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ABSTRACT 

Heart sounds show chaotic and complex behavior when murmurs are present, containing nonlinear and 

non-Gaussian information. This paper studies ways to extract features from nonlinear dynamic models. 

The features frequently used to describe the underlying dynamics of the heart are derived from nonlinear 

dynamical modeling of heart sound signals. This study incorporates nonlinear dynamic features alongside 

conventional classifiers in the analysis of phonocardiograms (PCGs), achieving a significant improvement 

in the classification performance with 0.90 sensitivity and 0.92 specificity. 
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I. INTRODUCTION 

World Health Organization (WHO) has reported that 
cardiovascular diseases (CVDs) and related conditions have 
caused 17.7 million deaths worldwide in 2015, representing 
31% of all mortality worldwide [1]. Several techniques can 
diagnose heart disease patients. Many sophisticated treatments 
are available but they are very expensive and cumbersome, so 
often they are not available to the majority of people. Another 
CVD diagnostic method is heart sound auscultation. A 
stethoscope is usually used to examine patients, and if an 
abnormality is detected, the patient may be referred to a 
cardiologist. An early diagnosis of abnormal heart sounds 
allows physicians to take corrective measures to prevent 
cardiovascular disruptions and treat the underlying cause. The 
phonocardiogram (PCG) represents the sound heart 
graphically. The PCG signal enables the diagnosis of heart 
diseases and the evaluation of the cardiovascular system's 
performance [2, 3]. Each PCG contains multiple cardiac cycles, 
each with 4 heart sound states: S1, systole, S2, and diastole. 
These sounds are caused by the closing of the valves at each 
heart period, with the mitral and tricuspid valves closing before 
systole, and the aortic and pulmonic valves closing before 
diastole. Despite their importance, heart sounds are often 

difficult to interpret due to their low intensity and dominant 
frequencies near the lower limits of human hearing. Therefore, 
auscultation requires a lot of training and experience to detect 
abnormalities early [3]. The PCG diagnosis can be improved 
by the use of computers and the development of automated 
diagnostic tools or computer-assisted auscultation tools for 
physicians. Automated algorithms have been developed over 
the past decade to assess patients based solely on PCG 
measurements without synchronization between the PCG and 
the electrocardiogram (ECG). This approach has some 
difficulties due to the variations in the heart rate of the same 
patient. There is a possibility that a PCG will fluctuate on an 
individual patient. Moreover, the model is limited to different 
types of patients.  

There are many approaches used in heart sounds, e.g. the 
unorthodox approach [2, 5], the convolutional approach [4, 6-
10], the nonlinear feature approach [6], wavelet fractal [11], 
and phase space reconstruction [12-14]. Other methods used in 
heart sounds are Deep Learning (DL) [15, 16], SVM [11, 17-
19], Neural Networks (NNs) [2, 4, 7, 19-22], and Hidden-
Markov Models (HMMs) [23]. When murmurs are present, 
heart sounds exhibit chaotic and complex behavior, so they 
contain nonlinear and non-Gaussian information. Nonlinear 
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dynamic techniques allow projecting a signal's dynamic 
behavior.  

In this work, we study ways to extract features from 
nonlinear dynamic models. The features that have been 
suggested are based on the nonlinear dynamical modeling of 
the heart sound signals, which are frequently utilized to 
describe the underlying dynamics of the heart.  

II. METHODOLOGY 

In this study, we propose a nonlinear dynamic feature 
method of the heart sound signals as input for a computer-
assisted auscultation system, as shown in Figure 1.  

A. Preprocessing 

To improve the cardiac sound signal, minimizing 
background noise and eliminating spike noise is critical. A 
two-stage preprocessing system is used, with a third-order 
Butterworth bandpass filter with corner frequencies of 15 and 
800 Hz in the first stage. This allows for the selection of the 
valuable bandwidth of the heart sound. The spectral subtraction 
denoising method was used in the second stage [24]. This 
method's adaptive noise estimation is an advantage in 
rebuilding the denoised signal. To obtain accurate 
measurements of heart sounds, the noise power of frequencies 
outside the range of heart sounds is measured first. A weighted 
version of this measured noise power is then subtracted from 
the power spectrum of the unprocessed heart sounds. This 
process ensures that the resulting measurements are precise and 
reliable [24]. Spectral subtraction filtration with a weighting 
factor of 0.5 was applied in this study. 

