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ABSTRACT 

Adaptive filters have been thoroughly investigated in digital communication. They are especially exploited 

as equalizers, to compensate for channel distortions, although equalizers based on linear filters perform 

poorly in nonlinear distortion. In this paper, a nonlinear equalizer based on a fuzzy filter is proposed and a 

new algorithm for the adaptation parameters is presented. The followed approach is based on a 

regularization of the Recursive Least Square (RLS) algorithm and an incorporation of fuzzy rules in the 

adaptation process. The proposed approach, named Improved Fuzzy Recursive Least Square (IFRLS), 

enhances significantly the fuzzy equalizer performance through the acquisition of more convergence 

properties and lower steady-state Mean Square Error (MSE). The efficiency of the IFRLS algorithm is 

confirmed through extensive simulations in a nonlinear environment, besides the conventional RLS, in 

terms of convergence abilities, through MSE, and the equalized signal behavior. The IFRLS algorithm 

recovers the transmitted signal efficiently and leads to lower steady-state MSE. An improvement in 

convergence abilities is noticed, besides the RLS. 

Keywords-channel equalization; digital communication; nonlinear channels; adaptive fuzzy filtering 

I. INTRODUCTION  

Channel equalization has attracted a great attention owing 
its success in achieving high-speed data transmissions. 
Equalization technique can cancel linear and nonlinear 
distortions and therefore recover the transmitted data [1, 2]. 
Linear distortion can be caused by inter-symbol, co-channel 
and adjacent channel interferences, in the presence of Additive 
White Gaussian Noise (AWGN). Burst noise, amplifiers, 
converters, and the modulation process can produce nonlinear 
distortions. Different signal processing techniques have been 
implemented to perform adaptive channel equalization [3-11]. 
Conventional adaptive filtering techniques [2, 4] perform well 
on linear channels, nevertheless, they perform poorly on severe 
and nonlinear channels [3, 6-11]. A diversity of nature and 
human intelligence-inspired techniques for channel 
equalization have been proposed [3, 5-14], including artificial 
neural networks [5-11], particle swarm optimization [12], 

artificial bee colony [13], firefly [14], and fuzzy logic [15-19]. 
Among them, fuzzy logic is considered as a natural manner to 
represent and process uncertain data [20]. The revealed benefits 
of fuzzy logic are the ability to reduce the system complexity 
and procuring more robustness [15, 17, 19]. Fuzzy logic 
incorporates a simple "If-Then" rule-based approach to solve a 
problem rather than modeling the system mathematically [15, 
20-22].  

Several researches have reported that incorporating fuzzy 
logic in adaptive filter structures improves their performance 
[15, 16]. Adaptive fuzzy filters have been widely used in 
nonlinear channel equalization [15, 17, 19, 23-26]. If-then 
fuzzy rules using input-output data pairs of the channel allow 
implementing adaptive equalizers to eliminate severe channel 
distortions [16, 17]. Adaptive algorithms are applied to change 
parameters of the adaptive nonlinear fuzzy equalizers through 
membership functions such as least square and RLS algorithms 
[15, 16, 19, 23-26]. 
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In this context, a new approach to adapt the nonlinear fuzzy 
equalizer is proposed. The new adaptation algorithm uses fuzzy 
logic reasoning through nonlinear membership functions in 
addition to the improvement procured in the RLS. The 
proposed approach, named Improved Fuzzy Recursive Least 
Square (IFRLS) algorithm, consists of a particular 
regularization of the RLS algorithm that improves significantly 
the adaptive fuzzy equalizer and guarantees a great 
improvement in performance by acquiring more convergence 
abilities and lower steady-state MSE. 

II. FUZZY LOGIC FUNDAMENTALS 

Fuzzy systems perform nonlinear relationships between the 
input and the output. They do not make assumptions 
concerning the process structure, or invoke any kind of 
probabilistic distribution model [15-18]. The basic structure of 
a general fuzzy logic system is illustrated in Figure 1. 

 

 
Fig. 1.  Structure of a fuzzy logic system. 

The principal form of a fuzzy logic system includes the 
fuzzy rule base, fuzzification process, inference engine, and the 
defuzzification process [15, 23, 26]. 

