
Engineering, Technology & Applied Science Research Vol. 13, No. 4, 2023, 11375-11386 11375

www.etasr.com Aljaloud & Razzaq: An Innovative Metric-based Clustering Approach for Increased Scalability …

An Innovative Metric-based Clustering

Approach for Increased Scalability and

Dependency Elimination in Monolithic Legacy

Systems

Abdulaziz Aljaloud
College of Computer Science & Engineering, University of Ha’il, Saudi Arabia

a.aljaloud@uoh.edu.sa

Abdul Razzaq

Ocean Technology and Engineering, Ocean College, Zhejiang University, PR of China

11934071@zju.edu.cn

Received: 16 May 2023 | Revised: 30 May 2023 | Accepted: 8 June 2023

Licensed under a CC-BY 4.0 license | Copyright (c) by the authors | DOI: https://doi.org/10.48084/etasr.6048

ABSTRACT

Scalability is one of the system’s characteristics highlighted in the recent literature, and it is directly

related to issues that are encountered in state-of-the-practice technology. The scalability of a system is

challenging because monolithic legacy systems are hard to scale due to the high level of component

dependencies. To the best of our knowledge, there is no published work available that can identify the

components from a monolithic legacy system in the context of dependent and independent components and

scale them accordingly. The main contribution of this paper is the proposal of a novel approach for the

exclusive identification of dependent and independent monolithic legacy system components. The proposed

approach also helps to remove the dependency among components of monolithic legacy systems. As a

result, it establishes a precise method that identifies all the components of an application and removes the

dependency among components, helping to increase the scalability of the resulting application. This

approach was validated by several experiments, and the key findings were the identification of dependent

and independent components, the identification of relationships among components, and the identification

of the abstract level architecture of the monolithic legacy system. In future work, the proposed method will

be enhanced toward the recovery of the whole system’s architecture.

Keywords-monolithic application upgradation; system components; architecture recovery; dependency;

scalability of monolithic systems; reverse engineering

I. INTRODUCTION

Scalability is a needed quality attribute of a process or
system of non-functional requirements that describes the ability
of the software to scale analogous to the demands (load
scalability, structural scalability) [1-5]. Scalability saves
resources in terms of the time required to scale the software [6].
If scalability issues are not fixed rapidly and timely, the system
can become unmaintainable [5]. At the point when scalability
isn't altogether disregarded, requirements regularly are
described distinctly regarding application boundaries.

 Load scalability: A component of a monolithic legacy
system can be added, removed, or modified to
accommodate changing loads. The system has the ability to
adapt graciously as the presented circulation increases [4].

 Structural scalability is the capacity of a system to extend in
a picked measurement without significant modifications to

its architecture, and its usage or models don't impede the
development of the number of objects it encompasses [4].

A monolithic legacy system architecture is the traditional
unified model for software development and design.
Traditional software is intended to be self-contained. Software
components are interconnected and related as opposed to
loosely coupled just like the case with a software modular [7].
This can create many challenges for groups working in a
similar environment [8]. A monolithic legacy system is simple
to develop and to test and has numerous obligations, e.g. it is
independent from other applications and self-contained. These
traditional architectures are commonly hard to upgrade, deploy,
and maintain, and difficult to understand [9].

After the evaluation of the relevant research, it has been
established that dependency removal of a component to
increase the scalability of a system is an area where a serious
effort is required to bridge the identified knowledge gaps.

Engineering, Technology & Applied Science Research Vol. 13, No. 4, 2023, 11375-11386 11376

www.etasr.com Aljaloud & Razzaq: An Innovative Metric-based Clustering Approach for Increased Scalability …

A. Components

Components play a significant role in reducing the
scalability issues of monolithic legacy systems [10].
Components are defined as the smallest self-managing,
autonomous, and helpful sets of a system that works in various
environments. Components are regularly circulated objects
consolidating propelled self-administration features [11]. The
components utilized in these essential programming
applications are comprised of central blocks that can be joined
together, relying on the prerequisite [12]. Components increase
the productivity of application developers and improve the
programming quality due to the high level of reusability [13]. It
is vital for an application developer to alter parts since it is
uncommon to discover the components coordinating their non-
functional and functional requirements in new system
applications [13]. Software engineering is favored due to these
reasons. It can address these worries beginning from the
prerequisite of the undertaking. The activities are to be
executed by the product of a specific business for which it is
planned [14]. Additionally, it can likewise guarantee the duty
regarding individual groups. Software development based on
components has emerged as a successful way to deal with
building an adaptable system. Component-based work has risen
as a compelling way to deal with complex programming
systems [15]. Its advantages incorporate decreased
improvement costs through reusing off-the-shelf components
and expanded flexibility through including, evacuating, or
replacing components [16, 17].

The system applications are to be kept running in the cloud
with effectiveness. This requires substantially more expertise
than what is essential to convey any programming in virtual
machines. It is continuously prescribed to oversee cloud
applications consistently to use their assets as per the
approaching burden and to confront the disappointments, to
duplicate and rehash every one of the segments to give
flexibility if there should arise an occurrence of inconsistent
framework [18]. When a program is planned to keep in view
every one of the prerequisites, it turns out to be very extreme
for the software architect to present radical changes which are
later on requested by plans of action or clients as often as
possible since it turns out to be progressively entangling for the
designer to make changes when the code begins extending as a
result of the inclusion of various individuals who make changes
in the product [19]. As increasingly more exertion is required
to facilitate updating in the highly coupled architecture of a
monolithic design. This entire procedure, makes the discharge
cycle of the application moderate [20] and the model delicate
and untrustworthy. Versatility is an essential element that
requires the task and advancement of large enterprise
applications [21]. The major downside of the monolithic
application is its deficiency of scalability when a specific
errand is to be performed inside the components [22]. The
lengthy software cycle in light of the multifaceted nature of the
framework is an obstacle in current, dependable
administrations. In this strategy, the figuring method delivers
the wanted outcomes. The method utilized is bunching, which
is considered the least essential and challenging procedure
utilized in building and science [12]. The primary and most
essential target of executing this system is to mention the

objective facts clearer to build up a superior comprehension.
This robust understanding makes it simple to create complex
information structures from given directives. A grouping
strategy or technique is commonly used to distinguish all the
related segments of monolithic legacy systems alongside their
duties. As the info utilized in this procedure features the
interconnectivity of every one of these parts, this grouping
strategy is beneficial to limit the interconnection among various
components to create ideal outcomes.

