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Abstract —The objective of this computational study was to 
propose a rapid procedure in obtaining an estimation of elastic 
moduli of solid phases of porous natural-polymeric biomaterials 
used for bone tissue engineering. This procedure was based on 
the comparison of experimental results to finite element (FE) 
responses of parallelepiped so-called representative volume 
elements (rev) of the material at hand. To address this issue a 
series of quasi-static unconfined compression tests were designed 
and performed on three prepared cylindrical biopolymer samples. 
Subsequently, a computed tomography scan was performed on 
fabricated specimens and two 3D images were reconstructed. 
Various parallelepiped revs of different sizes and located at 
distinct places within both constructs were isolated and then 
analyzed under unconfined compressive loads using FE 
modelling. In this preliminary study, for the sake of simplicity, 
the dried biopolymer solid is assumed to be linear elastic. 

Keywords-Porous biomaterials; finite element; micro-CT; 
elasticity. 

I. INTRODUCTION  

Polysaccharides fall into the category of biopolymers 
derived from natural sources; their properties make them 
suitable for various biomedical and pharmaceutical applications 
[28, 37] including, e.g., tissue engineering purposes. The 
success of polysaccharides like chitosan for these applications 
stems from the fact that they are natural, abundant, and 
renewable polymers (originate from, e.g., algae and plants). 
Furthermore, they are biocompatible and biodegradable [22, 
38]. In addition, polysaccharides are characterized by a wide 
variety of structures that lead to peculiar properties that can 
hardly be matched, if necessary, by synthetic materials. 

 On the other hand, considerable attention has been focused 
on microcomputed tomography (micro-CT), a non-destructive 
technique, which yields 3D information of the material 
analyzed through high-fidelity models constructed from data 
images. Besides, nowadays image-based meshing offers 
interesting opportunities based on microstructures scan data to 
computational continuum micromechanics methods for 
material characterization [7, 25, 27]. This approach turns out to 
be very attractive in materials science where the link between 
macroscopic properties and the micro-structure of a material is 
sought. 

II. POLYMERIC GELS - A BRIEF OVERVIEW 

Polymeric gels consist of physically or chemically cross-
linked polymer chains that are able to absorb large amounts of 
solvent molecules (for instance, biological fluid) without 
dissolving [11, 16, 26, 29, 31]. They are called hydrogels when 
the solvent is water. Hydrogels have the capability to mimic the 
extracellular matrix and their soft nature matches that of 
biological tissues. Subsequently, they are hence highly 
desirable as 3D scaffolds for cells encapsulation [2]. Based on 
the bonding type of the crosslinks, polymeric gels are classified 
into chemical gels (covalent bonds) or physical gels (cohesion 
forces existing between polymer segments, e.g., ionic bonding, 
van der Waals forces …). The strong chemical bonds enable 
the polymeric gel to keep its shape after a large deformation. 
The high solvent content and elasticity yield a resemblance to 
biological tissue, creating extensive biomedical applications. At 
the same time, many tissues consist of elastic network and 
mobile molecules; the elasticity enables the tissues to retain 
shapes and deform, while mobile molecules enable the tissues 
to transport nutrients and wastes [18, 19, 20, 36].  
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The deformation of polymeric gels (swelling) can be 
affected by many external factors (stimuli) like forces, 
temperature, electrical or magnetic fields, pH values, ionic 
concentration, many other types of stimuli. Their response to 
these stimuli is generally a transient process involving solvent 
diffusion and deformation coupled via the chemo-mechanical 
interactions of polymer network and present solvent. Such 
stimuli-responsive gels have become a good material choice in 
numerous applications. Among them one could specifically 
name scaffolds for tissue engineering, drug delivery 
applications, and model of ECM for biological studies. It is 
believed that precisely because polymeric gels are responsive 
to various types of stimuli due to different mechanisms, a 
unified constitutive model that covers all of them seems to be 
very tedious to construct. Generally speaking, the three main 
components of the polymeric gels synthesis are monomers, 
initiator, and crosslinkers which have good solubility in solvent 
at hand [11, 16, 23, 26]. Nowadays, it is possible to design the 
structure of polymeric gels for a specific application by 
selecting proper starting materials and processing techniques. 
Indeed, more and more polymeric gels have been engineered 
with tunable microstructures, mechanical properties, and also 
degradable rates.  

