
Engineering, Technology & Applied Science Research Vol. 5, No. 5, 2015, 864-870 864

www.etasr.com Dossis: High-level Synthesis Integrated Verification

High-level Synthesis Integrated Verification

Michael F. Dossis
Dept. of Informatics Engineering

TEI of Western Macedonia
Kastoria, Greece

mdossis@yahoo.gr

Abstract—It is widely known in the engineering community that
more than 60% of the IC design project time is spent on
verification. For the very complex contemporary chips, this may
prove prohibitive for the IC to arrive at the correct time in the
market and therefore, valuable sales share may be lost by the
developing industry. This problem is deteriorated by the fact that
most of conventional verification flows are highly repetitive and a
great proportion of the project time is spent on last-moment
simulations. In this paper we present an integrated approach to
rapid, high-level verification, exploiting the advantages of a
formal High-level Synthesis tool, developed by the author.
Verification in this work is supported at 3 levels: high-level
program code, RTL simulation and rapid, generated C testbench
execution. This paper is supported by strong experimental work
with 3-4 popular design synthesis and verification that proves the
principles of our methodology.

Keywords-High-level Synthesis; Formal verification; E-DA

I. INTRODUCTION

Embedded, high-performance and portable computing
systems digital circuits have highly complex design control &
module hierarchy as well as interconnection schemes. This
complexity cannot be dealt anymore with conventional
methods such as Register Transfer Level (RTL) coding, since
they involve highly iterative design flows, detailed and
prolonged simulations and thus, prohibitive development times.
These development problems often cause products to miss the
market windows and thus, a lot of engineering effort is thrown
in the rubbish bin. As a consequence, commercial and
academic organizations have invested in High-Level Synthesis
(HLS) and Electronic System Level (ESL) methodologies to
achieve design automation, quality of implementations and
short specification-to-product times [1-6]. Nevertheless
existing HLS tools produce lower quality of implementations
than manual methods, and the generated hardware models are
difficult to handle. Also, during synthesis a great number of
assumptions about the targeted computing platform and
transformation heuristics are taken, in order to deal with the
NP-complete synthesis problems, which makes synthesis
results suboptimal [3, 5].

The most explored and formulated problems of HLS
include high-level optimizations, scheduling, allocation and
binding and they can be found in [1-6]. High-level
optimizations are based on software compiler optimizations,

allocation is selection of functional units and storing resources
for the data and operations objects found in high-level program
code, binding is the actual mapping of the above units to real
hardware elements such as flip-flops, latches and combinatorial
blocks such as functional operator hardware units, and
scheduling is the arrangement of elementary operations to
Finite State Machine (FSM) states in system’s clock cycles.
Although these problems have been studied in research labs,
the optimization of real-world complex applications, as well as
their mapping onto custom hardware fails to produce
competitive to manual implementations. This is because they
are not able to handle complex, nested control flow constructs
and large data objects, as well as sophisticated interfaces
through complex hierarchy and module configuration and to-
from external shared memory interfaces.

Logic programming [7] and compiler generators found in
other areas, such as artificial intelligence and software
compilers can benefit synthesis tools. The Cubed-C framework
[4] combines techniques from compiler generators and artificial
intelligence logic programming so as to deliver formal
synthesis of high-level programs (in ADA or C) into fully
synthesizable and simulatable RTL (VHDL or Verilog) and
executable testbenches (C). In this way specification to product
development times are compressed significantly, since lengthy
RTL or gate-level simulations are avoided.

II. RELATED WORK AND BACKGROUND

A. High-level Synthesis Tools

The first High-Level Synthesis research results emerged in
the 80s and the first linear design (data-flow oriented)
processing HLS tools appeared in the early 90s. The most
complex of the synthesis tasks is the building of a reliable
scheduler [3]. From relevant research it is evident that when the
system complexity increases linearly, the complexity of the
scheduler algorithm increases exponentially and for some very
complex applications, scheduling is NP-complete [3, 6]. The
difficulty to handle complex code control becomes critically
difficult and it can prevent synthesis whatsoever in practice
when source code models with complex module and control
flow hierarchy (e.g. nested while, if-then and for loops) are
encountered [4, 6].

