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ABSTRACT 

This paper uses first-order shear deformation theory and the finite element method to analyze the 

vibrations of rectangular plates with one or more cracks. The study investigated the influence of cracks 

(length, angle of inclination), the number of cracks, and the ratio of plate thickness to the natural vibration 

frequency of the plate, using phase field simulation. Plate thickness varies nonlinearly with the parabolic 

function. The results of the proposed method were compared with reputable studies to verify its reliability. 

In addition, some pictures of the characteristic vibration patterns of the plate with varying thickness are 

presented when cracks appear. 

Keywords-cracked plate; free vibration; phase field; variable thickness   

I. INTRODUCTION  

Plates with variable thicknesses are often used when 
aesthetic elements are needed to ensure the bearing capacity of 
a structure. In [1], the vibration frequency of orthogonal 
nanoplates with variable thickness was explored using 
Eringen's theory combined with the nonlocal classical plate 
theory. In [2], the vibration frequency and bending load of a 
rectangular multilevel plate were calculated based on the 
classical plate theory (Kirchhoff). In [3], the free oscillation of 
a variable thickness plate was analyzed using first-order shear 
deformation and the higher-order shear deformation plate 
theories. In [4], the Frobenius method was used to determine 
the buckling load for an elastic rectangular plate with variations 
in thickness, elastic modulus, and density. In [5], the two-
variable refined plate theory and the Hamilton principle were 
used to calculate the free vibration frequencies of orthogonal 
plates. In [6], a general integral transformation technique was 
used to study the flexural resistance of rectangular plates with 
linearly variable thickness lying on a Pasternak elastic 
foundation. Structural plates are used quite frequently in fields 
such as mechanical engineering, construction, etc. During itsw 
lifetime, the plate may develop cracks due to local damage. To 
determine the degree of damage, it is necessary to re-evaluate 
the working capacity of the structure at that time. Scientists 
have proposed several theories and research methods on this 
issue, such as isogeometric analysis (IGA), finite element 
method (FEM), extended finite element method (XFEM), etc. 
In [7-8], FEM and stochastic high-order FEM were applied to 
analyze a continuous beam. In [9], an analytical solution was 

used to dynamically analyze a functionally graded plate. More 
recently, in [10-16], the Phase-Field theory and FEM were used 
to analyze the stability and free vibration of a cracked 
rectangular plate. 

To the best of our knowledge, no study has investigated the 
free oscillation of cracked plates with varying parabolic 
thickness. This study focused on calculating the vibration 
frequency parameter of a plate depending on the ratio of the 
plate edges, the length and angle of crack inclination, and the 
number of cracks. 

II. ESTABLISHMENT OF EQUATIONS 

Using Reissner-Mindlin first-order shear deformation plate 
theory, the displacement in the mid-plate section is given by: ��(�, �, �, �) = ��(�, �, �) + ��(�, �, �)  ��(�, �, �, �) = ��(�, �, �) + ��(�, �, �)   (1) ��(�, �, �, �) = ��(�, �, �)     

where �� , ��, ��  are displacements at any point along the x, y, and 
z axes, respectively, θx and θy are rotation angles in the xz and 
yz faces, and u0, v0, and w0 are the displacements at the center 
of the plate. The deformation components of are given by: 

�εγ� = �ε�0 � + ��ε�γ� �    (2) 

where: 
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�� = � ��,���,���,� + ��,��   

�� = � �,��,��,� + �,��     (3) 

 � = !� +��,�� +��,�"      

The relationship between stress and strain is: 

�#$� = %&' 00 &�( �)*�    (4) 

and the strain energy in the plate is expressed by: 

+(,) = -./ 0��12�� + ��13�� + ��13��+��1&��� +  �1&� � 45 67 (5) 

where: 

&' = 8-9:; <1 > 0> 1 00 0 (1 − >)/2B   (6) 

&� = kEh.(1+:) C1 00 1D    (7) 

and: (2, 3, &�) = / (1, �, �.)&'6�E/.9E/.   (8) 

with k being the shear correction factor. 