B. Clustering

In the proposed method, reverse engineering is used to
produce the wanted outcome. This method utilized with the end
goal of reverse engineering is considered the least complicated
and the primary method utilized in engineering and science [12,
23]. The primary and most imperative target of implementing
this method is to mention the objective facts clearer in order to
build up a superior understanding. This awareness makes it
simple to create a sophisticated learning structure from given
highlights. Bunching strategy or technique is commonly liked
to recognize all the related parts of monolithic legacy systems
alongside their obligations [24]. As the information utilized in
this strategy features the interconnectivity of every one of these
components, this metric-based clustering method is very
valuable to limit the interconnection among various parts in
order to create the ideal outcome [25, 26]. Clustering is a
procedure in which huge frameworks are divided into pieces.
This sensible framework exhibits that the substances which
bear closeness with each other have a place in a similar
subsystem, while the elements with a contrast among each
other are ordered into various subsystems [12]. The clustering
procedure is commonly utilized in distinguishing the product
parts [18, 27]. A software developer with vast experience may
highlight two kinds of issues in practice. The first issue is that it
is challenging to decide on an explicit cluster, which is utilized
for profoundly coupled parts [26, 28]. The second issue is to
decide on the bunch mapping, which connects the software
components [29].

C. Metrics

Metrics are tools for gathering and organizing data into
coherent groups. In the context of this particular research,
metrics assume a crucial role in assessing the various
components of a monolithic legacy system [32, 33]. By
employing metrics, we are able to effectively categorize and
cluster all relevant system components. Through this process,
we discover the intricate relationships between these
components, identifying dependencies and independencies
among them. These metrics provide us with a comprehensive
understanding of the system's inner working and enable us to
gain insight into its overall structure and functionality. By
mapping out the interdependencies, we are able to discern the
impact that changes or modifications in one component could
have on others, aiding us in making informed decisions
regarding system maintenance, optimization, or potential
refactoring efforts. Furthermore, the metrics serve as a means
to quantify the system's performance, highlighting areas of
strength and potential weaknesses or bottlenecks. This
information is proved to be invaluable in the pursuit of
improving a system's overall efficiency and reliability. Through

Engineering, Technology & Applied Science Research Vol. 13, No. 4, 2023, 11375-11386 11377

www.etasr.com Aljaloud & Razzaq: An Innovative Metric-based Clustering Approach for Increased Scalability …

the diligent utilization of metrics, we are able to extract
meaningful insight and enhance our comprehension of a
monolithic legacy system, ultimately contributing to its
enhancement and evolution.

D. Related Work

There are many approaches in identifying the software
components of monolithic legacy systems. Authors in [34] find
the components based on classes and use a clustering
algorithm. The approach presented in [35] makes use of only
variables related directly to components. However, this can
lead to low component quality. The identified components do
not fulfill the requirements of scalability. Authors in [34] relied
extensively on UML diagrams only, which may not mirror the
original structure of a system [36, 37]. However, our method is
general and based on the investigation of the source code [38],
which leaves the leading software design curio that mirrors the
truth of a system. To the best of our knowledge, there is not a
method/technique in the literature for identifying the
components of a monolithic legacy system in the context of
dependent and independent components and relationships
among them. It is necessary to scale the developed monolithic
legacy system. By using the proposed method, we identified
the components and also found the relations among them and
made an abstract-level architecture of the monolithic legacy
system. In this way, software architecture, open-source
advancement, authoritative structure, and obligation are
vertically disintegrated [27]. During the time spent on software
development, a complex system is challenging to be architected
expertly. So, architecture refinement plays a critical job in the
description of software architecture [12]. In a stepwise
refinement, a succession of steps beginning from a unique
detail of the design prompts a reliable, execution-focused, and
building model [39]. To the point of a component, the
conceptual architecture could be refined to a progressively
robust design by sets. The architecture comprises two parts and
a connector. The reality of software architecture representation
gives numerous points of interest amid all the periods of the
programming life cycle [20, 40]. For some systems, like the
inheritance ones, there is no available representation of their
architecture [41, 42]. The interface of a component should be
the essential concern of its designer or developer. Since the
components are intended for use in an assortment of systems
and need to give the administrations the ability to pay a little
heed to the setting, designers endeavoring to utilize a segment
must almost certainly distinguish the capacity of a component
and the methods for invoking its behavior [43]. Monolithic
applications come up with failures when the number of clients
getting to a system becomes excessively high or when too
many features are integrated into a single system [20].
Component architecture gives software engineers a way to deal
with the multifaceted nature of vast-scale logical recreations
and to push toward a fitting and-play condition for elite
figuring [44]. Some vast and expensive software systems work
in a constant domain under requesting execution prerequisites.
Often a large portion of the expense for an item is spent on
support [45]. Numerous advantages can be picked up by
partitioning a system into components. Additionally,
maintainability and scalability are accomplished [46, 47]. A
comparison of some appropriate methods is shown in Table I.

TABLE I. COMPARISON OF PREVIOUS AND PRESENT
WORK

Previous works Present work

-Identification of only

components

-No identification of dependent

components & relationships

among components

-No identification of the

architecture of the system

-Identification of independent components

-Identification of dependent components

-Identification of relationships among the

components

-Identification of abstract level architecture

of the monolithic legacy system

E. Contribution of this Study

 Method Creation: A method was developed to identify
dependent and independent components in a monolithic
legacy system using metrics and clustering techniques.

 Scalability Enhancement: The method was successfully
applied in a multinational industrial project, resulting in
increased scalability.

 Dependency Removal: The dependent and independent
components were identified and dependencies among the
dependent components were eliminated by adding a few
lines of code.

 Abstract-Level Architecture: An abstract-level architecture
derived from the monolithic legacy system was achieved,
providing higher-level insight into the system's design.