A. Fuzzy Rule Base 

The fuzzy rule base is the main module of a fuzzy system 
and consists of expert knowledge formed of a set of linguistic 
rules such as "IF a set of condition are satisfied, THEN, a set of 
consequence are inferred". The fuzzy rules are combined in the 
inference engine to produce a fuzzy output. 

B. Inference Engine 

The inference engine provides the relationship between the 
fuzzy input in terms of membership functions and the fuzzy 
output.  

C. Fuzzification Phase  

Through the fuzzification step, the crisp input samples are 
converted into the fuzzy input described by the membership 
function, thus offering the degree to which the input scalar 
belongs to the fuzzy set, and are then mapped into the fuzzy 
output by means of the inference fuzzy rules. 

D. Defuzzification Phase 

The defuzzification stage is intended for mapping the fuzzy 
sets yielded by the inference engine and evaluates the fuzzy 
output to the crisp output in a weighted average way. 

III. ADAPTIVE FUZZY EQUALIZER 

The schematic of the adaptive fuzzy equalizer is depicted in 
Figure 2.   

 

 

Fig. 2.  The fuzzy logic-based equalizer. 

A. Design of the Adaptive Fuzzy Equalizer  

The equalization problematic is to recover the transmitted 
unobserved data sequence ��  with the highest reliability, 
through exploiting the information given by the noisy 
observation from a set of received samples ��  [1, 2]. The 
samples ��   are connected to the fuzzy equalizer inputs, then 
the fuzzy sets are defined over the input space, and the 
membership function is incorporated into the equalizer. An 
adaptive algorithm performs the adaptation process on the free 
parameters of the fuzzy equalizer [15, 16, 24, 26]. The design 
of the adaptive fuzzy equalizer starts through expressing the 

membership functions denoted as: �
�

�
��	. �: RccU ii   ],[ . 

The intervals ],[ 
ii cc  are labeled as   �

�
, where = 1, �  , 

�� = 1, �, and U and R are the input and the output spaces, 

respectively. For each  �� ],[ 
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	�� ≠ 0 . The most used membership function is of 

Gaussian type [15, 24]: 
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iY  and ji
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respectively. Afterward the fuzzy �� … ���� … rules ( ) are 

defined as following: 
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, ����   $  is       '��,…�             (2) 

where '��,…�  are the fuzzy sets labels in the output space, they 
correspond to the linguistic terms of the rules (1), d is the 
desired output of the adaptive fuzzy equalizer d=#�(∆, and k is 
the time index. 
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B. The Proposed Fuzzy Recursive Least Square Algorithm   

The equalizer output Xk is performed by (3). Let 

( ) [ ( ), ( 1),...., ( )]Y k y k y k y k n    and ( 1.... )j jn  be the points 

at which the '��,…�  of the THEN parts have maximum 

membership values. ( 1.... )j jn are the free parameters of the 

adaptive fuzzy equalizer that are collected as in (4). Θ is of 

1Π
n
i im dimension. At this phase, the fuzzy basis function is 

expressed as in (5). The vector )(yQ  is of the dimension of the 

vector Θ, and can be explicitly written as in (6). 
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Equation (3) can be rewritten as: 

   .)( YQYX T
k            (7) 

The adaptive process accomplishes the minimization of the 
cost function between the adaptive fuzzy equalizer output 
*�	�� and the desired output $� = #�(∆ as:  
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where + is the forgetting parameter, γ the Lagrange multiplier 
ensuring regularization, and f: RN → R a general convex 
function.  

We developed a new approach to adapt the Θ parameters. 
The proposed approach consists of an improvement of the RLS 
algorithm [27, 28] conjointly to the incorporation of the fuzzy 
logic membership functions. The proposed adaptive IFRLS 
algorithm is partially inspired from [27, 28] but our approach 
incorporates fuzzy logic reasoning through membership 
functions thus procuring more suppleness and effectiveness.  