 

 
Fig. 1.  The  3d structure of a covalently cross-linked polymeric gel is a 
result of polymer cross-linking that forms an insoluble structure within the 
fluid environment where the network of polymer chains swell. 

Constitutive models based on deformation, chemical 
diffusion, and transformation mechanisms of the chemical and 
mechanical energy of polymeric gels are receiving more and 
more attention. The thermodynamics of swelling dates at least 
back to Gibbs [6] who formulated an equilibrium theory for the 
deformation of an elastic solid that absorbs a fluid. Biot [15] 
used thermodynamic theory and Darcy’s law to model the mass 
transport in a porous solid. As a matter of fact, these early 
works were not specific for polymeric gels. Flory and Rehner 
[12, 13] and Flory [14] developed a statistical-mechanical 
model for gels. Based on these seminal works, continuum 
models accounting for, amongst others, chemically induced 
volume transition, diffusion of a fluid, and inhomogeneous 
swelling in elastomeric gels are formulated and analyzed in [4, 
5, 8, 10, 19, 20].  Suo, Hong and their coworkers [18, 19, 20, 

36] modified the Flory-Rehner model for neutral gel by 
adopting the interaction parameter as a function of temperature 
and concentration.  

With a specific material model, such a theory enables 
analysis for the deformation of temperature-responsive 
polymeric gel under different geometric and mechanic 
constraints. As a model material, the polymeric gel is 
characterized by a Helmholtz free-energy density function 
proposed by Flory and others. This free-energy function 
accounts for, at the very last, the stretching of the polymer 
network and mixing of the polymer network and the solution. 
Indeed, in neutral (as opposed to ionic) polymeric gels, there 
are two competing energies within the system. The energy that 
resists the solvent migration comes from the entropy of 
stretching the polymer chains and the energy that drives the 
influx of solvent is from the entropy of mixing. When solvent 
molecules migrate into a neutral polymeric gel, the possible 
arrangements of the system increase, leading to greater entropy 
of the mixture compared with the separated components, [16, 
19, 20]. The interaction between the polymer network and 
solvent results in the heating of the mix. 

If the density of the crosslinks is very low, the effect of 
crosslinks on mixing can be reasonably neglected. In this 
circumstance, it is reasonable to assume that the free-energy 
density function of the polymeric gel is simply written as the 
sum stretch mixW W W  , where stretchW and mixW  are the 
contributions from stretching the polymer network and mixing 
the polymers network and the solvent, respectively, [12, 13, 14]. 
This model (classical) is still being widely used to describe 
various approximate behaviours of polymeric gels. 

In order to trace the deformation of the polymeric gel, the 
dried polymer network under no mechanical load is taken as 
the reference state. Each marker is named by its coordinate 
X in the reference state. In the current state at time t, the 
marker X moves to a place with coordinate x (X, t) . The local 
stretching state of the polymer network near marker X can be 
described by the deformation gradient F(X, t) . In addition, the 
solvent molecules constantly change their neighbors and 
migrate freely in and out of the polymeric gel. To account for 
the mobile species, we define the field of nominal solvent 
concentration C(X, t) , so that C dV  is the number of solvent 
molecules in a volume element in the current state. For neutral 
one species of polymer chains and one species of solvent 
molecules, both being electroneutral polymeric gel, the two 
commonly used field variables are the deformation gradient 
and the nominal solvent concentration, in situations of 
isothermal processes (the temperature is deleted from the list of 
state variables): W W(F,C) . The free energy of a surface or 
interface is disregarded. A simple form of the Helmholtz free-
energy density function is 

stretch mixW(F,C) W (F,C) W (C)    (1) 

The scope of polymeric gels applications is often severely 
limited by their mechanical properties, in particular their low 
elastic moduli. In the current paper, we limit our investigation 
to small deformation and to the linear elastic response of the 
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dried polymer network ( C 0 ). As a result, the strain energy 
density function of stretching the dried polymer network, in 
terms of infinitesimal strain tensor ε, is  

2
ij kk ij ij

1 E E
W( )

2 (1 )(1 2 ) (1 2 )

  
            

 (2) 

where E  is the Young’s modulus and ν is the Poisson’s 
ratio of the material at hand.  This is the St. Venant-Kirchhoff 
model which is the simplest example of a hyperelastic material. 
It should be kept in mind that this St. Venant-Kirchhoff 
material has been found to be of little practical use beyond the 
small strain domain.  