 Solution Applicability: Considering the applicability of the
solution in terms of methods, dependencies, and
architecture level refactoring, the solution needs to be
further evaluated in terms of legacy migration for emerging
software. Specifically, we focused on evaluating refactoring
or modernization of the existing software to modern
computing platforms such as mobile computing [43] and
architecture-level refactoring of quantum software [44].

 Featured Method: This research is an effort to fill the
identified gap in the literature. Scaling a monolithic legacy
system can be useful for academic and industrial works.
The monolithic legacy system can be scaled after its
components are identified. It is useful for monolithic legacy
systems that have no documentation and their components
are unknown, to know how can the system be scaled
further. This method helps achieve high cohesion and low
coupling of the monolithic legacy system’s components.

II. RESEARCH METHOD AND COMPONENT

MAPPING

A. Research Method

1) Research Questions (RQs)

 RQ1. What techniques/methods are reported in the
literature regarding the identification of the components of
the developed monolithic legacy system and the removal of
the dependencies of applications’ components?

 RQ2. Why is it necessary to find and remove the
dependency on the monolithic legacy systems application’s
components?

Engineering, Technology & Applied Science Research Vol. 13, No. 4, 2023, 11375-11386 11378

www.etasr.com Aljaloud & Razzaq: An Innovative Metric-based Clustering Approach for Increased Scalability …

 RQ3. How to resolve the dependency issue of the
application’s components in order to increase the scalability
of the monolithic legacy system?

 RQ4. What is the impact of the novel proposal when
compared with the state of the art?

TABLE II. RQs DISCUSSION

RQs Discussion

RQ1

We did not find any method or technique for finding the

components of developed systems and for removing component

dependencies.

RQ2
Scalability is the primary quality attribute to achieve by

removing the dependencies of the application’s components.

RQ3

We developed the metrics-based clustering method to identify

the dependent and independent components of the applications

and added a few new lines of code to remove dependencies.

RQ4

We identified the conceptual architecture of the monolithic

legacy system and identified the relations among all

components of the application. It’s abstract level architecture.

The research method comprises the following components:

 Critical literature evaluation and analysis.

 A method for proof of concept is built in order to validate
results.

 Case study results and analysis of data for answering the
raised research questions.

 Concluding the research based on analyzed data and own
interpretive deductions.

2) Rationale

Table II discusses the research questions. We undertook the
study in order to find the dependent and independent
components of a monolithic legacy system. After finding all the
components of the system, we removed the dependencies of
components and classes by using the proposed model with
metrics-based clustering. The monolithic legacy system can
scale by using the proposed method.

3) Type of Study

The contextual investigation is similar in nature to what
will be utilized in the current study. Comparative study is
conducted to find out the impact of large and small projects in
order to remove the component dependencies.

4) Study Analysis

We measured and compared the results of the project
keeping in mind the reusability of components and the
achievement parts (e.g. dependent and independent
components, relationships among components, and abstract
level system’s architecture) of the proposed model.

5) Case Study Context

Proposing a new technique is the primary context of the
case study.

6) Expected Result

By using the proposed method for increasing the scalability
of a monolithic legacy system, the expected result was
completed successfully.

7) Component Mapping

To identify the software components of monolithic legacy
systems, we made the component model of Figure 2 and
showed the relationships among all methods (Figure 1).

B. Attribute Relations

Attributes are variables where data are stored temporarily.
The first step of the proposed method is to start from the
variables in order to find the dependent and independent
components of the monolithic legacy system. We provide a list
of attributes in Figure 1 (V1-13, V1-V59, V60-V67). A =
Attribute, V= Variable

C. Methods

In the second step, we list down all the methods (Table III).
We identified the relationships between methods and attributes
(Figure 1).

D. Attributes to Methods

We listed down all the attributes and created relevant
groups. We define the groups of methods with relevant
attributes (Figure 1).

E. Mapping Methods to Component

The different method collections are defined (Figure 1).
Each silhouette is composed of different sets of methods. The
silhouette interface is the boundary of methods and sets of
attributes inside the silhouette center. These interfaces have a
link with other methods from the outside of the silhouette.
Figure 2 describes the attribute mapping component model.
This model shows the mapping structure of the components.

F. Lack of Cohesion of Methods (LCOM)

The single obligation rule expresses that a class should not
have more than one motivation to change. Such a class is said
to be durable. A high LCOM esteem, by and large, pinpoints an
inadequately cohesive class.

LCOM: max ((1-2), 0) (1)

Maximal Cohesion: attributes are accessed by all methods
LCOM = 0 (2)

No cohesion: a unique attribute is accessed by each method
LCOM = 1 (3)

������� = �	 − � if 	 > �
0 Otherwise (4)

where J is the number of pairs of discrete strategies in C which
don't share instance attributes, Q is the number of pairs of
discrete strategies in C which share the instance attributes, m is
the number of methods, a the number of attributes, m(Ai) the
number of methods that access Ai

m(Ai) =
��

� ∑ ������
��� !�

"!� (5)

Maximal Cohesion: all methods access all attributes

m(Ai) = m and LCOM = 0 (6)

No cohesion: each method accesses a unique attribute

m(Ai) = 1 and LCOM = 1 (7)

Engineering, Technology & Applied Science Research Vol. 13, No. 4, 2023, 11375-11386 11379

www.etasr.com Aljaloud & Razzaq: An Innovative Metric-based Clustering Approach for Increased Scalability …

If some attributes are not accessed at all, then:

m(Ai) = 0 (8)

and if no attributes are accessed:

��
� ∑ ������

��� !�
"!� = !�

"!� = 1 $ "
�!" (9)

Fig. 1. Method relationships and structure.

III. PROPOSED SOLUTION MODEL

A. Solution Brief

In this proposed method, we used different techniques
(clustering, matrices, and LCOM matrix formula). This
approach is divided into different categories. First, we extract
the abstract-level solution model for understanding the method
flow and its different sections (Figure 1) in an abstract-level
model design. After this, we made a detailed solution design
model with different sub-phases, which shows the holistic flow
of the solution design.

Fig. 2. Attribute and object mapping component model.