B. Cardiac Cycle Segmentation 

Each PCG signal is divided into cardiac cycles at this stage. 
Recognizing the systolic or diastolic states is essential for 
classifying abnormal states in these areas. Different algorithms 
were used. Some work was performed using a reference signal, 
like the ECG, which the segmentation algorithms demand to be 
recorded simultaneously, making simpler to hear heartbeats. In 
other methods, the ECG is not utilized as a reference. This 
work divided the PCG signal into cardiac cycles using 
Springer's improved version of Schmidt's segmentation 
algorithm [22]. Then, the processing was carried out using each 
complete cardiac cycle. This method utilizes information about 
the estimated heart sound state lengths and employs a logistic 
regression Hidden Semi-Markov Model (HSMM) to estimate 
the most likely sequence of states without the need for ECG 
synchronization. In order to solve the issue of the varying time 
length of cardiac cycles (and thus the sizes of their digital 
signals) in later processing stages the size of all signals was set 
to be the most extended cardiac cycle observed across all PCG 
recordings (here, it was around 2s). The shorter cardiac cycles 
were zero-padded to the length. This ensures that all signals 
contain the same frequency resolution. 

C. Feature Extraction  

In this stage, features were extracted from the segmented 
cardiac cycles for optimum classification accuracy. When 
murmurs are present, heart sounds exhibit chaotic and complex 
behavior. Projecting a signal's dynamic behavior and dealing 
with its nonlinearity and non-Gaussianity using nonlinear 

dynamic techniques is feasible. So, in this work, we study the 
extraction of nonlinear dynamical modeling features. The 
proposed features are based on nonlinear dynamic modeling of 
cardiac sound signals, which are commonly used to describe 
the underlying dynamics of the heart. A multidimensional 
phase space or attractor representing the system dynamics and 
its states could be developed from the measured signals or time 
series [21]. Thus the system's actual attractor, at which the 
measurements were obtained, has the same dynamical 
characteristics as the Reconstructed Phase Space (RPS) [24]. 
The calculated features for the RPS of the heart sound signals 
are moment-invariant, distance series-based, and statistical-
based features. In the nonlinear dynamical modeling analysis 
of the heart sound signal, the first step is reconstructing the 
phase space from the heart sound measurements. The time-
delay embedding method proposed in [21, 24] was used for the 
phase space reconstruction. Time-delay embedding is a 
technique used to reconstruct m-dimensional vectors from a 
time series of observations. This is achieved by selecting � 
values of the time series at different � lags and repeating the 
process until the vectors of the phase space are obtained. 
Therefore, the time delay embedding has two parameters: the 
embedding dimension � and the time lag �. 

Let {xk∶ k = 1,2,… , N} be the observed time series, the 
reconstructed �-dimensional phase space �(�)  can be 
constructed as the following matrix (1): 

��(�) =  
 ���� …��
� = 
 �� ���� … ���(���)��� ���� … ���(���)�… … … …�� ����� … ���(���)�

� (1) 

where � = � − (� − 1)�, � is the length of the original time 
series, � is the embedding dimension, and � is the delay time. 
We use an embedding dimension m of 18 and a time delay of 
10. 

After the reconstruction of the phase space, different 
features were extracted. We calculated the following statistical 
features for each reconstructed phase space vector: mean value, 
median value, standard deviation, mean absolute deviation, 
25th and 75th percentiles, signal inter quartile range feature, 
skewness, and kurtosis. In addition, the same 9 statistical 
features are extracted from a new domain called the Distance 
Series (DS) domain. It is defined by [25] as the reduction of the 
multidimensional phase space into a one-dimensional space. 
The DS is a method used to characterize complex variations in 
RPS. It is calculated by taking the Euclidian distance between 
every point in the phase space and the origin, resulting in a 
one-dimensional representation of the trajectory. The DS Di 
can be calculated by determining the Euclidian distance 
between each point in the phase space Yi and the origin: 

�� = �∑ ����  .              = 1.2. … … … . "  ��#�  (2) 

for i = 1, 2, 3...k. If successive values of Di show smooth 
behavior, a slow trajectory and small region of support in the 
phase space are indicated by minimal changes in the values. 
Conversely, significant changes in values suggest a moving 
trajectory with large steps and significant support in the phase 
space. This mapping allows capturing more information about 
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the trajectory than the traditional and more complex measures. 
Moreover, moment invariant features are calculated for the 
RPS of the heart sound signals. Moments are quantitative 

measures used in statistics to describe the distribution of a 
random variable quantitatively.  