In phase field theory, the variable s represents the 
deterioration of the material when the plate cracks [7-13]. It 
takes the value 0 when fully cracked and 1 when the material is 
in its normal state. Values of s from 0 to 1 represent the 
fracture zone of the material, where the object changes 
continuously from normal (s = 1) to complete cracking (s = 0). 
The deformation energy when the plate has cracks is given by: 

+(,, F) = ⎩⎨
⎧-./ F. 0��12�� + ��13�� + ��13�� ++��1&�� +  �1&� � 45 67
+/ JK5 ℎ C(-9�);LMN + OP|RF|.D 67 ⎭⎬

⎫ =
�/ F.V(,)67 + / JK5 ℎ C(-9�);LMN + OP|RF|.D 675 � (9) 

where s simulates the state of the material, lc is the crack width, 
Gc is the energy release rate, and δ is the displacement vector. 
The kinetic energy of the plate is determined by: WX = -./ F.�Y 1Z5[ �Y 67 = -. ,Y1\X,Y  (10) 

The Lagrange function is calculated according to: ](,, F) = W(,, F) − +(,, F)   (11) 

](,, F) = / �F.Ψ(,) − JPℎ C(-9�);LMN + OP|∇F|.D�a 6Ω (12) 

After taking the variation of L(δ, s) in terms of δ and s, a 
system of equations is used to determine the frequency of free 
vibrations of the cracked plate: 

c(∑eX +f.∑\X ), = 0
/ �2Fg(,),F − 2JKℎ <− (-9�)h�LMN+OPRFR(,F)B� 67 = 05  

(13)
 

After solving the system of (13) the free vibration 
frequency of the cracked plate will be found. In this part, the 
finite element used is a triangular element with a function of 
the form: 

ij = k1��l �mjnjoj �  

with: 

mj = p�q�r9�r�qs(.5[)   

nj = p�q9�rs(.5[)   

oj = p�t − �us/(27X)  

The element stiffness matrix is:  vX = / ℎ3w1&3w67 =5[ ℎ7X3w1&3w  

with the deformation matrix-node displacement of the element: 

3w = �m-0m.0mx00n-0n.0nxn-m-n.m.nxmx�  

The element Mass Matrix is: \X = / ℎi1Zi675[   

i = !i-0i.0ix00i-0i.0ix"  

Figure 1 shows the triangular element with area Ωe and 
vertices 1(x1 , y1), 2(x2 , y2), and 3(x3 , y3). 

 

 

Fig. 1.  The triangular element of plate. 

III. NUMERICAL RESULTS 

A. Comparison of the Free Oscillations of the Parabolic 
Thickness Plate 

The free oscillation of the parabolic thickness plate was 
calculated and compared with [3]. The plate is made of steel 
(SUS304), whose elastic modulus, mass density, and Poisson 
coefficient are E = 201.04 GPa, ρ = 8166 kg/m

3
, and υ = 0.3, 

respectively. Figure 2 shows the thickness of the plate, which 
varies along the x direction with a quadratic rule: ℎ(�) = ℎ�(yz. − 2yz + 1), y = 1 − ℎ{/ℎ�  
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Fig. 2.  Rectangular plate with parabolic variable thickness. 

The square plate has side dimensions a = b = 0.5 m. The 
natural vibration frequency of the plate is calculated by [14]: f� = fn.|Zℎ�/&�/}.    (14) 

where: &� = ~ℎ�x/(12(1 − >.))  
Table I shows the frequency of the plate with different 

thickness ratios and boundary conditions of the four-sided 
mount. It can be seen that the difference between this study and 
[3] is very small, demonstrating the reliability of the method. 

TABLE I.  FREE OSCILLATION FREQUENCY OF PLATE 
WITH VARYING PARABOLIC THICKNESS  

Μ h0/a [3] This study Diff. (%) 

0.25 

0.1 2.8316 2.83135 -0.01% 

0.2 2.4311 2.42521 -0.24% 

0.3 2.0533 2.03532 -0.88% 

0.4 1.7503 1.71872 -1.80% 

0.5 

0.1 2.2850 2.2846 -0.02% 

0.2 2.0573 2.05506 -0.11% 

0.3 1.8090 1.80115 -0.43% 

0.4 1.5870 1.57104 -1.01% 

 

B. Comparison of the Free Oscillations of a Constant-
Thickness Plate with a Central Crack 

The vibration of a cracked plate with constant thickness 
was found and compared with [17]. Figure 3 shows the crack in 
the center of the plate with length c and angle of inclination α. 
The plate was made of ceramic Al2O3, with elastic modulus, 
density, and Poisson coefficient of Ec = 380 GPa, ρc = 3800 
kg/m

3
, and υ = 0.3, respectively. The square plate has a single 

support boundary condition on the four sides (SSSS), side 
dimensions a = b = 0.5 m, and sheet thickness h = a/50. The 
free oscillation frequency is calculated according to [15]: f� = f(n./ℎ)|ZP/~P    (15) 

Table II shows that the difference between the proposed 
method and [17] (three-dimensional elasticity theory and Ritz 
method) or [12] (high-order shear deformation theory) is very 
small. 