III. UNIAXIAL COMPRESSION TESTS 

Three-dimensional mesoporous scaffolds have been 
manufactured according to the freeze-drying procedure. For a 
detailed description of the used process allowing the 
preparation of the mesoporous polymeric biomaterial, we refer 
the reader to the paper by Brun et al. [3]. The porosity of the 
investigated cylindrical samples, measured by the liquid 
displacement method, was estimated to range from 80 to 91 % 
with a pore size of 50 to 150 µm. The uniaxial (or unconfined) 
compression test is often chosen to characterize porous 
materials because of the simplicity of the testing configuration 
and the specimen test shape. A typical compression test 
involves influence of specimen size, influence of porosity, and 
strain rates effects on mechanical response of the material [9]. 
Usually compression data including, for example, Young's 
modulus, yield stress and Poisson's ratio, is obtained from the 
measured force versus the displacement curve. In this 
preliminary work, unconfined compression tests were carried 
out first in order to obtain an appraisal of the Young's modulus 
E of built scaffolds 

Circular cylindrical samples with about 10.0 mm in 
diameter and 9.0 mm in height were subject to unconfined 
compression through an universal testing machine at a strain 
rate of 3 120 10 s   (Figure 2). Both chemical crosslinked and 
uncrosslinked scaffolds were tested. In this paper the focus is 
only on the former biomaterial for which Figure 3 displays the 
obtained stress-strain curves due to loading (increasing strain) 
and unloading (decreasing strain) for three distinct samples. 
The curves seem to be linear for stresses up to about kPa100 .  

The mean experimental values of Young' moduli of the 
tested samples were measured as the slopes of linear elastic-
unloading curves, using the approximate expression: (Figure 4) 

 

exp oE H
H

 
  

  , 
(2) (1)     ,  

(2) (1)H H H    (3) 

In this way, for the considered crosslinked scaffold it has 
been found  that expE 19.20 MPa . 

 

 

 
Fig. 2.  Prepared crosslinked scaffold for compression tests. a) Uniaxial 

compression stress state; b) Specimen typical failure mode.  

 

 
Fig. 3.  Nominal stress versus true strain curves for crosslinked scaffolds. 

The 3 curves correspond to 3 distinct samples. 

 

 

Fig. 4.  Used technique for the determination of the mean value of the 
Young’s modulus from experimental results. 
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IV. FINITE ELEMENT MODELING 

 
High-resolution three-dimensional micro-CT scan data of 

cylindrical samples were obtained and the data were 
straightforwardly segmented using threshold and flood fill tools 
in Simpleware's ScanIP software [35]. The pixel size was 8.85 

m . The 3D connectivity of the dried biopolymer turns out to 
be practically totally interconnected (Figure 2). As a trade-off, 
various parallelepiped specimens having the same cross section 

oA (0.345 × 0.345, 0.522 × 0.522, 0.699 × 0.699 and 0.965 × 

0.965 2mm ) with increasing thickness oH (0.345, 0.531, 0.708 
and 0.965 mm ) were used in this preliminary investigation. 
They were extracted from the 3D image as shown in Figure 5.  

 
Fig. 5.  Various parallelepiped rves for uniaxial compression simulations. 

Typical example of rve size: 60×89×60 voxels; one pixel = 8.85 µm. 

The corresponding 3D micro-CT image data are converted 
into FE models. The parallelepiped specimens were meshed 
with the same mesh density. The anti-aliasing techniques 
implemented in this software are volume, topology and 
geometry preserving. Mixed hexahedral and tetrahedral 
elements were generated. The element parameters were 
adjusted to the software recommended aspect ratio in order to 
ensure the highest mesh quality possible [35].  

The various samples were subject to compression tests 
along the z-direction. To this goal, a displacement which 
amplitude depends on the considered sample is imposed on top 
faces perpendicular to the z-direction, whereas the bottom faces 
were fixed along z-direction and the four other faces remain 
free. We made the assumption that the behavior of the solid 
phase of the considered porous biomaterials remains linear 
elastic during the whole process of deformation. A series of FE 
analyses using Abaqus [1] were carried out under compression 
loading conditions up to approximately 30 % strain. It is 
believed that this is high enough to observe local deformation. 
By way of illustration, Figure 6 shows a typical mesh geometry 
created from tomographic images using Simpleware [35]. Prior 
to simulation as such, a wide number of analyses were 
performed in order to get insight of the sensitivity of numerical 
predictions to mesh density and segmentation parameters. 
Vertical total reaction force zF of the top moving face and its 

vertical displacement zu were recorded during the simulated 

compression test. The nominal compression stress   was 
calculated as the ratio of zF on its initial total 

area oA : z oF / A  . The engineering strain   is given by 

o o(H H ) / H   .  