B. Project Brief

The monolithic legacy system is a .net project. There were
two projects, the first one a small pilot study, and the second is
one of medium level. The proposed technique was applied to
both projects. We measured the results and the type of impact
on through this proposed method. We used the proposed

method on classes and methods/functions to find the
similarities and dependencies of every class and
method/function. This helped us to recognize the components
of the monolithic legacy system. To identify the monolithic
legacy system components, two sets of categories of
components were made, independent components and
dependent components. The way to verify dependent
components is mentioned below. Finally, we removed the
component dependencies (Figure 1) and scaled the monolithic
legacy system by adding a new component. The medium level
project development was made in the MVC .NET Framework.
The duration of this project was four months and two
developers were employed. The number of code lines was
7,944 and a total of 330 classes formed the depth of
inheritance. Further details and significant parts of the project
are mentioned in Table III.

Fig. 3. Abstract model of the proposed solution.

TABLE III. PROJECT CODE DETAILS

Parts (Operations) Class coupling LOC

Areas

Admin section 7 29

Admin controller 82 1117

Admin models 95 1906

Approval 4 4

Approval controllers 57 912

Budget 4 4

Budget controllers 2 7

Budget models 17 71

Request 4 4

Request controllers 29 109

Request models 24 217

User management 4 4

User management controllers 117 1638

User management models 70 807

Vendor 4 4

Vendor controllers 35 170

Vendor models 31 213

Figure 3 shows the procedure at the abstract level of our

proposed method and its flow. The proposed method has five
processes. The first process is the project. Projects must have
classes or methods/functions. The second process is the
clustering technique, which we used with metrics in our
method. The third process is identifying components by
applying the proposed method. The fourth process gives us an

Engineering, Technology & Applied Science Research Vol. 13, No. 4, 2023, 11375-11386 11380

www.etasr.com Aljaloud & Razzaq: An Innovative Metric-based Clustering Approach for Increased Scalability …

abstract-level architecture model of component relations. In the
last process, we identify dependent and independent
components. We add a few lines of code to remove the
dependencies where it is necessary.

Fig. 4. Holistic proposed solution model.

The project in the first process is a monolithic legacy
system that can be a web application or desktop software and
can be written in any programing language. The second process
is the basis of the proposed method, which we designed using
the clustering technique. The proposed method is based on
metrics. We used clustering techniques in our method for
making groups or related methods that are being used in a
monolithic legacy system. We find the code methods/functions
and insert each method/function in the metric. We also write
the value of each method, i.e. how many times this
method/function is used in other methods. Also, we checked
and wrote the accessibility of each method for another method.
We counted the number of usage values by applying
intersection and writing down the exact values in the metric
and how many times it is being used in other methods. The
third process is defining a monolithic legacy system’s
components. In this process, we find components based on our
metrics, check the relations, and make groups by using the
clustering technique and further separate them into groups.
Each group expresses its related component. We measured the
relationships among methods/functions and found the relations
among components that show the dependency among them.
The independent components were also found. The fourth
process is a component architecture model of the monolithic
legacy system. To reach this process, we have identified the
dependent and independent components of the monolithic
legacy system and the relationships among all components. We
see the complexity of the methods and the complexity of the
components’ relationships to make them independent. We
make new classes or write code for methods to make them
independent. We make the abstract-level architecture model of
components by using their relationships. It is a high-level
architecture model.

IV. RESULTS AND DISCUSSION

We performed experiments on an industry-based
monolithic legacy system and a pilot study. We found that the
impact was the same in both studies. Our approach helps the
developer identify components and the system’s structure. It

also allows the architect to create abstract-level architecture.
We performed the clustering technique with metrics on
components to find the similarity and dependency of each
method used in the monolithic legacy system. Based on the
proposed method, we identified the monolithic legacy system’s
components in two different categories of components,
independent, and dependent. Independent components are
easily scaled and reused without any risk, but dependent
components cannot be easily scaled or upgraded in the
monolithic legacy system, so it was needed to make the
dependent components independent. We also identified the
abstract level architecture of the monolithic legacy system.
Once we identified all the system’s components, we created the
architecture of the monolithic legacy system based on the
components’ relations and the method’s logic (Figure 7).

Fig. 5. TTMS component abstract architecture model.

Figure 5 shows all the components used in this project.
These components are fully functional in the system. We
designed all component models with the Enterprise Architect
Tool. We used the standard rules, the "provider," and the
"required" interfaces. Details about Figure 5 are described
below:

 Request: it has the functionality to execute a request by
Employee, Admin POC, or Approver. Requests can be
generated under different conditions like priority, category,
and location wise.

 Employee: it creates the request and checks its progress.
Emails are generated on the biases of each request’s action.
An employee can communicate directly to its related POC
based on the request. An employee can only create a
request based on an auto-detected location, authenticated by
an active directory (AD).

 Admin POC: it can create a request for itself and also on
behalf of an employee. It has the capability to make the
request on behalf of employees who are under the POC.
Once a request is created on behalf of an employee, an
email is sent to the employee about its update. The POC
also has limited rights based on locations and category. The
POC can only create or proceed with a request which is
under the categories and locations' rights. The POC
proceeds with the request that is created by the employee or
itself. The POC can entertain any request which comes
under its roles. It can reject the request made by the and

System
application

Metrics Clustering

• Clustering

• Components

System Application’s
Components

• Independent Components

• Dependent Components

System Application
Component Model

• Identify relationships among
Components

• Add new LOC

• Remove dependency

Engineering, Technology & Applied Science Research Vol. 13, No. 4, 2023, 11375-11386 11381

www.etasr.com Aljaloud & Razzaq: An Innovative Metric-based Clustering Approach for Increased Scalability …

send a comment about the rejection whereas it can also
communicate for further information about the request.
After completion, of all proceedings of request and return
from the vendor, the POC verifies the request and generates
the invoice according to verification. All details of the
invoice were automatically fetched from the database,
which has been updated by the vendor. The POC can adjust
the amount if something is missed by the vendor and let
them know. This adjustment history is maintained with
previous and new records. A POC can generate reports in
detail or summary and with different filters to see things
like categories, locations, and dates.

 Approver: it can proceed with the new request by itself.
The approver can proceed with the request, which is
forwarded by the POC for approval. The Approver can
entertain any request amd submit it to the vendor, which
comes under its roles and amount limit. The Approver can
communicate with POC regarding requests or can reject the
request back to POC with reasons. An Approver can check
the request’s details. The Approver also has the role of
seeing the reports.