TABLE II.  FREQUENCY OF CONSTANT THICKNESS PLATE 
WITH A CRACK 

c/a [17] [12] This study Max Diff  (%) 

0 5.965 5.96947 5.96961 0.08% 

0.1 5.939 5.92339 5.92562 -0.23% 

0.3 5.665 5.71588 5.71592 0.90% 

0.5 5.318 5.34453 5.34569 0.52% 

C. Free Oscillation of a Single-Crack Plate with Parabolic 
Thickness Variation 

The properties of the material and the dimensions of the 
plate are the same as in A. The plate had a crack with length c 
in the middle, and an angle a between the crack and the x-axis, 
as shown in Figure 3. The frequency of the plate was calculated 
with (14). This plate had a single support boundary condition 
on four sides (SSSS) and a thickness of h0 = 0.005 m. Table III 
shows the frequency for the square plate with a = b = 0.5 m and 
a thickness ratio of ha/h0 = 0.5. Table III shows that as the 
length of the crack increases, the stiffness of the plate 
decreases, leading to a decrease in the free vibration frequency. 
This is also shown in Tables IV, V, and VI. As the crack 
inclination angle a increases, the frequency increases (a 
relatively small amount) until an angle of 75° and then 
decreases at 90°. Figure 4 shows that the natural frequency 
decreases with increasing thickness index and plate edge ratio 
(a/b). As the thickness ratio decreases, the plate becomes 
thinner at the side parallel to the y-axis, causing the plate 
stiffness to decrease, leading to a corresponding decrease in 
frequency. 

TABLE III.  FREQUENCY OF THE PLATE DEPENDING ON 
CRACK LENGTH AND ANGLE. 

Crack 

angle 

c/a 

0 0.1 0.3 0.5 0.7 

00 1.31854 1.31116 1.29279 1.2672 1.23825 

150 1.31854 1.31119 1.29276 1.26679 1.23688 

300 1.31854 1.31127 1.29278 1.26604 1.23426 

450 1.31854 1.31141 1.29302 1.26604 1.23412 

600 1.31854 1.31158 1.29372 1.26726 1.2358 

750 1.31854 1.31854 1.29519 1.2716 1.24469 

900 1.31854 1.31173 1.29425 1.26893 1.23899 

 

 

Fig. 3.  The cracked plate with parabolic thickness. 

 

Fig. 4.  The relationship between frequency and plate thickness index. 
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Table IV shows the frequency of the plate depending on the 
edge ratio, thickness ratio, and crack length. The crack 
inclination angle is α = 0, i.e., the crack is parallel to the x-axis. 
With b = 0.5 m, as the aspect ratio a/b increases, the mass of 
the plate increases, and as the frequency of vibration is 
inversely proportional to the mass, leads to a decrease in the 
frequency of vibrations. Figure 5 shows the first four vibration 
patterns of the cracked plate with parabolic thickness, with 
parameters values h0 = 0.005 m, a = b = 0.5 m, ha/h0 = 0.6, c/b 
= 0.5, and a = 0°. 

TABLE IV.  EFFECT OF EDGE RATIO AND THICKNESS 
RATIO ON FREQUENCY OF CRACKED PLATE 

c/a a/b 
ha/h0 

0.9 0.8 0.7 0.6 0.5 

0 

0.5 4.65504 4.30576 3.95052 3.58864 3.21947 

1 1.86601 1.73149 1.59556 1.45801 1.31854 

1.5 1.34604 1.24703 1.14624 1.04326 0.93746 

2 1.16278 1.07465 0.98408 0.89053 0.79326 

0.2 

0.5 4.62233 4.27621 3.92457 3.56684 3.20244 

1 1.81979 1.68984 1.5588 1.42652 1.29279 

1.5 1.2765 1.18422 1.09059 0.99529 0.89778 

2 1.06977 0.9906 0.9097 0.82666 0.74079 

0.4 

0.5 4.56125 4.22142 3.87646 3.52585 3.16907 

1 1.72443 1.60394 1.4828 1.36095 1.23825 

1.5 1.14271 1.06326 0.98308 0.90196 0.81948 

2 0.90419 0.84051 0.77593 0.71018 0.64277 

0.6 

0.5 4.4955 4.16295 3.82544 3.48241 3.13333 

1 1.62882 1.51802 1.40684 1.29527 1.18319 

1.5 1.02176 0.954 0.88588 0.81721 0.74767 

2 0.76769 0.7168 0.6654 0.61326 0.55999 

 

  

  

Fig. 5.  The first four vibrations of the cracked plate. 