Academic or commercial HLS tools are still not accepted
by the engineering community because of the poor synthesis

Engineering, Technology & Applied Science Research Vol. 5, No. 5, 2015, 864-870 865

www.etasr.com Dossis: High-level Synthesis Integrated Verification

results. This is true, particularly for large applications with
complex module and control-flow hierarchy as stated above [3-
5]. However, real-world applications can be benefited the most
from automated techniques such as HLS. Often HLS tools
produce suboptimal solutions when synthesis heuristics are
used to shorten the long optimization and processing times.

Most of the existing HLS tools are suited for linear, and
dataflow dominated (e.g. stream-based) applications, such as
pipelined Digital Signal Processing (DSP), image processing
and video/sound streaming. Nevertheless even such
straightforward applications are not possible to process when
the specification model contains any of the excluded
programming constructs (such as while loops and loop breaks).
Most of the tools impose proprietary extensions or restrictions
(e.g. exclusion of while loops) on the programming model of
the specifications that they accept as input, and various
heuristics on the HLS transformations that they utilize (e.g.
guards, speculation, loop shifting, trailblazing) [2]. However,
when design complexity is over than a dozen states, manual
RTL coding becomes prohibitive for delivering products in
realistic times.

Some of the existing commercial HLS tools are the
Catapult-C from Calypto (previously developed by Mentor
Graphics), and Cynthesizer from Forte Design Systems. They
both accept as input a small subset of the System-C and C++
languages. However, both of these tools have too complicated
user interfaces, and package libraries, for the average system
modeler and developer and they are the most expensive of their
class since they are licensed for something less than 300,000
dollars per year. In this way, commercial synthesizers are
inaccessible for most of small and medium sized ASIC/FPGA
(Application-Specific Integrated Circuit/Field Programmable
Gate Arrays) design SMEs. Other HLS tools are Symfony C
compiler from Synopsys, Impulse-C from Impulse Accelerated
Technologies, CyberWorkBench from NEC, C-to-silicon from
Cadence, and the free web-based tool C-to-verilog from an
Israel-based group, all accepting small C subsets as input and
mainly linear dataflow-oriented applications.

Popular academic HLS tools are the SPARK tool [2] which
accepts as input a small subset of the ANSI-C language (e.g.
while loops are not accepted), and a conditional guard based
optimizer [6] forming the basis for optimizing conditional
source code methods at the beginning of the previous decade.

A multi-speculative technique that composes complex
adders during datapath synthesis, contributes only towards
linear data flow oriented designs can be found in [8]. In [9] a
fixed-point accuracy analysis and optimization of polynomial
data-flow graphs is analyzed, with respect to a reference model
that is found in many digital signal processing applications. A
technique to improve nested loop pipelining for High-Level
Synthesis, called Polyhedral Bubble Insertion is discussed in
[10]. An equivalence checking method of FSMs with datapaths
based on value propagation over model paths, for validation of
code motion transformations usually applied during the HLS
scheduling phase can be found in [11]. A formal HLS method
for accurate high-level casting of optimal adders and
subtractors is analyzed in [12]. An exploration approach, called
spectral-aware Pareto iterative refinement, that uses response

surface models (RSMs) and spectral analysis for predicting the
quality of the design points without resorting to costly
architectural synthesis procedures is presented in [13].
However, most of these approaches concern only either linear,
dataflow oriented applications or attempt to solve only minor
sub-problems of HLS, and therefore they don’t impact the
complete synthesis flow as a whole system.

B. Integrated Verification, the Cubed-C approach

In our approach, the high-level C or ADA model is first
executed to confirm the correctness of the specification model
in a rapid, compile-and-run way. When the specification
executable model is fully debugged, it is passed to the Cubed-C
HLS synthesizer to generate correct-by-construction, Register
Transfer Level (RTL), VHDL/Verilog implementations.
Computation-intensive algorithms and other real-world
application can in this way be rapidly prototyped. RTL
simulations are executed to verify the functionality and prove
the correctness of the automatically generated RTL VHDL
implementations, which is expected due to the formal nature of
the synthesis transformations. The Cubed-C synthesis includes
the frontend and the backend compilers, which communicate
with each other via the ITF database. ITF is a formal Prolog-
like format for capturing all of the semantic categories of a
programmed algorithm. The frontend compiler is built using
compiler-compiler techniques and the backend compiler using
logic programming techniques [4]. Moreover the ITF syntax
and semantics are formally defined in [14]. All of these
methods are protected with international patents [15]. The
PARCS scheduler is used in the backend runs to optimize the
generated operations schedule. PARCS is a formal optimizer
which parallelizes as many operations in the same clock cycle
as possible, as long as control/data dependencies and resource
constraints are obeyed, unless specific block/operator
constraints are provided by the user.

