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ABSTRACT 

This paper presents a stochastic finite element method to calculate the variation of eigenvalues and 

eigenvectors of functionally graded beams. The modulus of functionally graded material is assumed to 

have spatial uncertainty as a one-dimensional random field. The formulation of the stochastic finite 

element method for the functionally graded beam due to the randomness of the elastic modulus of the 

beam is given using the first-order perturbation approach. This approach was validated with Monte Carlo 

simulation in previous studies using spectral representation to generate the random field. The statistics of 

the beam responses were investigated using the first-order perturbation method for different fluctuations 

of the elastic modulus. A comparison of the results of the stochastic finite element method with the first-

order perturbation approach and the Monte Carlo simulation showed a minimal difference. 
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I. INTRODUCTION  

Functionally Graded Materials (FGMs) have attracted much 
attention the recent years [1-8]. The idea of FGM was 
introduced in 1984 when the space aircraft project was 
underway in Japan [9]. Compared to generally isotropic 
homogeneous materials, the FGM beams under consideration 
can acquire a high degree of uncertainty in their material 
constants. FGMs are considered one of the most promising 
candidates for advanced composites in various industries, 
including aerospace, automotive, electronics, and, most 
recently, biomedical and aviation [10-11]. Structures 
constructed of FGM have attracted attention in recent years. In 
[12], the free vibration property of a functionally graded beam 
was used with axial or transverse material gradation by 
thickness according to the power law, using the Finite Element 
Method (FEM). In [13], an innovative method was presented to 
create an FGM beam finite element by deriving approximation 
functions from the exact general solution to the static section of 
the governing equations. In [14], the geometric nonlinearity of 
Von Karman was considered in an Euler-Bernoulli beam to 
study the nonlinear vibration of beams constructed of 
functionally graded materials.  

Many researchers have studied problems in mechanics with 
random parameters [15-18]. With stochastic problems of 
continuous systems, analytical methods are almost always 

challenging to find solutions, often using numerical methods 
such as stochastic finite element analysis [19-22] and stochastic 
isogeometric analysis [4, 23]. In [24], the variation of vehicle 
vibration frequency was studied with random stiffness and 
mass parameters of the vehicle. In [25], stochastic dynamic 
problems of a functionally graded material with random 
material properties were studied. In [26], a stochastic finite 
element with uncertain Poisson's ratio was presented for 
bending plates. Stochastic FEM using the weighted integration 
approach for the static problem of nonuniform columns was 
presented in [27]. In [28], the Karhunen-Loève expansion was 
used to develop a stochastic spectral isogeometric analysis for 
the linear elasticity problem. In [29], the first-order reliability 
method and Monte Carlo Simulation (MCS) were used to 
calculate the reliability of laminated composite shells. 
However, very few studies used the perturbation technique to 
determine eigenvector problems. This study attempted to 
extend [30-31], using the results obtained on the eigenvalues as 
a basis to develop the eigenvector problems of FGM beams as 
the form of the perturbation-based stochastic FEM. 

II. FINITE ELEMENT FORMULATION  

At first, the finite element formulation for the functionally 
graded beam was formulated with the case of deterministic 
system parameters. Figure 1 illustrates the functionally graded 
beam with length L in the mid-surface coordinate system.  
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Fig. 1.  Coordinates and geometry of the functionally graded beam. 

Following the feature of the FGM, Young's modulus and 
mass density were assumed to vary continuously along the 
thickness direction (z-axis) according to the exponential 
function. It was also assumed that the elastic modulus and mass 
density was symmetric to the mid-surface, as given in the 
following expression: ���� = ����|
|;    ��� = ���|
|  (1) 

where E0 and ρ0 are the elasticity modulus and mass density in 
the mid-plane (z=0), respectively, and β defines the variation 
trend along the z-axis. A 2-node finite element beam was 
adopted, having Hermite functions as shape functions. The 
respective nodes have two degrees of freedom: translation w 
and rotation θ. Accordingly, the vertical displacement along the 
z-direction w can be interpolated as follows: 

���� = ��� �� �� ��� ���������
�  (2) 

where Ni are the interpolation functions: 

�� = 1 − ����� + �� �   

�� = � − ���� + � ��      (3) 

�� = ����� − �� �   

�� = − ��� + � ��     

The strain energy of the beam element can be written as: !" = # �� $���%�,���'� (�   (4) 

Furthermore, the kinetic energy of the beam element can be 
written as follows: )" = # �� # $������(�(�ℎ/�+ℎ/� �, �'�   

    = # �� .����, �(�'�     (5) 

where, .��� = $��� # ���(�ℎ/�+ℎ/�   and  % = # ������ℎ/�+ℎ/� (�. 