 Vendor: The Vendor must deliver the required items in
requests. If a Vendor does not have a task, it can update the
missing items in a request. The Vendor can communicate
with the POC if it needs more details about the request’s
items. The Vendor can respond to the request and can check
its progress. Once the job is done and all the items of the
request are delivered, the Vendor closes the request as
completed. If some items are delivered, the Vendor can
update the request’s status as a partial and can close it.

Figure 6 displays the intersection point between the Admin
POC and the Approver components with the Employee
component. This diagram visually represents the
interdependencies that exist among these components,
particularly their reliance on the Employee (request)
component. The Admin POC and Approver components are
intricately connected to the Employee component, as they rely
on its functionalities to perform their respective tasks.

Fig. 6. Intersection among components.

Figure 7 provides a visual representation of the interfaces,
requirements, and providers associated with each component
within the system. It is important to note that Figure 7
represents the dependent component model prior to

implementing the proposed method. Within this model, a clear
observation is made: all components, namely Employee,
Admin POC, and Approver do not depend on the Request
component. This dependency indicates that the functionality
and proper operation of these components rely on the
availability and proper functioning of the Request component.

Fig. 7. TTMS component relation architecture design with required and

provider interface.

Fig. 8. Independent component model.

Fig. 9. Employee Request component.

Figure 8 shows the independence of the Requester
component among all components. This component model is
created after applying our proposed model, which clearly
shows the elimination of component dependencies. Employee,
Admin POC, and Approver components were dependent on the
Request component before. Now, after removing the
dependency, the employee component is separated from the
Request component. Figure 9 presents a comprehensive
overview of the dependencies within the system, showcasing
the intricate interconnections among various methods and
components. This diagram elucidates the profound bond

Engineering, Technology & Applied Science Research Vol. 13, No. 4, 2023, 11375-11386 11382

www.etasr.com Aljaloud & Razzaq: An Innovative Metric-based Clustering Approach for Increased Scalability …

established with a specific method and how it affects the
functioning of other components. Interdependencies with other
components create a web of relationships that significantly
impact the overall system's functionality and performance. This
depiction of dependencies in Figure 9 reinforces the need for a
comprehensive approach to system design and maintenance,

where careful consideration is given to understanding and
managing these intricate bonds. By recognizing the
significance of these dependencies, system architects can make
informed decisions to optimize system performance, enhance
modularity, and enable seamless integration of future
enhancements or modifications.

Fig. 10. Admin POC dependent component.

Fig. 11. Approver dependent component.

Figure 10 provides a clear visualization of the dependencies
between all methods within the system and the Request
component. This diagram highlights the crucial role of the
Request component as a central entity, upon which various
methods rely for their operations. It demonstrates the intricate
network of dependencies, emphasizing that each method
requires the functionality and data provided by the Request
component to fulfill its purpose effectively. Moreover, it is
worth noting that a significant change has been implemented
concerning the dependency of the Admin POC component, as
indicated in Figure 15. This change removes the dependency of
the Admin POC component on the Request component, which
was previously present. This alteration reflects a modification
in the system's architecture, enabling the Admin POC
component to operate independently, without relying on the
Request component for its functionalities. By visualizing the

dependencies in Figure 10, system designers and developers
can gain valuable insight into the relationships among methods
and components. It provides a basis for identifying potential
areas of optimization, enhancing modularity, and improving the
overall efficiency of the system. The removal of the
dependency of the Admin POC component, as depicted in
Figure 15, demonstrates a proactive approach to decoupling
dependencies and refining the system's architecture for
enhanced flexibility and adaptability.

Figure 11 visually illustrates the dependencies between all
methods and the Approver component within the system. This
diagram showcases the vital role of the Approver component as
a central entity that various methods rely on for their
functionality. It effectively portrays the intricate network of
dependencies, emphasizing that each method requires the
Request component to fulfill its specific tasks effectively.

Engineering, Technology & Applied Science Research Vol. 13, No. 4, 2023, 11375-11386 11383

www.etasr.com Aljaloud & Razzaq: An Innovative Metric-based Clustering Approach for Increased Scalability …

Fig. 12. Admin POC component dependent on Request creating method.

Figure 16 illustrates a significant modification made to the
system's architecture, specifically the removal of the
dependency on the Approver's component. This change, as
depicted, enables the Approver's component to function
independently, freeing it from relying on the Request
component for its operations. The visual representation in
Figure 11, combined with the adjustment showcased in Figure
16, emphasizes the system's adaptability and flexibility. It
reflects the effort to reduce dependencies and enhance the
modularity within the system's design. By removing the
dependency on the Approver's component and accommodating
different request models, the system becomes more versatile
and capable of handling diverse scenarios effectively. These
modifications not only improve the overall efficiency and
maintainability of the system but also pave the way for future
scalability and extensibility. System designers and developers
can utilize the insights provided by Figures 11 and 16 to
optimize the system's architecture, ensuring smooth operation
and facilitating seamless integration of additional features or
enhancements.

Table IV serves as a valuable qualitative representation of
the dependency relationships among all components within the
system. It provides insightful information about the ways
different components rely on each other to fulfill their
functionalities. By examining Table IV, we can observe that
the Employee (Request) and Admin components depend on

each other, implying that their operations are closely
intertwined. Additionally, the Approver's method is primarily
reliant on the Create() method, indicating a more specific
dependency within the system. Table V showcases the
transformative outcome after applying the proposed method
and removing the dependencies among components. The Table
clearly demonstrates that the monolithic legacy system's
components have become independent, marking a significant
shift in the system's architecture. Table V represents the main
result of the decoupling process, highlighting the successful
attainment of independent components that were previously
dependent. The removal of dependencies has freed the
components from relying on each other, enabling them to
operate autonomously. This newfound independence among
the components has substantial implications to the system. It
enhances modularity, flexibility, and scalability, allowing for
easier maintenance and future modifications. Each component
can now be modified, updated, or replaced without causing
disruptions to other components, fostering a more efficient and
adaptable system. The results as presented in Table V,
reinforces the success of the proposed method in decoupling
the components and transforming the monolithic legacy system
into a more independent and robust architecture. System
designers can refer to this Table in order to understand the
impact of the applied changes and assess the overall
effectiveness of the method in achieving the desired outcome.