The Cubed-C tools now automatically and formally
generate ANSI-C testbenches that capture the functionality of
the hardware FSM that is synthesized with the HLS tool. These
testbenches are cycle-accurate simulators that can be compiled
and executed with any of the available C development
environments such as the GNU-C compiler and linker. Thus,
the user can see through the FSM state transactions the changes
in the values of registers. Moreover, the following options are
possible: resetting the registers, providing input to all the inputs
of the design and examining the values of the output registers
of the design at any time in the cycle-accurate simulation. This
method is formal but different than formal verification, since
the Cubed-C method integrates both synthesis and verification
methods in the same run. Therefore, functional and FSM bugs
can be caught and corrected in an easy and a rapid manner.

This integrated synthesis and verification flow in the
Cubed-C framework is shown in Figure 1, where red frames
show verification tasks and blue frames show synthesis tasks.
The high-level verification can be compared manually or
automatically with a suitable testbench with cycle-accurate
simulation (which was done in our experimental tests at the end
of this paper) to confirm the matching of the two
functionalities.

Engineering, Technology & Applied Science Research Vol. 5, No. 5, 2015, 864-870 866

www.etasr.com Dossis: High-level Synthesis Integrated Verification

During recent years, model checking is a formal means of
confirming the system functionality with mathematical
assertions. However it is not practical for large applications
where the state space is increasing to prohibiting levels. An
attempt to deal with this is reported in [17]. A method based on
a formal attribute grammar, used to translate human language
into correct Computation Tree Logic from specific comments
in the HDL code, is described in [18]. Transformations of the
behavioral RTL FSMD model are proposed in [19] in order to
deal with false negative results of the equivalence checking of
state sequences from conditional paths in equivalent checking.
Static and dynamic analysis of the RTL source code is
exercised in [20] to define and compute code coverage of
assertions in the RTL code. Simulation-based verification is
executed in [21] with generated scenario-based stimuli which
are triggered in various ways. The effort aims to compact the
stimuli while satisfying the coverage requirements.

Fig. 1. Integrated, formal verification in the Cubed-C synthesis flow

III. INTEGRATED HLS VERIFICATION

The integrated with High-level Synthesis verification flow
is depicted in Figure 1. The relevant tasks start with writing and
debugging the C or ADA code which is the executable
specification model at the highest possible abstraction level.
This is done in a rapid manner since well understood compile
and execute is performed on the improved versions of the high
level model’s code. Along with the specification code modules,
special testbench modules are coded in C or ADA which help
the functional debugging process to complete sooner. It must
be noted that although the specification module should follow
the Cubed-C coding guidelines, the testbench and any other

modules built for debugging are free to code in any style of the
ANSI-C or GNU-ADA programming languages.

After removing all the functional bugs quickly and rapidly
at the highest functional level, then the debugged ADA/ C
model code is passed to the Cubed-C synthesizer which
automatically, rapidly and formally generates functionally-
equivalent and provably-correct VHDL or Verilog RTL
synthesizable models. These models are synthesizable with any
commercial or academic RTL synthesizers into technology IC
implementations. The Cubed-C compiler backend optimizes
the state schedule into optimal FSMs and datapaths and
generates from the same optimized FSM model a cycle-
accurate ANSI-C compatible simulator for each of the ADA/C
subprograms (design modules). The generated simulators can
be rapidly compiled and executed to fully debug the generated
modules in a much faster way than RTL, and without involving
the designers with the hardware details of the RTL code.