 

 
Fig. 6.  FE mesh of a parallelepiped created from tomographic images [9]. 
The FE model includes about 920 940 hexahedral and tetrahedral elements.  

 
Fig. 7.  3D visualization of the contour plot of the z-displacement. 

V. RESULTS AND DISCUSSION 

The whole simulated parallelepiped specimens exhibited a 
similar mechanical trend under compression loading. By way 
of example, Figure 7 displays a deformed contour plot of the 

zu  component of the displacement u calculated using the 

procedure described above. As regard our first simulation, the 
used values of Young's modulus and Poisson's ratio of the 
porous biomaterials at hand were obtained from a literature 
review dealing with chitosan, e.g., [23, 32, 38]: E 380 MPa , 

y 110 MPa  . It emerged that using these values yields a large 

overestimation of the Young' moduli in comparison to 
experimental results.  
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The foregoing FE modelling is used, thanks to the linearity 
of the problem under consideration, to obtain an estimation of 
the Young's modulus of the chemical crosslinked biomaterials 
which preparation is described in [3]: pgE 27.73 MPa for µ-

CT construct sample 1 and pgE 45.51 MPa for µ-CT construct 

sample 2.  

After which these values have used in order to get an 
estimation of the apparent Young's modulus aE , for a fixed 
volume size of considered rves. The obtained results are shown 
in Table I, Figure 8 and Table II, Figure 9, respectively. One 
has to notice that when the size of the simulated specimen is 
smaller than the rve of the material, the properties that can be 
computed are not necessarily the effective properties but 
merely apparent properties of the investigated volume, [17, 21, 
24, 34]. The computer used throughout the present study is a 
standard PC. Within the context of random heterogeneous 
materials, it should be kept in mind that larger computer 
facilities would be necessary in order to analyze specimens 
with larger sizes. 

TABLE I.  COMPUTED  APPARENT YOUNG'S MODULUS AS A FUNCTION 

OF THE THICKNESS oH OF THE SIMULATED RVE; EPG = 27.73 MPA. 

µCT CONSTRUCT 1 

Ho (µm) 345.2 522.2 699.2 964.7 

Ea (MPa) 16.94 17.48 17.81 19.20 

µCT CONSTRUCT 2 

HO (µM) 345.2 345.2 345.2 522.2 522.2 692.2 964.5 

EA 
(MPA) 

15.42 12.99 13.42 15.91 13.26 14.02 13.76 

 

 

Fig. 8.  Computed apparaent Young’s modulus AE as a function of the 

thickness oH of the simulated parallelipiped rve; Epg = 27.73 MPa. 

TABLE II.  COMPUTED  APPARENT YOUNG'S MODULUS AS A FUNCTION 

OF THE THICKNESS oH OF THE SIMULATED RV;  EPG = 45.51 MPA 

µCT CONSTRUCT 1 

Ho (µm) 345.2 522.2 699.2 964.7 

Ea (MPa) 23.65  24.40 24.86 26.80 

µCT CONSTRUCT 2 

HO (µM)   345.2 345.2 345.2 522.2 522.2 692.2 964.5 

EA 
(MPA) 

18.73 18.14 21.53 18.51 22.22 19.57 19.20 

 

 

Fig. 9.  Computed apparaent Young’s modulus AE as a function of the 

thickness oH of the simulated parallelipiped rve; Epg = 45.51 MPa. 

VI. CONCLUSION AND FUTURE PROSPECTS 

The foregoing numerical model accounts for the micro 
architecture of the porous polymeric biomaterials at hand. This 
and prior work highlights that FE models based on an accurate 
3D model from micro-CT data are an essential tool to quantify 
the effects of pores in complex material systems such as 
polymeric biomaterials.  The ease with which models can be 
generated would allow us to account for, e.g., the hyperelastic 
and the viscoelastic behaviour of the materials at hand. These 
constitutive models can be coupled with FE biomechanical 
simulations to analyse the behaviour of chitosan-hyaluronic 
acid based materials used as scaffolds for tissue engineering. 
These extensions are contemplated as future works. 
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