TABLE IV. DEPENDENT COMPONENTS OF THE MONOLITHIC LEGACY SYSTEM

Components Methods Employee Admin POC Approver

Employee

Admin POC

Approver

Create() //New Request Yes Yes Yes

InprocessRequests() Yes Yes No

ReturnedRequests() Yes Yes No

EditReturnedRequests Yes Yes No

RejectecdRequests() Yes Yes No

CompletedRequests() Yes Yes No

TABLE V. INDEPENDENT COMPONENTS OF THE MONOLITHIC LEGACY SYSTEM

Components Methods Employee Admin POC Approver

Employee

Admin POC

Approver

Create() //New Request Yes No No

InprocessRequests() Yes No No

ReturnedRequests() Yes No No

EditReturnedRequests Yes No No

RejectecdRequests() Yes No No

CompletedRequests() Yes No No

Engineering, Technology & Applied Science Research Vol. 13, No. 4, 2023, 11375-11386 11384

www.etasr.com Aljaloud & Razzaq: An Innovative Metric-based Clustering Approach for Increased Scalability …

Figure 12 depicts the dependency relationship with a
Requester component within the system. This diagram
visualizes how other components rely on the requester
component for certain functionalities. It highlights the integral
role played by the Requester component in facilitating
communication and data exchange within the system. The basis
for this transformation is reflected in Table V, which likely
served as a reference for identifying and resolving
dependencies. By eliminating the dependency on the Requester
component, the system achieves greater independence and
modularity. This architectural change enables the requester
component to function autonomously, without relying on
external dependencies. Figure 15 represents the culmination of
these efforts, illustrating the requester component as
dependency-free. This revised graph demonstrates the success
of the proposed method in removing dependencies and
streamlining the system's architecture. The removal of
dependencies offers several advantages, including enhanced
flexibility, improved maintainability, and the ability to modify
or update individual components without affecting the entire
system's functionality.

By referring to Figures 12 and 15, system designers and
developers can gain valuable insight into the evolution of the
system's dependency structure and the resulting benefits of
removing dependencies. These visual representations provide a
clear understanding of the architectural improvements achieved
through the proposed method, facilitating a more efficient and
adaptable system design.

Figure 12 presents the dependency relationship between the
Create() method and the Request component within the system.
This diagram visually depicts how the Create() method relies
on the functionality provided by the Request component. It
highlights the integral role played by the Request component in
facilitating the execution of the Create() method. The removal
of dependencies between the Create() method and the Request
component offers several benefits. It enhances the modularity
and flexibility of the system, allowing for independent
modifications and updates to each component without affecting

the others. It also simplifies maintenance and reduces the risk
of cascading failures that could arise from interdependencies.
By referring to Figure 13 and Figure 16, system designers and
developers can gain valuable insight into the evolution of the
system's dependency structure. These visual representations
effectively showcase the successful implementation of the
proposed method in removing dependencies and optimizing the
system's architecture.

Fig. 13. Approver component dependent on the Request creating method.

Fig. 14. Employee Request independent component.

Fig. 15. Admin POC component independent from the employee Request component.

Engineering, Technology & Applied Science Research Vol. 13, No. 4, 2023, 11375-11386 11385

www.etasr.com Aljaloud & Razzaq: An Innovative Metric-based Clustering Approach for Increased Scalability …

Fig. 16. Approver Component independent from the employee Request

component.

Figure 14 provides a clear representation of the independent
components within the system. It illustrates the components
that are completely detached from the Admin POC and
Approver components. This diagram effectively conveys the
autonomy and independence of these components,
demonstrating their ability to operate independently without
relying on the Admin POC and Approver components. The
visual depiction in Figure 14 emphasizes the distinct separation
of these components from the rest of the legacy system,
underscoring their self-sufficiency and freedom from external
dependencies.

Figure 15, on the other hand, showcases an independent
component that is entirely detached from the employee
Requester component. This diagram illustrates the clear
separation of this component from the employee Requester
component, highlighting its autonomy and self-reliance. From
Figure 15, it becomes evident that this independent
component's methods are distinct and separate from those of
the employee Requester component. This delineation
emphasizes the component's ability to function independently,
without any reliance on the employee Requester component.

In contrast, Figure 16 presents a component that is entirely
independent of the employee Requester component, but it
remains dependent on the Admin POC. This diagram depicts
the component's autonomy and independence from the
employee Requester component, while also highlighting its
reliance on the Admin POC component.

By examining Figures 14-16, system designers and
developers can gain a comprehensive understanding of the
independence and interdependencies among components within
the system. These visual representations offer valuable insight
into the architecture and relationships between components,
enabling informed decision-making for system optimization,
modularity, and scalability.

V. CONCLUSION

The current work presents a novel approach in identifying
the dependent and independent components of a monolithic
legacy system. This research gives awareness to understand
and increase the scalability of an already developed monolithic
legacy system. The favorable primary position of the proposed
method is the accomplished high cohesion and low coupling of
components. These useful points assume the job of tackling the
issues which require software evolution. To the best of our
knowledge, no published study proposes any comprehensive

technique or framework to find the components with relations
and no method has yet been proposed on removing the
dependencies of dependent components. From the existing
literature, four research questions were derived on the bases of
issues regarding monolithic legacy systems. In this paper, the
significant section of the proposed solution, where the
operations are executed, provides proof of results in terms of
validation with all the aspects of the research results. These
experiments were performed on an industry-based project.

In future work, the creation of an automated tool that helps
find the dependent and independent components of the project
is needed based on the proposed method and for architecture
recovery.

REFERENCES

[1] C. Burstedde, J. A. Fonseca, and S. Kollet, "Enhancing speed and
scalability of the ParFlow simulation code," Computational
Geosciences, vol. 22, no. 1, pp. 347–361, Feb. 2018, https://doi.org/
10.1007/s10596-017-9696-2.

[2] H. Ibrahim, B. H. Far, and A. Eberlein, "Scalability improvement in
software evaluation methodologies," in International Conference on
Information Reuse & Integration, Las Vegas, NV, USA, Aug. 2009, pp.
236–241, https://doi.org/10.1109/IRI.2009.5211557.