Each of the generated cycle-accurate simulator steps
includes options for resetting all registers, setting the inputs,
advancing to the next FSM step (state) cycle, and reading the
registers and the outputs of the circuit. All these are done with
just pressing a keyboard key and quickly re-verify the
provably-correct behavior of the generated circuit in a rapid
manner. The user can write in any style the RTL testbench and
the automated testbench to automatically or semi-manually
compare the test vectors and outputs of the generated circuit
against the vectors that were used in the abstract functional
level, as clearly shown in Figure 1.

IV. VERIFICATION EXPERIMENTS AND RESULTS

There have been run many integrated synthesis and
verification experiments through the design flow of Figure 1.
Three of them will be discussed analytically here: A computer
graphics algorithm, a DSP FIR (Finite Impulse Response) filter
and the classical high-level synthesis benchmark, the second
order differential equation approximation solver.

Fig. 2. The high-level ADA model verification

A. The computer graphics algorithm

The computer graphics application is a line drawing
algorithm with the Digital Differential Analyzer (DDA)
approximation method. Due to its iterative and conditional
nature is a good representative for testing the Cubed-C‘s
performance to the loop and if-then type of behaviors.

ADA or C input design
model

ADA or C testbench

Verified and debugged ADA
or C input designs

Rapid, high-level verification
based on compile and execute

Cubed-C High-level Synthesis

RTL models and ANSI-C
cycle accurate simulators Rapid backend

verification

Functional equivalence
checking

Engineering, Technology & Applied Science Research Vol. 5, No. 5, 2015, 864-870 867

www.etasr.com Dossis: High-level Synthesis Integrated Verification

First the line drawing algorithm is coded in ADA (a similar
experiment is done using the C language entry). Also, an ADA-
based testbench is coded and the whole set of programs is
compiled, executed to verify the correct behavior at this high
level. Figure 2 shows the high-level testbench run, where the
input start and end points as well as the intermediate line points
are clearly formulated and shown in this experiment run.

Fig. 3. Beginning of he cycle-accurate simulation of the line draw app

After the high-level model is debugged and verified it is
synthesized into a RTL FSM and the cycle-accurate simulator
is extracted from the machine. Figure 3 shows the beginning of
the cycle-accurate simulation where the start and end points of
the line are entered into the simulator. Then the simulator is
executed cycle by cycle and this is shown in Figure 4.

Fig. 4. Running the line draw cycle-accurate sim. cycle by cycle

After the last state is reached (which is indicated with a
message to the user) the outputs of the simulator can be read as
shown in Figure 5. Because we used the option to position of
the line’s points into an external shared memory we notice in
Figure 5 the last transactions on the signals that interface with
the memory modules. Alternatively we could follow the
synthesis option to position the line’s points in embedded

memory in the line draw processor, but this exceeds the
purpose of this paper.

Fig. 5. Reading the simulator’s outputs

B. Simulating the RTL for reassurance

In order to reassure in practice the formal nature of the
synthesis process the generated RTL for the line draw app. is
simulated as shown in Figure 6 and Figure 7. Figure 6 shows
the whole duration of the generated RTL execution and Figure
7 the time duration of the transactions with the external
memory of the FSM results. Figure 7 clearly shows the transfer
of the 8 line points to the external memory.

Fig. 6. RTL simulation of the generated line draw hardware

Fig. 7. Zoomed RTL simulation at the last 8 pixel transactions with the
memory

Engineering, Technology & Applied Science Research Vol. 5, No. 5, 2015, 864-870 868

www.etasr.com Dossis: High-level Synthesis Integrated Verification

C. Assertion-based testbench for line draw

Figure 8 shows the execution of an automatic, assertion
based testbench that automatically compares the results (pixel
by pixel) of the high-level and the RTL simulations. As
expected there were no differences between the two. This
testbench asserts suitable success/fail messages to the user, as it
is shown in Figure 8. In this way, all 3 levels of integrated
verifications can be co-verified and compared seamlessly.

