
Engineering, Technology & Applied Science Research Vol. 5, No. 5, 2015, 864-870 864  
  

www.etasr.com Dossis: High-level Synthesis Integrated Verification 

 

High-level Synthesis Integrated Verification  
 

Michael F. Dossis  
Dept. of Informatics Engineering 

TEI of Western Macedonia 
Kastoria, Greece 

mdossis@yahoo.gr  
 

 

Abstract—It is widely known in the engineering community that 
more than 60% of the IC design project time is spent on 
verification. For the very complex contemporary chips, this may 
prove prohibitive for the IC to arrive at the correct time in the 
market and therefore, valuable sales share may be lost by the 
developing industry. This problem is deteriorated by the fact that 
most of conventional verification flows are highly repetitive and a 
great proportion of the project time is spent on last-moment 
simulations. In this paper we present an integrated approach to 
rapid, high-level verification, exploiting the advantages of a 
formal High-level Synthesis tool, developed by the author.  
Verification in this work is supported at 3 levels: high-level 
program code, RTL simulation and rapid, generated C testbench 
execution. This paper is supported by strong experimental work 
with 3-4 popular design synthesis and verification that proves the 
principles of our methodology. 
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I. INTRODUCTION  

Embedded, high-performance and portable computing 
systems digital circuits have highly complex design control & 
module hierarchy as well as interconnection schemes. This 
complexity cannot be dealt anymore with conventional 
methods such as Register Transfer Level (RTL) coding, since 
they involve highly iterative design flows, detailed and 
prolonged simulations and thus, prohibitive development times. 
These development problems often cause products to miss the 
market windows and thus, a lot of engineering effort is thrown 
in the rubbish bin. As a consequence, commercial and 
academic organizations have invested in High-Level Synthesis 
(HLS) and Electronic System Level (ESL) methodologies to 
achieve design automation, quality of implementations and 
short specification-to-product times [1-6]. Nevertheless 
existing HLS tools produce lower quality of implementations 
than manual methods, and the generated hardware models are 
difficult to handle. Also, during synthesis a great number of 
assumptions about the targeted computing platform and 
transformation heuristics are taken, in order to deal with the 
NP-complete synthesis problems, which makes synthesis 
results suboptimal [3, 5]. 

The most explored and formulated problems of HLS 
include high-level optimizations, scheduling, allocation and 
binding and they can be found in [1-6].  High-level 
optimizations are based on software compiler optimizations, 

allocation is selection of functional units and storing resources 
for the data and operations objects found in high-level program 
code, binding is the actual mapping of the above units to real 
hardware elements such as flip-flops, latches and combinatorial 
blocks such as functional operator hardware units, and 
scheduling is the arrangement of elementary operations to 
Finite State Machine (FSM) states in system’s clock cycles. 
Although these problems have been studied in research labs, 
the optimization of real-world complex applications, as well as 
their mapping onto custom hardware fails to produce 
competitive to manual implementations. This is because they 
are not able to handle complex, nested control flow constructs 
and large data objects, as well as sophisticated interfaces 
through complex hierarchy and module configuration and to-
from external shared memory interfaces. 

Logic programming [7] and compiler generators found in 
other areas, such as artificial intelligence and software 
compilers can benefit synthesis tools. The Cubed-C framework 
[4] combines techniques from compiler generators and artificial 
intelligence logic programming so as to deliver formal 
synthesis of high-level programs (in ADA or C) into fully 
synthesizable and simulatable RTL (VHDL or Verilog) and 
executable testbenches (C). In this way specification to product 
development times are compressed significantly, since lengthy 
RTL or gate-level simulations are avoided. 