D. Free Oscillation of a Multi-Cracked Plate with a 
Parabolic Variation of Plate Thickness 

Figure 6 shows a plate with parabolic thickness and 3 
cracks parallel to the y-axis. Table V shows the frequency 
versus the number of cracks, crack length, and the distance 

between cracks. The ratios of the plate thickness and the two 
plate sides remain ha/h0 = 0.6 and a/b = 0.6. For two cracks, 
when the crack length is small, i.e. c/b = 0.2 or c/b = 0.4, 
increasing the distance between them (d) will increase the 
frequency; conversely, with a crack length greater than 0.6b, 
the frequency decreases. This is explained by the different 
energy released by the parabolic plate thickness. Figure 7 
shows the first four vibration patterns of a plate with two 
cracks parallel to the y-axis and h0 = 0.005 m, a = b = 0.5 m, 
ha/h0 = 0.4, c/b = 0.6, and d = 0.25a. 

 

 

Fig. 6.  The parabolic thickness plate with three cracks. 

TABLE V.  FREQUENCY OF A PLATE WITH MANY CRACKS 

Number of 

cracks 
c/b 

d/a 

0.1 0.2 0.3 0.4 

1 

0.2 1.03342 1.03342 1.03342 1.03342 

0.4 1.01087 1.01087 1.01087 1.01087 

0.6 0.984192 0.984192 0.984192 0.984192 

0.8 0.962094 0.962094 0.962094 0.962094 

2 

0.2 1.02582 1.02822 1.03341 1.03917 

0.4 0.990864 0.992979 1.00401 1.01917 

0.6 0.952778 0.948374 0.957069 0.974258 

0.8 0.918942 0.905287 0.905997 0.914716 

3 

0.2 1.02128 1.02058 1.0246 1.02968 

0.4 0.985226 0.976855 0.98136 0.991659 

0.6 0.948196 0.928833 0.926322 0.93481 

0.8 0.913994 0.883802 0.872667 0.874046 
 

  

  

Fig. 7.  First four oscillations of parabolic thickness plate with 2 cracks. 
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Table VI shows the frequency of a plate with three cracks 
depending on the thickness index and constant ratio of the two 
sides and distance between the cracks  a/b = 1.25, d/a = 0.25). 

TABLE VI.  FREQUENCY OF A PLATE WITH THREE CRACKS 

c/b 
ha/h0 

0.9 0.8 0.7 0.6 0.5 

0.1 1.51561 1.40593 1.29479 1.18186 1.06664 

0.3 1.443 1.33958 1.23474 1.12807 1.01897 

0.5 1.35095 1.25477 1.15702 1.05716 0.95445 

0.7 1.26551 1.17647 1.08552 0.992 0.89496 

 
Figure 8 shows the data in Table VI. When the thickness 

index (μ = 1 - ha/h0) increases, the impregnation becomes 
thinner, leading to a decrease in frequency. In particular, when 
c/b and μ increase together, the stiffness of the plate decreases 
faster, so the frequency decreases very quickly. Figure 9 shows 
the first four vibration modes of a plate with 3 cracks and a = b 
= 0.5 m, ha/h0 = 0.5, c/b = 0.7, and d = 0.25a. 

 

 
Fig. 8.  Relationship between frequency and thickness ratio of the plate 

with three cracks. 

 
 

  

Fig. 9.  First four oscillations of parabolic thickness plate with 3 cracks 

parallel to the y-axis. 

The cracks have a significant effect on the frequency and 
vibration patterns of the plate, as was clearly shown in Figures 
5, 7, and 9. 

IV. CONCLUSION 

This study used the phase-field theory in destructive 
mechanics and the first-order shear strain theory to study the 
free vibrations of a plate, whose thickness varies with a 
parabolic function and has cracks. Numerical results showed 
that for the case considered: (i) when the crack length is 
increased, the stiffness of the plate decreases, so the free 
vibration frequency of the plate will be reduced; (ii) as the 
number of cracks increases, the free oscillation frequency of 
the plate decreases; (iii) when the sheet thickness ratio is 
increased (h0/ha), the free oscillation frequency of the plate 
decreases; (iv) when increasing the plate length ratio (a/b), the 
plate is thinner and the vibration frequency decreases. These 
results would be very helpful when analyzing plate vibrations 
as cracks propagate over time. 
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