 

 

Fig. 1.  Nonlinear dynamic feature extraction.

In addition, skewness, which describes the asymmetry of 
the distribution, is represented by the third moment, and 
kurtosis, which describes the peaked ness of the probability 
distribution of the random variable, is described by the fourth 
moment. The entire set of moments from order zero to infinity 
describes the distribution uniquely. The term invariant denotes 
that the moments should remain unaffected to translation, 
rotation, and scaling transforms to describe the shape of the 
attractor optimally. The steps of calculating the invariant 
moments were described in [25], where the second-order 
moments M were calculated by: $%&…%' = ∑ … ∑ (��%& … (��%'  )�#�)�#� *(()+(�  …  +(� (3) 

where ρ(() is the probability density function, (  is a column in 
the RPS, and , is the order of the moments given by:  , = ∑ ,�   ��#�      (4) 

We obtained the central moments by applying (5) to the 
second-order moments. From these central moments, we 
constructed the O matrix using (6). "The major minors for the 
O matrix were calculated to represent the moment invariant 
features of the RPS, given that the number of the moment 
invariant features is equal to the number of the embedding 
dimension � of the RPS". -%&….%' = ∑ … ∑ ((�� − (.�////)%&)�#� … ((�� −)�#�(.�/////)%'*(()+(� … . . +(�     (5) 

where (�0 = )&….1)1….1   … . (�//// = )1….&)1….1   
2 = 3-�…4 … -�…�… … …… … …-�…� … -4…�

3    (6) 

The total number of extracted features is 207.  

D. Classification  

There are various classifiers available and each one comes 
with its own set of advantages and disadvantages. One such 
classifier is k-Nearest Neighbors (KNN), which is a memory-
based learning algorithm [19]. However, it is important to note 
that KNN requires the availability of training and testing data 
at all times. Additionally, for noisy datasets, decision tree 
classifiers are recommended [26]. However, boosted ensemble 
classifiers perform best with imbalanced data [19, 26, 30]. This 
study used a cross-validation approach to evaluate the 
performance of various conventional classifiers on a set of 
nonlinear dynamics features and then determine the most 
effective classification model, The classification methods used 
in this study include SVMs with quadratic, cubic, and Gaussian 
kernels, KNN with linear, cosine, cubic, and weighted distance 
metrics, and ensemble classification methods such as bagged 
Trees, subspace KNN, RUSBoosted tree, and boosted tree [27-
28]. The classifiers were tested and trained using the local 
holdout and cross-validation methods. The feature vector data 
for the cross-validation test were divided into five folds. The 
model was trained for each fold using all the data outside the 
fold, and each fold was held out for testing in turn. The 
performance of each model was then evaluated using the 
information included in the fold, and the overall results were 
computed as the average over all folds. The local holdout 
technique studies utilized 80% of the feature vector data as the 
training set and the remaining 20% as the testing set, both of 
which were randomly chosen.  

E. Dataset Description 

Selecting the right dataset is crucial for successful model 
building and generalization in pattern recognition. A large, 
diverse and easy-to-understand dataset is necessary to 
effectively analyze and compare different algorithms. The 
PhysioNet/Computing in Cardiology Challenge 2016 dataset 
was used to test the performance of the proposed system [16]. 
A total of 3153 recordings are included in the dataset. Only the 
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sure-labeled data in this collection were used to a total of 2868 
recordings obtained from 6 datasets. There are 2249 normal 
patient records and 619 abnormal patient records, ranging from 
5s to more than 120s. Each track has been down-sampled to 
2,000Hz and is available in wav format. Recordings with 
varying noise levels were included from several actual clinical 
and nonclinical settings. Data from normal persons and 
patients, from either children or adults were collected. One to 6 
recordings of the same subject may exist in the dataset. Data 
were gathered from various body parts and locations (including 
aortic, pulmonic, tricuspid, and mitral areas). The fact that 
there are far more normal than abnormal recordings clearly 
shows that the data are unbalanced. Eighty percent of the 
dataset was used for training, while 20% was used for testing. 
The heterogeneity of the recordings introduces differences that 
could make classifier training more challenging.  