II. RELATED WORK AND BACKGROUND 

A. High-level Synthesis Tools 

The first High-Level Synthesis research results emerged in 
the 80s and the first linear design (data-flow oriented) 
processing HLS tools appeared in the early 90s. The most 
complex of the synthesis tasks is the building of a reliable 
scheduler [3]. From relevant research it is evident that when the 
system complexity increases linearly, the complexity of the 
scheduler algorithm increases exponentially and for some very 
complex applications, scheduling is NP-complete [3, 6]. The 
difficulty to handle complex code control becomes critically 
difficult and it can prevent synthesis whatsoever in practice 
when source code models with complex module and control 
flow hierarchy (e.g. nested while, if-then and for loops) are 
encountered [4, 6].  

Academic or commercial HLS tools are still not accepted 
by the engineering community because of the poor synthesis 
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results. This is true, particularly for large applications with 
complex module and control-flow hierarchy as stated above [3-
5]. However, real-world applications can be benefited the most 
from automated techniques such as HLS. Often HLS tools 
produce suboptimal solutions when synthesis heuristics are 
used to shorten the long optimization and processing times. 

Most of the existing HLS tools are suited for linear, and 
dataflow dominated (e.g. stream-based) applications, such as 
pipelined Digital Signal Processing (DSP), image processing 
and video/sound streaming. Nevertheless even such 
straightforward applications are not possible to process when 
the specification model contains any of the excluded 
programming constructs (such as while loops and loop breaks). 
Most of the tools impose proprietary extensions or restrictions 
(e.g. exclusion of while loops) on the programming model of 
the specifications that they accept as input, and various 
heuristics on the HLS transformations that they utilize (e.g. 
guards, speculation, loop shifting, trailblazing) [2]. However, 
when design complexity is over than a dozen states, manual 
RTL coding becomes prohibitive for delivering products in 
realistic times. 

Some of the existing commercial HLS tools are the 
Catapult-C from Calypto (previously developed by Mentor 
Graphics), and Cynthesizer from Forte Design Systems. They 
both accept as input a small subset of the System-C and C++ 
languages. However, both of these tools have too complicated 
user interfaces, and package libraries, for the average system 
modeler and developer and they are the most expensive of their 
class since they are licensed for something less than 300,000 
dollars per year. In this way, commercial synthesizers are 
inaccessible for most of small and medium sized ASIC/FPGA 
(Application-Specific Integrated Circuit/Field Programmable 
Gate Arrays) design SMEs. Other HLS tools are Symfony C 
compiler from Synopsys, Impulse-C from Impulse Accelerated 
Technologies, CyberWorkBench from NEC, C-to-silicon from 
Cadence, and the free web-based tool C-to-verilog from an 
Israel-based group, all accepting small C subsets as input and 
mainly linear dataflow-oriented applications. 

Popular academic HLS tools are the SPARK tool [2] which 
accepts as input a small subset of the ANSI-C language (e.g. 
while loops are not accepted), and a conditional guard based 
optimizer [6] forming the basis for optimizing conditional 
source code methods at the beginning of the previous decade. 

A multi-speculative technique that composes complex 
adders during datapath synthesis, contributes only towards 
linear data flow oriented designs can be found in [8]. In [9] a 
fixed-point accuracy analysis and optimization of polynomial 
data-flow graphs is analyzed, with respect to a reference model 
that is found in many digital signal processing applications. A 
technique to improve nested loop pipelining for High-Level 
Synthesis, called Polyhedral Bubble Insertion is discussed in 
[10]. An equivalence checking method of FSMs with datapaths 
based on value propagation over model paths, for validation of 
code motion transformations usually applied during the HLS 
scheduling phase can be found in [11]. A formal HLS method 
for accurate high-level casting of optimal adders and 
subtractors is analyzed in [12]. An exploration approach, called 
spectral-aware Pareto iterative refinement, that uses response 

surface models (RSMs) and spectral analysis for predicting the 
quality of the design points without resorting to costly 
architectural synthesis procedures is presented in [13]. 
However, most of these approaches concern only either linear, 
dataflow oriented applications or attempt to solve only minor 
sub-problems of HLS, and therefore they don’t impact the 
complete synthesis flow as a whole system. 