[3] L. Duboc, E. Letier, D. S. Rosenblum, and T. Wicks, "A Case Study in
Eliciting Scalability Requirements," in 16th IEEE International
Requirements Engineering Conference, Barcelona, Spain, Sep. 2008, pp.
247–252, https://doi.org/10.1109/RE.2008.22.

[4] L. Baresi, E. Di Nitto, and C. Ghezzi, "Toward open-world software:
Issues and challenges," Computer, vol. 39, no. 10, pp. 36–43, Jul. 2006,
https://doi.org/10.1109/MC.2006.362.

[5] O. Al-Debagy and P. Martinek, "A Comparative Review of
Microservices and Monolithic Architectures," in 18th International
Symposium on Computational Intelligence and Informatics, Budapest,
Hungary, Nov. 2018, pp. 149–154, https://doi.org/10.1109/CINTI.
2018.8928192.

[6] D. Escobar et al., "Towards the understanding and evolution of
monolithic applications as microservices," in XLII Latin American
Computing Conference, Valparaiso, Chile, Oct. 2016, pp. 1–11,
https://doi.org/10.1109/CLEI.2016.7833410.

[7] A. G. Salinger et al., "Albany: using component-based design to develop
a flexible, generic multiphysics analysis code," International Journal for
Multiscale Computational Engineering, vol. 14, no. 4, pp. 415–438,
2016, https://doi.org/10.1615/IntJMultCompEng.2016017040.

[8] C. J. M. Geisterfer and S. Ghosh, "Software component specification: a
study in perspective of component selection and reuse," in Fifth
International Conference on Commercial-off-the-Shelf (COTS)-Based
Software Systems, Orlando, FL, USA, Feb. 2006,
https://doi.org/10.1109/ICCBSS.2006.26.

[9] D. Liu, C.-H. Lung, and S. A. Ajila, "Adaptive Clustering Techniques
for Software Components and Architecture," in 39th Annual Computer
Software and Applications Conference, Taichung, Taiwan, Jul. 2015,
vol. 3, pp. 460–465, https://doi.org/10.1109/COMPSAC.2015.256.

[10] S. S. Yau, C. Taweponsomkiat, and D. Huang, "A Framework for
Extensible Component Customization for Component-based Software
Development," in Sixth International Conference on Quality Software,
Beijing, China, Oct. 2006, pp. 369–376, https://doi.org/10.1109/
QSIC.2006.1.

[11] S. A. K. Ghayyur, A. Razzaq, S. Ullah, and S. Ahmed, "Matrix
Clustering based Migration of System Application to Microservices
Architecture," International Journal of Advanced Computer Science and
Applications, vol. 9, no. 1, pp. 284–296, Jan. 2018, https://doi.org/
10.14569/IJACSA.2018.090139.

[12] W. Chengjun, "Architecture Driven Component Development for Top-
Down Software Reuse," in International Conference on Computer
Science and Software Engineering, Wuhan, China, Dec. 2008, vol. 5, pp.
1349–1352, https://doi.org/10.1109/CSSE.2008.87.

Engineering, Technology & Applied Science Research Vol. 13, No. 4, 2023, 11375-11386 11386

www.etasr.com Aljaloud & Razzaq: An Innovative Metric-based Clustering Approach for Increased Scalability …

[13] J. S. Cuadrado, E. Guerra, and J. de Lara, "A Component Model for
Model Transformations," IEEE Transactions on Software Engineering,
vol. 40, no. 11, pp. 1042–1060, Aug. 2014, https://doi.org/10.1109/
TSE.2014.2339852.

[14] N. Parlavantzas, M. Morel, V. Getov, F. Baude, and D. Caromel,
"Performance and Scalability of a Component-Based Grid Application,"
in International Parallel and Distributed Processing Symposium, Long
Beach, CA, USA, Mar. 2007, pp. 1–8, https://doi.org/10.1109/
IPDPS.2007.370416.

[15] P. Geyer and S. Singaravel, "Component-based machine learning for
performance prediction in building design," Applied Energy, vol. 228,
pp. 1439–1453, Oct. 2018, https://doi.org/10.1016/j.apenergy.2018.
07.011.

[16] D. Chaudhari, M. Zulkernine, and K. Weldemariam, "Towards a ranking
framework for software components," in 28th Annual ACM Symposium
on Applied Computing, New York, NY, USA, Mar. 2013, pp. 495–498,
https://doi.org/10.1145/2480362.2480458.

[17] J. Cubo and E. Pimentel, "DAMASCo: A Framework for the Automatic
Composition of Component-Based and Service-Oriented Architectures,"
in 5th European Conference, Essen, Germany, Sep. 2011, pp. 388–404,
https://doi.org/10.1007/978-3-642-23798-0_41.

[18] A. L. Martinez-Ortiz, D. Lizcano, M. Ortega, L. Ruiz, and G. Lopez, "A
quality model for web components," in 18th International Conference on
Information Integration and Web-based Applications and Services,
Singapore, Asia, Nov. 2016, pp. 430–432, https://doi.org/10.1145/
3011141.3011203.

[19] M. Vianden, H. Lichter, and A. Steffens, "Experience on a Microservice-
Based Reference Architecture for Measurement Systems," in 21st Asia-
Pacific Software Engineering Conference, Jeju, Korea (South), Dec.
2014, vol. 1, pp. 183–190, https://doi.org/10.1109/APSEC.2014.37.

[20] J. Kaur and P. Tomar, "Validation of Software Component Selection
Algorithms based on Clustering," Indian Journal of Science and
Technology, vol. 9, no. 45, pp. 1–4, Dec. 2016, https://doi.org/
10.17485/ijst/2016/v9i45/106369.

[21] A. Alkhalid, C.-H. Lung, D. Liu, and S. Ajila, "Software Architecture
Decomposition Using Clustering Techniques," in 37th Annual Computer
Software and Applications Conference, Kyoto, Japan, Jul. 2013, pp.
806–811, https://doi.org/10.1109/COMPSAC.2013.132.

[22] G. Shahmohammadi, S. Jalili, and S. M. H. Hasheminejad,
"Identification of System Software Components Using Clustering
Approach," Journal of Object Technology, vol. 9, no. 6, pp. 77–98,
2010, https://doi.org/10.5381/jot.2010.9.6.a4.