The parameters adaptation process is performed explicitly 
as follows: 

( ) ( ( ))k Q Y k      (9) 
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( ) ( ) Θ( 1) ( )k d k k k       (13) 

where ( 1) .P    , δ is a small positive number, Q  is defined 

by (5),  .sgn  is the sign function, and γ
 
is the regularizing 

parameter set as in [27]. Note that the third term in (12) 
materializes the regularization term performing the 
improvement of the RLS algorithm. The updating principle of 
the above equations is similar to those obtained through the 
RLS algorithm. Nevertheless, the regularization parameter in 
addition to the fuzzy logic nonlinear membership functions 
procures more suppleness and nonlinear processing to the 
proposal. 

IV. SIMULATION RESULTS AND DISCUSSION 

We used MATLAB to carry out all simulations. The digital 
message applied to the channel is made of uniformly 
distributed bipolar random numbers {-1, 1}. The channel 
output is corrupted by zero mean AWGN with a signal to noise 
ratio (SNR) of 20 dB. The forgetting parameter is set to 
+ = 0.995  for all the algorithms. The regularization parameter 
for the IFRLS is set to γ = 1.5 as in [27]. 

A. Nonlinear Channel Model 

A nonlinear channel model composed of a discrete-time 
equivalent modelled as a Finite Impulse Response (FIR) filter, 
followed by polonium nonlinearity as depicted in Figure 3 was 
considered. 
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Fig. 3.  Nonlinear channel model. 

Channel nonlinearities can occur in data transmission from 
the saturation phenomena of the amplifiers when they operate 
in their high-gain limits [1, 17, 29]. Channel nonlinearity 
spreads the signal spectrum and leads to nonlinear amplitude 
and phase distortions. We selected two challenging nonlinear 
channel equalization problems, designated by CN1 and CN2. 
The first nonlinear channel model output is expressed as [17, 
26]:  

3

1 3( ) ( ( )) ( ( )) ( )Y k a V k a V k n k     (14) 

1 2 3( ) ( ) ( 1) ( 2)V k h S k h S k h S k       (15) 

where S(k), Y(k) are the channel input and output, respectively, 
[a1 a2 a3]=[1 0 -0.9] are coefficients that control the 
nonlinearity degree, n(k) is the Gaussian noise, and [h1 h2 h3]= 
[1 0.5 0] are the FIR channel coefficients [17]. 

The second nonlinear channel model is more challenging, 
as in [17]. The nonlinear part is described by (14), whereas the 
FIR channel is chosen to be of non-minimum phase with 
coefficients set to [h1 h2 h3] = [0.3482 0.8704 0.3482]. Such 
FIR channels are widely used in the literature to assess the 
equalization task [10, 12]. 

B. Equalizer Output Signals 

Figures 4 and 5 show the equalized signals features for the 
linear equalizer and the nonlinear fuzzy equalizer trained 
respectively by the RLS and the IFRLS. The transmitted signal 
(Trans-Sig) is represented by a discontinued blue line, the 
received signal (Receiv-Sig) is symbolized by a solid black 
line, and the equalized signal (Eq-Sig) is represented by a red 
solid line for both RLS and IFRLS. For more convenience and 
visibility, the equalized signal is scaled down.  

As we can perceive, the received signal is distorted by ISI 
and nonlinearity, while the additive noise some parts are 
amplified and some others are attenuated. The magnitude of the 
received signal is occasionally greater than the transmitted 
signal and sometimes-near zero, thus can cause error detection. 
Channel attenuation increases when considering the nonlinear 
channel CN2. Despite channel alterations, the IFRLS exhibits 
the best performance. The IFRLS-equalized signal is smoothed 
and typically close to the transmitted signal, therefore, the 
channel impairments are successfully cancelled. The 
conventional RLS algorithm performs poorly. Some residual 
distortion persists witch is noticeable on its behavior for both 
nonlinear channels CN1 and CN2. 

 

 

Fig. 4.  Equalized signals of nonlinear channel CN1: (a) Fuzzy equalizer-

IFRLS, (b) ;inear equalizer-RLS. 

 

 
Fig. 5.  Equalized signals nonlinear channel CN2: (a) Fuzzy equalizer-

IFRLS, (b) linear equalizer-RLS. 