B. Integrated Verification, the Cubed-C approach 

In our approach, the high-level C or ADA model is first 
executed to confirm the correctness of the specification model 
in a rapid, compile-and-run way. When the specification 
executable model is fully debugged, it is passed to the Cubed-C 
HLS synthesizer to generate correct-by-construction, Register 
Transfer Level (RTL), VHDL/Verilog implementations. 
Computation-intensive algorithms and other real-world 
application can in this way be rapidly prototyped. RTL 
simulations are executed to verify the functionality and prove 
the correctness of the automatically generated RTL VHDL 
implementations, which is expected due to the formal nature of 
the synthesis transformations. The Cubed-C synthesis includes 
the frontend and the backend compilers, which communicate 
with each other via the ITF database. ITF is a formal Prolog-
like format for capturing all of the semantic categories of a 
programmed algorithm. The frontend compiler is built using 
compiler-compiler techniques and the backend compiler using 
logic programming techniques [4]. Moreover the ITF syntax 
and semantics are formally defined in [14]. All of these 
methods are protected with international patents [15]. The 
PARCS scheduler is used in the backend runs to optimize the 
generated operations schedule. PARCS is a formal optimizer 
which parallelizes as many operations in the same clock cycle 
as possible, as long as control/data dependencies and resource 
constraints are obeyed, unless specific block/operator 
constraints are provided by the user. 

The Cubed-C tools now automatically and formally 
generate ANSI-C testbenches that capture the functionality of 
the hardware FSM that is synthesized with the HLS tool. These 
testbenches are cycle-accurate simulators that can be compiled 
and executed with any of the available C development 
environments such as the GNU-C compiler and linker. Thus, 
the user can see through the FSM state transactions the changes 
in the values of registers. Moreover, the following options are 
possible: resetting the registers, providing input to all the inputs 
of the design and examining the values of the output registers 
of the design at any time in the cycle-accurate simulation. This 
method is formal but different than formal verification, since 
the Cubed-C method integrates both synthesis and verification 
methods in the same run. Therefore, functional and FSM bugs 
can be caught and corrected in an easy and a rapid manner.  

This integrated synthesis and verification flow in the 
Cubed-C framework is shown in Figure 1, where red frames 
show verification tasks and blue frames show synthesis tasks. 
The high-level verification can be compared manually or 
automatically with a suitable testbench with cycle-accurate 
simulation (which was done in our experimental tests at the end 
of this paper) to confirm the matching of the two 
functionalities. 
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During recent years, model checking is a formal means of 
confirming the system functionality with mathematical 
assertions. However it is not practical for large applications 
where the state space is increasing to prohibiting levels. An 
attempt to deal with this is reported in [17]. A method based on 
a formal attribute grammar, used to translate human language 
into correct Computation Tree Logic from specific comments 
in the HDL code, is described in [18]. Transformations of the 
behavioral RTL FSMD model are proposed in [19] in order to 
deal with false negative results of the equivalence checking of 
state sequences from conditional paths in equivalent checking. 
Static and dynamic analysis of the RTL source code is 
exercised in [20] to define and compute code coverage of 
assertions in the RTL code. Simulation-based verification is 
executed in [21] with generated scenario-based stimuli which 
are triggered in various ways. The effort aims to compact the 
stimuli while satisfying the coverage requirements. 

 

Fig. 1.  Integrated, formal verification in the Cubed-C synthesis flow 

III. INTEGRATED HLS VERIFICATION 

The integrated with High-level Synthesis verification flow 
is depicted in Figure 1. The relevant tasks start with writing and 
debugging the C or ADA code which is the executable 
specification model at the highest possible abstraction level. 
This is done in a rapid manner since well understood compile 
and execute is performed on the improved versions of the high 
level model’s code. Along with the specification code modules, 
special testbench modules are coded in C or ADA which help 
the functional debugging process to complete sooner. It must 
be noted that although the specification module should follow 
the Cubed-C coding guidelines, the testbench and any other 

modules built for debugging are free to code in any style of the 
ANSI-C or GNU-ADA programming languages. 