Hamilton's principle was used to find the eigenequation for 
the FGM beam structures within the FEM framework. Before 
that, it is necessary to have the strain and kinetic energy in 
terms of the nodal displacement vector. The final equation of 
motion can be derived by applying the Hamilton's principle: / # �∑ !"1"2� − ∑ )"1"2� �3�34 (5 = 0  (6) 

where N denotes the number of finite elements used in the 
FGM beam model. Taking the variation concerning harmonic 
motion, the following equation emerges for the eigenvalues and 
vectors:  �7 − 89�: = 0    (7) 

The frequency equation that provides the solution for 
frequencies is obtained as: |7 − 89| = 0    (8) 

In these equations, K and M denote the assembled global 
stiffness and mass of the FGM beam, respectively, and λi 
denotes the square of the circular frequency ωi. 

III. PROBABILISTIC ANALYSIS  

The perturbation method is the most commonly used 
technique for studying uncertain systems. This method uses a 
Taylor series to construct an analytical solution for the variance 
of the desired response quantities by extending each random 
variable in an uncertain system around its associated mean 
value, such as the eigenvalues and eigenvectors of a structure, 
due to the smallest variations in the random variables. The 
stiffness and mass matrices of the beam and plate and their 
responses are represented in terms of a Taylor series 
formulation concerning the parameters centered at the mean 
values. The Taylor series is often only extended to the first-
order perturbation method. The elastic modulus is described as 
a one-dimensional Gaussian homogeneous random field with 
zero mean R(x), given by: ���, �� = ���1 + ;������|
|   (9) 

The random field of elastic modulus in the element is 
approximated by averaging random variables within it:  � ≈ �� =1 + >4?>�?...?>AB> C   (10) 

Let D = ⟨DF⟩, H = 1, ID be a vector of the random variable, 
where nr is the number of coefficients of the random variable 
vector r. Since two kinds of random parameters have to be 
considered, elastic modulus and mass density, the vector r is 
represented as D = ⟨J, 5⟩, where s and t are the random variable 
vectors for elastic modulus and mass density, respectively. For 

the mid-point rule, = KJ�, J�, . . . , JB>LM, 5 = K5�, 5�, . . . , 5B>LM, and IDN, ID3 = I� is the number of finite elements in the domain. 
That is, each random variable is associated with the 
corresponding finite element. In the case of the local average 

scheme, J = KJ�, J�, . . . , JB>LM, IDN = I� × IP, where IP is the 

number of integration points within each finite element. 

Similarly, 5 = K5�, 5�, . . . , 5B>L  M , ID3 = I� × IP . Here it is 

assumed that the mean of the respective random variable is 
zero: ��J� = ��5� = 0. 
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The Taylor series of system matrices and vectors is: 7�D� = 7� + 7,QRJQ + 7̸,QR5Q +  �� T7,QURJQRJU + 7̸,QUR5QR5U + 27̸,QURJQR5UW (11) 9�D� = 9� + 9̸,QRJQ + 9,QR5Q  + �� T9̸,QURJQRJU + 9,QUR5QR5U + 29̸,QURJQR5UW (12) X�D� = X� + X,QRJQ + X,QR5Q  + �� TX,QURJQRJU + X,QUR5QR5U + 2X,QURJQR5UW (13) 8�D� = 8� + 8,QRJQ + 8,QR5Q  + �� T8,QURJQRJU + 8,QUR5QR5U + 28,QURJQR5UW (14) 

Here, D = ⟨J, 5⟩ Y� = Y|>2�, Y,Q = Z[Z>\]>2�,  
Y,QU = Z[Z>\Z>^_>2� , `, a = 1,2, . . . , ID  (15) 

RJQ = JQ − J̄Q = JQ , R5Q = 5Q − 5̄Q = 5Q  (16) 

It is apparent that stiffness is only a function of random 
elastic modulus and the mass matrix is of random mass density. 
The summation is implied with the repeated indices. By 
substituting the expanded expressions for the system matrices 
into the eigenanalysis expression, the equation in the same 
order can be obtained as follows: 

The 0-th order equation: �7� − 8�F9��X�F = 0    (17) 

The 1-st order equation: �7� − 8�F9��X�F = −�7,Q − 8�F9,Q − 8,QF9��X�F (18) 

Considering only the linear terms, the linear variance of the 
eigenvalue and eigenvector is: 8,QF = XFcT7,Q�N� − 8F 9,Q�3�WXF    (19) deD����X� = ���X − Xf���X − Xf��c�  = �gTX,Q�N�JQ + X,Q�3�5QWTX,U�N�cJU + X,U�3�c5UWh  