C. Equalizers' Mean Square Error Convergence 

The Mean Square Error (MSE) convergence is shown in 
Figures 6 and 7, respectively for the nonlinear channels CN1 
and CN2. 
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Fig. 6.  Equalizers convergence, nonlinear channel CN1. 

 

Fig. 7.  Equalizers convergence, nonlinear channel CN2. 

To further highlight the improvement of our approach, the 
convergence MSE of the IFRLS is compared with the ones of 
the Fuzzy Recursive Least Square (FRLS) and the conventional 
RLS. The IFRLS shows a significant improvement in 
convergence and steady-state MSE, when compared to the 
FRLS and the RLS algorithms. When considering convergence, 
we can perceive that the IFRLS reaches the MSE level of  
-20 dB at about 35 iterations for CN1 and 108 iterations for 
CN2. The FRLS attains the same MSE level at about 255 
iterations for CN1 and 525 iterations for CN2. Moreover, the 
RLS attains the 20 dB MSE level at about 198 iterations for 
CN1 and presents a MSE behavior above 20 dB for CN2. Thus, 
the IFRLS procures a gain in convergence of 220 and 163 
iterations in comparison with FRLS and RLS for CN1, and 
about 417 over the FRLS for CN2. 

When considering the steady-state MSE, the IFRLS reaches 
a steady-state of about 37 dB and 34 dB for CN1 and CN2, 
respectively, whereas the FRLS attains 31 dB and 27 dB for 
CN1 and CN2. The steady-state for the RLS is -22 dB and  
-18 dB for CN1 and CN2, respectively. Therefore, the IFRLS 
exhibits an improvement in steady-state MSE of about 6 dB 
and 15 dB against FRLS and RLS for the nonlinear channel 
CN1. When considering the nonlinear channel CN2, a gain of 7 
dB is realized over the FRLS and 16 dB over the RLS. These 
improvements are summarized in Tables I and II. 

For more reliability, we situate our approach relatively to 
the results of [27]. The improvement obtained in the 
convergence through the proposed approach over the RLS is 
about 163 iterations in comparison with the 155 iterations 
obtained in [27], whereas the gain in steady-state reached by 
our approach over RLS is about 15 dB in comparison with the 
10 dB obtained in [27]. That confirms the effectiveness of our 
approach in improving the convergence and steady-state MSE. 

TABLE I.  MSE PERFORMANCE 

Algorithms 
Convergence (iterations) Steady-state (dB) 

CN1 CN2 CN1 CN2 

IFRLS 35 108 -37 -34 

FRLS 255 525 -31 -27 

RLS 198 - -22 -18 

TABLE II.  MSE IMPROVEMENT OF THE IFRLS AGAINST 
FRLS AND RLS  

Channels CN1 CN2 

Gain in convergence:  IFRLS over FRLS (iterations) 220 417 

Gain in convergence:  IFRLS over RLS (iterations) 163 - 

Gain in steady-state: IFRLS over FRLS (dB) 6 7 

Gain in steady-state: IFRLS over RLS (dB) 15 16 

 

V. CONCLUSION 

In this paper, a new approach for the channel equalization 
problem was presented, that is an improvement of the recursive 
least square algorithm. The proposed improvement involves 
conjointly a regularization for the RLS and an incorporation of 
a fuzzy logic reasoning through membership functions. The 
performance of the Improved Fuzzy RLS was compared with 
the ones of the Fuzzy RLS and the conventional RLS. 
Extensive simulations revealed that the IFRLS surpasses both 
FRLS and RLS. The IFRLS improves considerably the 
convergence abilities of the adaptive fuzzy equalizer through 
MSE by procuring lower steady-states never reached through 
the FRLS and the conventional RLS. The proposed approach 
was also compared with [27]. The proposed IFRLS realizes an 
improvement in convergence and steady-state over RLS that 
surpasses the improvement realized in [27], confirming its 
effectiveness in improving convergence and steady-state MSE. 
Due to the performance improvement obtained with the 
proposed approach, the assessment of the IFRLS in a variable 
environment, such as a mobile channel, is a proposal for future 
work. 
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