After removing all the functional bugs quickly and rapidly 
at the highest functional level, then the debugged ADA/ C 
model code is passed to the Cubed-C synthesizer which 
automatically, rapidly and formally generates functionally-
equivalent and provably-correct VHDL or Verilog RTL 
synthesizable models. These models are synthesizable with any 
commercial or academic RTL synthesizers into technology IC 
implementations. The Cubed-C compiler backend optimizes 
the state schedule into optimal FSMs and datapaths and 
generates from the same optimized FSM model a cycle-
accurate ANSI-C compatible simulator for each of the ADA/C 
subprograms (design modules). The generated simulators can 
be rapidly compiled and executed to fully debug the generated 
modules in a much faster way than RTL, and without involving 
the designers with the hardware details of the RTL code. 

Each of the generated cycle-accurate simulator steps 
includes options for resetting all registers, setting the inputs, 
advancing to the next FSM step (state) cycle, and reading the 
registers and the outputs of the circuit. All these are done with 
just pressing a keyboard key and quickly re-verify the 
provably-correct behavior of the generated circuit in a rapid 
manner. The user can write in any style the RTL testbench and 
the automated testbench to automatically or semi-manually 
compare the test vectors and outputs of the generated circuit 
against the vectors that were used in the abstract functional 
level, as clearly shown in Figure 1. 

IV. VERIFICATION EXPERIMENTS AND RESULTS 

There have been run many integrated synthesis and 
verification experiments through the design flow of Figure 1. 
Three of them will be discussed analytically here: A computer 
graphics algorithm, a DSP FIR (Finite Impulse Response) filter 
and the classical high-level synthesis benchmark, the second 
order differential equation approximation solver. 

 
Fig. 2.  The high-level ADA model verification 

A. The computer graphics algorithm 

The computer graphics application is a line drawing 
algorithm with the Digital Differential Analyzer (DDA) 
approximation method. Due to its iterative and conditional 
nature is a good representative for testing the Cubed-C‘s 
performance to the loop and if-then type of behaviors. 

ADA or C input design 
model 

ADA or C testbench 

Verified and debugged ADA 
or C input designs 

Rapid, high-level verification 
based on compile and execute 

Cubed-C High-level Synthesis 

RTL models and ANSI-C 
cycle accurate simulators Rapid backend 

verification 

Functional equivalence 
checking 
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First the line drawing algorithm is coded in ADA (a similar 
experiment is done using the C language entry). Also, an ADA-
based testbench is coded and the whole set of programs is 
compiled, executed to verify the correct behavior at this high 
level. Figure 2 shows the high-level testbench run, where the 
input start and end points as well as the intermediate line points 
are clearly formulated and shown in this experiment run. 

 

 
Fig. 3.  Beginning of he cycle-accurate simulation of the line draw app 

After the high-level model is debugged and verified it is 
synthesized into a RTL FSM and the cycle-accurate simulator 
is extracted from the machine. Figure 3 shows the beginning of 
the cycle-accurate simulation where the start and end points of 
the line are entered into the simulator. Then the simulator is 
executed cycle by cycle and this is shown in Figure 4. 

 

 
Fig. 4.  Running the line draw cycle-accurate sim. cycle by cycle 

After the last state is reached (which is indicated with a 
message to the user) the outputs of the simulator can be read as 
shown in Figure 5. Because we used the option to position of 
the line’s points into an external shared memory we notice in 
Figure 5 the last transactions on the signals that interface with 
the memory modules. Alternatively we could follow the 
synthesis option to position the line’s points in embedded 

memory in the line draw processor, but this exceeds the 
purpose of this paper. 