[23] S. Marru, M. Pierce, S. Pamidighantam, and C. Wimalasena, "Apache
Airavata as a Laboratory: Architecture and Case Study for Component-
Based Gateway Middleware," in 1st Workshop on The Science of
Cyberinfrastructure: Research, Experience, Applications and Models,
Portland, OR, USA, Jun. 2015, pp. 19–26, https://doi.org/10.1145/
2753524.2753529.

[24] I. Hussain, A. Khanum, A. Q. Abbasi, and M. Y. Javed, "A Novel
Approach for Software Architecture Recovery using Particle Swarm
Optimization," The International Arab Journal of Information
Technology, vol. 12, no. 1, pp. 32–41, 2015.

[25] I. Crnkovic, S. Sentilles, A. Vulgarakis, and M. R. V. Chaudron, "A
Classification Framework for Software Component Models," IEEE
Transactions on Software Engineering, vol. 37, no. 5, pp. 593–615, Sep.
2011, https://doi.org/10.1109/TSE.2010.83.

[26] G. Toffetti Carughi, S. Brunner, M. Blochlinger, F. Dudouet, and A.
Edmonds, "An architecture for self-managing microservices," in 1st
International Workshop on Automated Incident Management in Cloud,
Bordeaux, France, Apr. 2015, https://doi.org/10.1145/2747470.2747474.

[27] K. K. Chahal and H. Singh, "A Metrics Based Approach to Evaluate
Design of Software Components," in International Conference on
Global Software Engineering, Bangalore, India, Aug. 2008, pp. 269–
272, https://doi.org/10.1109/ICGSE.2008.29.

[28] J. Chen, W. K. Yeap, and S. D. Bruda, "A Review of Component
Coupling Metrics for Component-Based Development," in WRI World
Congress on Software Engineering, Xiamen, China, Dec. 2009, vol. 4,
pp. 65–69, https://doi.org/10.1109/WCSE.2009.391.

[29] S. K. Mishra, D. S. Kushwaha, and A. K. Misra, "Creating Reusable
Software Component from Object-Oriented Legacy System through
Reverse Engineering.," Journal of Object Technology, vol. 8, no. 5, pp.
133–152, 2009, https://doi.org/10.5381/jot.2009.8.5.a3.

[30] A. Seriai, S. Sadou, H. Sahraoui, and S. Hamza, "Deriving Component
Interfaces after a Restructuring of a Legacy System," in IEEE/IFIP
Conference on Software Architecture, Sydney, NSW, Australia, Apr.
2014, pp. 31–40, https://doi.org/10.1109/WICSA.2014.27.

[31] S. R. Idate, T. S. Rao, and D. J. Mali, "Context-Based Aspect-Oriented
Requirement Engineering Model," Engineering, Technology & Applied
Science Research, vol. 13, no. 2, pp. 10460–10465, Apr. 2023,
https://doi.org/10.48084/etasr.5699.

[32] M. O. Odhiambo and P. O. Umenne, "NET-COMPUTER: Internet
Computer Architecture and its Application in E-Commerce,"
Engineering, Technology & Applied Science Research, vol. 2, no. 6, pp.
302–309, Dec. 2012, https://doi.org/10.48084/etasr.145.

[33] M. N. A. Khan, A. M. Mirza, M. Shahid, R. A. Wagan, and I. Saleem,
"State of Quality Engineering Practices: The Pakistan Perspective,"
Engineering, Technology & Applied Science Research, vol. 10, no. 5,
pp. 6309–6315, Oct. 2020, https://doi.org/10.48084/etasr.3782.

[34] F. Brosch, H. Koziolek, B. Buhnova, and R. Reussner, "Architecture-
Based Reliability Prediction with the Palladio Component Model," IEEE
Transactions on Software Engineering, vol. 38, no. 6, pp. 1319–1339,
Aug. 2012, https://doi.org/10.1109/TSE.2011.94.

[35] J. ZhanG, X. Ban, Q. Lv, J. Chen, and D. Wu, "A component-based
method for software architecture refinement," in 29th Chinese Control
Conference, Beijing, China, Jul. 2010, pp. 4251–4256.

[36] K. Sartipi, "Software architecture recovery based on pattern matching,"
in International Conference on Software Maintenance, Amsterdam,
Netherlands, Sep. 2003, pp. 293–296, https://doi.org/10.1109/
ICSM.2003.1235434.

[37] S. Chardigny, A. Seriai, M. Oussalah, and D. Tamzalit, "Extraction of
Component-Based Architecture from Object-Oriented Systems," in
Seventh Working IEEE/IFIP Conference on Software Architecture,
Vancouver, BC, Canada, Feb. 2008, pp. 285–288, https://doi.org/
10.1109/WICSA.2008.44.

[38] K.-K. Lau and S. Di Cola, "(Reference) architecture = components +
composition (+ variation points)?," in 1st International Workshop on
Exploring Component-based Techniques for Constructing Reference
Architectures, Montreal, QC, Canada, Dec. 2015, pp. 1–4.

[39] D. E. Bernholdt et al., "A Component Architecture for High-
Performance Scientific Computing," The International Journal of High
Performance Computing Applications, vol. 20, no. 2, pp. 163–202, May
2006, https://doi.org/10.1177/1094342006064488.

[40] H. Algestam, M. Offesson, and L. Lundberg, "Using components to
increase maintainability in a large telecommunication system," in Ninth
Asia-Pacific Software Engineering Conference, Gold Coast, QLD,
Australia, Dec. 2002, pp. 65–73, https://doi.org/10.1109/APSEC.
2002.1182976.

[41] P. Rana and R. Singh, "A soft computing approach to optimize
component based software complexity metrics," Journal of Theoretical
and Applied Information Technology, vol. 97, pp. 1200–1212, Feb.
2019.

[42] D. P. Lupp, M. Hodkiewicz, and M. G. Skjaeveland, "Template
Libraries for Industrial Asset Maintenance: A Methodology for Scalable
and Maintainable Ontologies," CEUR Workshop Proceedings, vol. 2757,
pp. 49–64, 2020.