= X,Q�N�X,U�N�c�gJQJUh + X,Q�3�5QX,U�3�c5Q�g5Q5Uh  +2X,Q�N�JQX,U�3�c�gJQ5Uh    (20) 

where: X,Q�N� = −ij+��7,Q�N� − 8�9̸,Q�N� − 8,QN 9��X�  X,Q�3� = −ij+��7̸,Q�3� − 8�9,Q�3� − 8,Q�3�9��X� (21) deD����X� =−ij+� k7,Q�N� − 8,Q�N�9�l X�X�c k7,U�N� − 8,U�N�9�lc ij+c;NNTmQUW  +ij+� k8j9Q�3� + 8Q�3�9�l X�X�c k8j9,U�3� + 8U�3�9�lc ij+c;NNTmQUW  

−ij+��7,Q�N� − 8Q�N�9��X�X�c�8j9,U�3� + 8,U�3�9��ij+c;NNTmQUW −ij+��8j9,U�3� + 8,U�3�9��X�X�c�7,Q�N� − 8Q�N�9��cij+c;NNTmQUW (22) 

where ;NN�mQU� is the autocorrelation, ;N3�mQU� is the cross-

correlation, nop is the coefficient correlation, and d is the 

correlation distance. 

;NN�mQU� = qo� ��P k− r��s�l   (23) 

The coefficient of variation (COV) of the response 
eigenvector shows the degree of dispersion of the distribution 
of the eigenvectors and is given as follows: COV = wx|yx|     (24) 

where σX is the standard deviation of the random eigenvectors 
and μX is the mean of the random eigenvectors. 

IV. NUMERICAL EXAMPLES 

The constituent geometric dimensions of the FGM beams 
were h = 1 m and L = 20 m. Young's modulus ratio is ��/��, 
where �� and �� denote Young's modulus at the middle and the 
top surface of the FGM beam, respectively. The mid-surface of 
the beam is 100% aluminum, with mean values of material 
parameters similar to [31]: �� = 70 GPa, � = 2,780 kg/m

3
, and 

ν=0.33. Using the first-order perturbation expansions of the 
proposed stochastic FEM analysis, the response variability of 
the eigenvector of the first mode was calculated and is shown 
in Figures 2, 3, and 4. The results of the MCS using 10,000 
samples generated by representative spectral [32] are given 
also. As seen in Figures 2-4, the perturbation method results 
agree very well with the MCS [30] results in all cases of mean, 
Standard Deviation (SD), and COV of eigenvector. 

 

 
Fig. 2.  Mean of eigenvector. 

Figure 5 shows the effect of the correlation distance d of the 
stochastic field on the variability of the COV of the 
eigenvector, where the results of the proposed formulation are 
compared with those of the MCS for the same cases of the 
stochastic FEM. The results designated by a dotted line denote 
the corresponding results of the MCS for correlation distances 
of 1, 10, 15, and 20. As seen in Figure 5, the results of the 
perturbation method agree very well with the results of the 
MCS in all cases. It is observed that the increasing rate of the 
correlation distances is accelerated with a decrease in the COV 
of the stochastic field.  
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Fig. 3.  SD of eigenvector. 

 
Fig. 4.  COV of eigenvector. 

 
Fig. 5.  COV of eigenvector as x coordinate of beam for different 

correlation distance d. 

 

Fig. 6.  Effect of elastic modulus ratio on the COV of the eigenvector. 

Figure 6 shows the effect of Young's modulus ratio on the 
COV of the eigenvector. The COV of the eigenvectors is 
observed to be unaffected by the modulus ratio of the Young 
parameter. The elastic modulus ratio affects only the specified 
stiffness of the beam and does not affect the random field 
properties, which are assumed to be unidirectionally varying 
along the axis beams. 

V. CONCLUSIONS   

This paper extended the stochastic FEM using the first-
order perturbation approach to develop the eigenvector of a 
beam. In the stochastic FEM approach, the local average 
scheme was used to discretize random processes rather than the 
midpoint rule. The comparison of the mean, standard deviation, 
and coefficient of variation of the eigenvector in an FGM beam 
predicted by stochastic FEM with those by MCS in previous 
studies considering random Young's modulus produced the 
following conclusions for the systems: 

 The FGM model was analyzed to demonstrate the adequacy 
of the proposed formulation. The first-order perturbation 
results showed good agreement with the MCS results for 
mean, standard deviation, and coefficient of variation of the 
eigenvector. 

 The increasing rate of the correlation distances was 
accelerated with a decrease in the coefficient of variation in 
both FEM and Monte Carlo simulation.  

 For both analysis methods, the results showed that the 
response variability of the eigenvector was not affected by 
either the elastic modulus ratio on the top or middle 
surfaces of the FGM beams. 
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