considered, and the transfer entropy values of 
the causal connectivity model were considered as features for 
cognitive state classification. The proposed classification 
model achieved an average classification accuracy of 95%. The 
results obtained were compared with the existing tensor SVD-
based classification which achieved a 90% classification 
accuracy. This study used graph-based and causal connectivity 
analysis parameters for the classification of cognitive states. 
The proposed framework produced a new classifier with 
connectivity features as input in the context of decoding brain 
states. 
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