Fig. 8. Assertion-based, automatic testbench for the line draw

D. DSP FIR filter

The next benchmark to present here is a 5-tap DSP FIR
filter model in ADA and subsequently in VHDL and cycle-
accurate simulator runs. In this paragraph, the high-level and
the cycle-accurate models execution is discussed, although
RTL simulations were run as well. Figure 9 shows the
execution of the algorithmic, high-level ADA model and
testbench of the 5-tap filter. The setting of the history, the 5
coefficients and the outputs after 5 shift-outs are clearly shown
in this picture. Figure 10 shows the Cubed-C backend cycle-
accurate testbench execution during the beginning of the run,
where the inputs, the history (taps) and the coefficients are set.
Figure 11 shows the end of the cycle-accurate execution where
the outputs are read and they are clearly the same as the high-
level testbench of Figure 9.

Fig. 9. Execution of the high-level ADA code model testbench

Fig. 10. Beginning of the FIR cycle-accurate simulation

Fig. 11. Results of the completion of the cycle-accurate FIR simulator

E. The HLS differential equation solver benchmark

In this subsection the synthesis integrated verification
experiment with the typical HLS benchmark is described,
namely the second order differential equation solver. Figure 12
shows the execution of the functional, high-level ADA model
and testbench execution in order to rapidly verify at this level
the differential equation solver benchmark synthesis model.
The same input values are used in the run of Figure 13 where
the RTL simulation (giving the same result) of the synthesized
circuit is shown. Figure 14 shows the cycle-accurate simulation
near the beginning (setting the inputs) and Figure 15 shows the
cycle-accurate simulation results from the same model that is
produced by the same synthesis step as the RTL code. As
expected in all cases, the results of all types of verification
match.

Fig. 12. Functional high-level testbench of diff. eq. solver

Engineering, Technology & Applied Science Research Vol. 5, No. 5, 2015, 864-870 869

www.etasr.com Dossis: High-level Synthesis Integrated Verification

Fig. 13. RTL simulation of the synthesizeed diff. eq. solver circuit

Fig. 14. Setting the inputs of the diff. eq. solver cycle-accurate model

Fig. 15. Results of the cycle-accurate simulation

V. CONCLUSSIONS AND FUTURE WORK

A formal, rapid and integrated with synthesis, verification
approach based on the Cubed-C High-level Synthesis system
was discussed in this paper. The major contribution of this
work is that the presented approach cuts down by orders of
magnitude the verification effort required for digital design
projects. All the presented simulations were completed in
matters of seconds and the formal nature of the synthesis and
testbench generation mechanism guarantees the correctness of
the generated implementations. In this way the synthesized
circuit features the same behavior as the input specification.
Moreover, by having as specification executable code models
makes the whole flow into a rapid, formal and seamless as
well. Also, no modifications on the model and testbench code
were required and raw programming language constructs were
used. Future work includes generating cycle-accurate models in
more verification languages such as C++ and System-C, and
better use of the backend HDL writer for System Verilog
flows.

REFERENCES
[1] B. L. Gal, E. Casseau, S. Huet, “Dynamic Memory Access Management

for High-Performance DSP Applications Using High-Level Synthesis”,
IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, Vol. 16, No. 11, pp.1454-1464, 2008

[2] S. Gupta, R. K. Gupta, N. D. Dutt, A. Nikolau, “Coordinated
Parallelizing Compiler Optimizations and High-Level Synthesis”, ACM
Transactions on Design Automation of Electronic Systems, Vol. 9, No.
4, pp. 441–470, 2004

[3] R. A. Walker, S. Chaudhuri, “Introduction to the scheduling problem”,
IEEE Design & Test of Computers, Vol. 12, No. 2, pp. 60–69, 1995

[4] M. F. Dossis, “A Formal Design Framework to Generate Coprocessors
with Implementation Options”, International Journal of Research and
Reviews in Computer Science, Vol. 2, No. 4, pp. 929-936, 2011

[5] P. G. Paulin, J. P. Knight, “Force-directed scheduling for the behavioral
synthesis of ASICs”, IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, Vol. 8, No. 6, pp. 661–679, 1989

[6] A. A. Kountouris, C. Wolinski, “Efficient Scheduling of Conditional
Behaviors for High-Level Synthesis”, ACM Transactions on Design
Automation of Electronic Systems, Vol. 7, No. 3, pp. 380–412, 2002

[7] U. Nilsson, J. Maluszynski, Logic Programming and Prolog, John
Wiley & Sons Ltd., 2nd Edition, 1995