 

 
Fig. 5.  Reading the simulator’s outputs 

B. Simulating the RTL for reassurance 

In order to reassure in practice the formal nature of the 
synthesis process the generated RTL for the line draw app. is 
simulated as shown in Figure 6 and Figure 7. Figure 6 shows 
the whole duration of the generated RTL execution and Figure 
7 the time duration of the transactions with the external 
memory of the FSM results. Figure 7 clearly shows the transfer 
of the 8 line points to the external memory. 

 

 
Fig. 6.  RTL simulation of the generated line draw hardware 

 

 
Fig. 7.  Zoomed RTL simulation at the last 8 pixel transactions with the 
memory 
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C. Assertion-based testbench for line draw 

Figure 8 shows the execution of an automatic, assertion 
based testbench that automatically compares the results (pixel 
by pixel) of the high-level and the RTL simulations. As 
expected there were no differences between the two. This 
testbench asserts suitable success/fail messages to the user, as it 
is shown in Figure 8. In this way, all 3 levels of integrated 
verifications can be co-verified and compared seamlessly. 

 

 
Fig. 8.  Assertion-based, automatic testbench for the line draw 

D. DSP FIR filter 

The next benchmark to present here is a 5-tap DSP FIR 
filter model in ADA and subsequently in VHDL and cycle-
accurate simulator runs. In this paragraph, the high-level and 
the cycle-accurate models execution is discussed, although 
RTL simulations were run as well. Figure 9 shows the 
execution of the algorithmic, high-level ADA model and 
testbench of the 5-tap filter. The setting of the history, the 5 
coefficients and the outputs after 5 shift-outs are clearly shown 
in this picture. Figure 10 shows the Cubed-C backend cycle-
accurate testbench execution during the beginning of the run, 
where the inputs, the history (taps) and the coefficients are set. 
Figure 11 shows the end of the cycle-accurate execution where 
the outputs are read and they are clearly the same as the high-
level testbench of Figure 9. 

 

 
Fig. 9.  Execution of the high-level ADA code model testbench 

 
Fig. 10.  Beginning of the FIR cycle-accurate simulation 

 

 
Fig. 11.  Results of the completion of the cycle-accurate FIR simulator 

E.   The HLS differential equation solver benchmark 

In this subsection the synthesis integrated verification 
experiment with the typical HLS benchmark is described, 
namely the second order differential equation solver. Figure 12 
shows the execution of the functional, high-level ADA model 
and testbench execution in order to rapidly verify at this level 
the differential equation solver benchmark synthesis model. 
The same input values are used in the run of Figure 13 where 
the RTL simulation (giving the same result) of the synthesized 
circuit is shown. Figure 14 shows the cycle-accurate simulation 
near the beginning (setting the inputs) and Figure 15 shows the 
cycle-accurate simulation results from the same model that is 
produced by the same synthesis step as the RTL code. As 
expected in all cases, the results of all types of verification 
match. 

 

 
Fig. 12.  Functional high-level testbench of diff. eq. solver 
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Fig. 13.  RTL simulation of the synthesizeed diff. eq. solver circuit 

 

 
Fig. 14.  Setting the inputs of the diff. eq. solver cycle-accurate model 

 

 
Fig. 15.  Results of the cycle-accurate simulation 

V. CONCLUSSIONS AND FUTURE WORK 

A formal, rapid and integrated with synthesis, verification 
approach based on the Cubed-C High-level Synthesis system 
was discussed in this paper. The major contribution of this 
work is that the presented approach cuts down by orders of 
magnitude the verification effort required for digital design 
projects. All the presented simulations were completed in 
matters of seconds and the formal nature of the synthesis and 
testbench generation mechanism guarantees the correctness of 
the generated implementations. In this way the synthesized 
circuit features the same behavior as the input specification. 
Moreover, by having as specification executable code models 
makes the whole flow into a rapid, formal and seamless as 
well. Also, no modifications on the model and testbench code 
were required and raw programming language constructs were 
used. Future work includes generating cycle-accurate models in 
more verification languages such as C++ and System-C, and 
better use of the backend HDL writer for System Verilog 
flows. 
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