F. Performance Evaluation 

The confusion matrix is produced with the abnormal cases 
as the positive class in order to evaluate the success of the 
classification process, and it is then used to determine the 
values for sensitivity, specificity, and accuracy: 

(567 8 9 8:((5) =  ;<;< � =�    (7) 

(,5> ? > 8:((,) = @A;� � =<   (8) 

B>>CDE>: = ;< � ;�;<�;��=<�=�     (9) 

where TP, TN, FP, and FN are the confusion matrix entries 
representing True Positive, True Negative, False Positive and 
False Negative classifications, respectively. 

Error rate and accuracy are insufficient for measuring 
classification performance for imbalanced data since they do 
not consider the costs of misclassification. They are hence 
sensitive to class skews and frequently show a considerable 
bias toward the dominant class [22, 29]. As a result, the official 
evaluation metric for the 2016 PhysioNet/Computing in 
Cardiology Challenge was an alternative evaluation score 
based on the average between sensitivity and specificity: 

(>FD5 = GH � G%�     (10) 

III. RESULTS AND DISCUSSION 

A. Experimental Verification 

Each PCG record was preprocessed using a Butterworth 
band-pass filter of order 3 with corner frequencies of 15 and 
800Hz. Each record was further enhanced using spectral 
subtraction denoising with 0.5 weight. There were 79492 
cardiac cycles after segmenting each record into cardiac cycles. 
The most extended cardiac cycle observed in all PCG 
recordings is about 2s long. Each time series was therefore 
zero-padded to a cardiac cycle's length of 2s if it was less. For 
nonlinear dynamic feature extraction, the first step is the 
reconstruction of the phase space from the heart sound 
measurements with embedding dimension m=18 and a time 
delay of 10. A total of 207 features were considered for each 
cardiac cycle. All feature vector values were normalized to the 
interval [0, 1] in order to optimize the classification process. 
The performances of several conventional classifiers, including 
SVM and KNN, and bagged Trees, subspace KNN, and 
RUSBoosted tree ensemble classifiers, were compared. 

B. Results 

The classification results with the 5-fold cross-validation 
train-test approach are listed in Table I. When using 
unbalanced data, the cross-validation train test approach is 
effective in reducing over-fitting and improving model 
evaluation. It should be noted that in our experiments only the 
ensemble classifiers were able to achieve relatively balanced 
sensitivity and specificity values. The RUSBoosted Tree 
ensemble classifier had the highest score value of sensitivity 
and specificity of 0.90 and 0.91. On the other hand, the SVM 
classifier with a Gaussian kernel had the lowest sensitivity of 
0.64. The Bagged tree ensemble classifier and the KNN 
classifier with weighted distance metric both achieved the most 
remarkable specificity of 0.95, while the majority of commonly 
used classifiers achieved lower specificity of 0.91. The 
classification results utilizing the local holdout train-test 
approach are listed in Table II. Only the ensemble classifiers 
succeeded in achieving relatively balanced sensitivity and 
specificity values in our experiments. The RUSBoosted Tree 
ensemble classifier scored 0.91, which was the highest, with 
balanced sensitivity and specificity of 0.90 and 0.92. 
Conversely, the SVM classifier with a Gaussian kernel showed 
the lowest sensitivity, at 0.65, while the SVM classifier with a 
Gaussian kernel achieved the lowest specificity of 0.79, the 
Bagged tree ensemble classifier and the KNN classifier with 
weighted distance metric both achieved the highest specificity 
of 0.95. 