[8] A. A. Del Barrio, R. Hermida, S. O. Memik, J. M. Mendias, M. C.
Molina, “Multispeculative Addition Applied to Datapath Synthesis”,
IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, Vol. 31, No. 12, pp. 1817-1830, 2012

[9] O. Sarbishei, K. Radecka, “On the Fixed-Point Accuracy Analysis and
Optimization of Polynomial Specifications”, IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, Vol. 32,
No. 6, pp. 831-844, 2013

[10] A. Morvan, S. Derrien, P. Quinton, “Polyhedral Bubble Insertion: A
Method to Improve Nested Loop Pipelining for High-Level Synthesis”,
IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, Vol. 32, No. 3, pp. 339-352, 2013

[11] K. Banerjee, C. Karfa, D. Sarkar, C. Mandal, “Verification of Code
Motion Techniques Using Value Propagation”, IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, Vol. 33,
No. 8, pp. 1180-1193, 2014

[12] R. Sierra, C. Carreras, G, Caffarena, C. A. López Barrio, “A Formal
Method for Optimal High-Level Casting of Heterogeneous Fixed-Point
Adders and Subtractors”, IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, Vol. 34, No. 1, pp. 52-62, 2015.

[13] S. Xydis, G. Palermo, V. Zaccaria, C. Silvano, “SPIRIT: Spectral-Aware
Pareto Iterative Refinement Optimization for Supervised High-Level
Synthesis”, IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, Vol. 34, No. 1, pp. 155-159, 2015

[14] M. Dossis, "Intermediate Predicate Format for Design Automation
Tools", Journal of Next Generation Information Technology, Vol. 1, No.
1, pp. 100-117, 2010

[15] M. Dossis, Patent number 1005308, 5/10/2006 by the Greek Industrial
Property Organisation, 2006

[16] D. Amanatidis, M. Dossis, “High level synthesis of geometric active
contours”, 2nd Global Virtual Conference, Slovakia, April 7-11, 2014

[17] L. Wu, H. Huang, K. Su, S. Cai, X. Zhang, “An I/O Efficient Model
Checking Algorithm for Large-Scale Systems”, IEEE Transactions on
Very Large Scale Integration (VLSI) Systems, Vol. 23, No. 5, pp. 905-
915, 2015

[18] C. B. Harris, I. G. Harris, “Generating formal hardware verification
properties from Natural Language documentation”, 2015 IEEE
International Conference on Semantic Computing (ICSC), Anaheim,
CA, pp. 49-56, February 7-9, 2015

[19] R. A. Hernandez, M. Strum, W. J. Chau, “Transformations on the FSMD
of the RTL code with combinational logic statements for equivalence
checking of HLS”, 16th Latin-American Test Symposium (LATS),
Puerto Vallarta, Mexico, pp. 1-6, March 25-27, 2015

[20] V. Athavale, M. Sai, S. Hertz, S. Vasudevan, “Code coverage of
assertions using RTL source code analysis”, 51st ACM/EDAC/IEEE

Engineering, Technology & Applied Science Research Vol. 5, No. 5, 2015, 864-870 870

www.etasr.com Dossis: High-level Synthesis Integrated Verification

Design Automation Conference (DAC), Moscone Center, San Francisco,
CA, USA, pp. 1-6, June 1-5, 2014

[21] Yang Shuo, R. Wille, R. Drechsler, “Improving Coverage of Simulation-
Based Verification by Dedicated Stimuli Generation”, 17th Euromicro
Conference on Digital System Design (DSD), Verona, Italy, pp. 599-
606, August 27-29, 2014

AUTHORS PROFILE

Dr Michael Dossis holds an Advanced Engineering Diploma from NTUA,
Greece, and a PhD in Electronic Engineering from University of Bradford,
UK. He is the main author of a high number of international patents and
quality publications in reputable international journals and conferences.
Michael Dossis has a great experience as an ASIC project engineer and
telecoms applications in companies such as LSI Logic Europe, ARM Ltd,
Virata Ltd and Intracom Telecom S.A. He has experience in numerous
programming and hardware description languages, and many design and CAD
tools. His main interests include amongst others E-DA, High-level Synthesis
and ESL, formal methods, AI applications and embedded VLSI systems.