TABLE I. NONLINEAR DYNAMIC FEATURE CLASSIFICATION RESULTS USING THE 5-FOLD CROSS-VALIDATION TRAIN-TEST 
METHOD" 

Classifier Classifier Accuracy Sensitivity Specificity AUC Score 

SVM 

Quadratic 0.8470 0.6700 0.9100 0.8900 0.7900 

Cubic 0.8680 0.7300 0.9100 0.9100 0.8200 

Gaussian 0.8620 0.6400 0.9400 0.9000 0.7900 

Ensemble 

Bagged Trees 0.9190 0.8400 0.9500 0.9700 0.8950 

RUSBoosted Tree 0.9090 0.9000 0.9100 0.9700 0.9050 

Boosted Tree 0.9020 0.8000 0.9300 0.9600 0.8650 

KNN 

Linear 0.8700 0.7000 0.9200 0.9100 0.8100 

Cosine 0.8530 0.6700 0.9100 0.9100 0.7900 

Cubic 0.8630 0.6500 0.9300 0.9100 0.7900 

Weighted 0.8780 0.6600 0.9500 0.9300 0.8050 
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TABLE II. NONLINEAR DYNAMIC FEATURE CLASSIFICATION RESULTS 

Classifier Classifier Accuracy Sensitivity Specificity AUC Score 

SVM 

Quadratic 0.8570 0.6700 0.9100 0. 9000 0.7900 

Cubic 0.7990 0.8400 0.7900 0.8800 0.8150 

Gaussian 0.8720 0.6500 0.9400 0.9000 0.7950 

Ensemble 

Bagged Trees 0.9230 0.8500 0.9500 0.9700 0.9000 

RUSBoosted Tree 0.9110 0.9000 0.9200 0.9700 0.9100 

Boosted Tree 0.9060 0.8000 0.9400 0.9600 0.8700 

KNN 

Linear 0.8830 0.7300 0.9300 0.8900 0.8300 

Cosine 0.8610 0.7000 0.9100 0.9100 0.8050 

Cubic 0.8640 0.6500 0.9300 0.9200 0.7900 

Weighted 0.8790 0.6600 0.9500 0.9400 0.8050 

Training = 80%  – Testing= 20% 

 

IV. DISCUSSION   

This research demonstrates that nonlinear dynamic features 
have an application to phonocardiogram analysis. Heart sounds 
exhibit chaotic and complex behavior when murmurs are 
present, hence they contain nonlinear and non-Gaussian 
information. Nonlinear dynamic approaches can deal with a 
signal's nonlinearity and non-Gaussianity and project its 
dynamic behavior. The features that have been proposed are 
based on the nonlinear dynamical modeling of the heart sound 
signals, which are frequently used to characterize the 
underlying dynamics of the heart. Applying nonlinear dynamic 
approaches is also helpful for determining whether murmurs 
are present. 

In this paper, the RUSBoosted Tree ensemble classifier 
scored the highest with a sensitivity value of 0.90 and 
specificity value of 0.92, resulting in an overall score of 0.91. 
As a result, it offered the most accurate prediction of the 
predictive score using both approaches, as well as relatively 
balanced values for sensitivity and specificity. The classifier 
performance evaluations in the two train-test approaches were 
largely comparable. The ability of the proposed system to 
handle various P phonocardiogram CG recordings and signal 
quality settings was demonstrated by the significant 
improvements in the classification performance obtained 
utilizing nonlinear dynamic features along with the 
conventional classifiers.  

Observing the effect of the training data's class distribution 
is essential, as this is a significant factor in determining the 
accuracy of subsequent classification. Although there seem to 
be many samples in the challenge database, these samples are, 
unfortunately, highly unbalanced, with vastly different 
proportions of normal and abnormal recordings. Due to this, 
traditional classifiers frequently develop biases in favor of the 
majority class, increasing the misclassification rate for the 
minority class. As a result, two validation approaches were 
used to assess the performance of various classifiers on the 
dataset. The cross-validation train-test method is the first. It 
reduces the influence of over-fitting caused on by noisy 
records. The second approach, known as the local holdout 
method, simulates real-world analysis by using just 80% of the 
data to develop the model and the remaining 20% to assess it. 
Noting that the dataset is significantly imbalanced, it is 
observed in the proposed system that only the ensemble 
classifiers performed very well. This confirms that ensemble 

classifiers are always recommended for imbalanced data in 
general [19, 26]. 

V. CONCLUSION 

In this paper, a new classification approach was proposed 
for heart sounds, in which the new proposed features were 
based on nonlinear dynamics. The proposed methodology and 
its implementation were described in detail. The results of the 
experimental verification show a potential to overcome 
challenges encountered during heart sound classification under 
different settings. Consequently, the proposed method provided 
well balanced values for sensitivity and specificity as well as 
the best accurate prediction of the predictive score using both 
methodologies.  
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