
Engineering, Technology & Applied Science Research Vol. 6, No. 2, 2016, 927-930 927

www.etasr.com Alameen et al.: Improved Genetic and Simulating Annealing Algorithms to Solve the Traveling…

Improved Genetic and Simulating Annealing
Algorithms to Solve the Traveling Salesman Problem

Using Constraint Programming

Mamoon Alameen
School of Engineering,
The Australian College

of Kuwait, Kuwait
m.radiy@ack.edu.kw

Mohammed Abdul-Niby
School of Engineering

The Australian College of
Kuwait, Kuwait

m.nibi@ack.edu.kw

Ayad Salhieh
School of Engineering
The Australian College

of Kuwait, Kuwait
a.salhieh@ack.edu.kw

Ali Radhi
Bahbahani Projects
Kuwait city, Kuwait

Ali.radhi@gmail.com

Abstract— The Traveling Salesman Problem (TSP) is an integer
programming problem that falls into the category of NP-Hard
problems. As the problem become larger, there is no guarantee
that optimal tours will be found within reasonable computation
time. Heuristics techniques, like genetic algorithm and simulating
annealing, can solve TSP instances with different levels of
accuracy. Choosing which algorithm to use in order to get a best
solution is still considered as a hard choice. This paper suggests
domain reduction as a tool to be combined with any meta-
heuristic so that the obtained results will be almost the same. The
hybrid approach of combining domain reduction with any meta-
heuristic encountered the challenge of choosing an algorithm that
matches the TSP instance in order to get the best results.

Keywords-Traveling Salesman Problem; Genetic Algorithm;
Simulating Annealing; Domain Reduction

I. INTRODUCTION

The traveling salesman problem (TSP) is a problem of
“finding the shortest possible route given a list of cities and the
distances between each pair of cities, such that the route visits
each city exactly once and returns to the origin” [1]. The
increasing numbers of vehicles and the fluctuation of oil prices
as well as the need to reduce costs, ignited the search to
optimize the travel of sales personnel and the daily delivery and
transport plans. Accordingly, the vehicle routing problem
(VRP) and the TSP are important problems in the field of
customer services and in the distribution network. They played
a significant role in reducing the costs and time and hence
improving the service. This paper considers a symmetric TSP,
where a number of cities (or customers) is given as well as the
distances between each pair of these cities, and the problem is
to find the shortest possible routes that visits each city exactly
once and return to the origin.

This problem was raised, with trial for a mathematical
formulation, in the early 19th century in the UK [2]. A general
form of the TSP mathematically tackled for the first time by
Karl Menger at 1930. Karl Menger was able to define the
problem and to find out that the nearest neighbor heuristic
would not provide the optimal solution. Since then, the TSP is

being a very popular subject and many efforts are carried out to
determine the optimal solution for certain variants. In the last
years, the TSP problem approach has been extended and
modified to provide special solutions for other fields in life,
such as for DNA fragmentation or for finding the optimal insert
sequence of SMD components and optimal soldering points
sequence.

Over the past decades, TSP instances had been encountered
using too many types of approaches. Techniques like exact
methods, classical and meta-heuristics had been applied to
solve TSP instances with various dimensions. It is a fact that
choosing between exact and heuristics approach to solve TSP is
an easy choice as it is governed by the accuracy vs time
concept. Choosing between classic and meta-heuristics is also
an easy choice for the same reason. On the other hand,
choosing the right meta-heuristics to solve the TSP could be
very challenging as some of them are working excellently on
one problem and fail to provide a good solution on others [3].

This paper surveys the effect of domain reduction on the
final results of using genetic and simulating annealing
algorithms to solve TSP. The objective is to minimize the
domain of the problem in order to minimize the search
iterations for the algorithms and getting close (if not similar)
results.

II. MATHEMATICAL FORMULATION

This paper consider the following mathematical formulation for
the TSP [4]:

For i = 0, ..., n, let iu be an artificial variable, and finally

take ijc to be the distance from city i to city j.

Min

n

i

n

jij
ijij xc

0 0,

 (1)

 iu ÎZ , 0,...,i j n= (2)

Engineering, Technology & Applied Science Research Vol. 6, No. 2, 2016, 927-930 928

www.etasr.com Alameen et al.: Improved Genetic and Simulating Annealing Algorithms to Solve the Traveling…

 1
,0

n

jii
ijx nji ,...,0, (3)

 1
,0

n

ijj
ijx nji ,...,0, (4)

1 nnxuu ijji nji 1 (5)

0

1
ijx (6)

Where (1) is the objective function. (2) implies that iu are

integers, (3) is to get sure that each city visited at most once,
(4) serves the fact that all cities must be visited, (5) is to get
sure that there is only one tour for the problem and (6) implies
that the value of x is 1 if the path goes from city i to city j and 0
otherwise.

III. META-HEURISTICS

The quality of the solution obtained by any of the
metaheuristic algorithms is usually much better than the ones
obtained by the classical algorithms because the metaheuristic
algorithms explore all the solution space deeply. However,
metaheuristics take more time than the classical heuristics. The
following elaborates two popular metaheuristics:

A. Simulating Annealing (SA) [5]

SA is a stochastic relaxation technique that has its origin in
statistical mechanics. Formerly, the process of crystallizing a
solid by heating it to a high temperature and gradually cooling
it down motivated the development of SA.

Assuming () ()
t

f x f xD= - , where ()f x is the best

value for the objective function found so far, and ()
t

f x is the

value of the objective function at iteration t. The solution will
be accepted as a new current solution if 0D£ . If 0D> , any

moves with a probability of te-D increase of the objective
function are accepted, where T is the temperature and its value
varies from large to close to zero. The values of T are
controlled by a cooling schedule that specifies the temperature
values at each stage. In the literature it was proposed that a

solution x is drawn randomly in ()
t

N x at t iterations. If

() ()
t

f x f x£ , then xt+1 is set equal to x; otherwise

1
1

t

t

t t

x with probability p
x

x with probability p
+
=

-

ìïïíïïî

where pt is a decreasing function of t and of () ()
t

f x f x- .

With the pre-specified values for π1, π2 and ki the SA stops
when:

• The value f* has not decreased by π1% for at least k1
consecutive cycles of T iterations.

• The number of accepted moves has been less than π2%
of T for k2 consecutive cycles of T iterations.

• Ki of T iterations have been executed

The application of SA to solve TSP is to take an initial
solution to the problem and consider it as the best solution. A
parallel search for removing and adding cities from the routes
follows. The adding and removing is a random process within
the above mentioned boundaries, updating the best solution as
the total distance is reduced.

B. Genetic Algorithm (GA) [6]

Coming from a biological background for simulation of the
evolution using the gens, the algorithm represents a solution as
a population of chromosomes:

 11
1

1
,, NXXX

N here is the number of vertices (or cities). To proceed, the
following three steps are carried out:

• Two “parent” chromosomes from X 1 are selected.

• These parent chromosomes are used to produce
offsprings that forms the next generation.

• Each offspring is then mutated randomly utilizing a
small probability.

The above three steps will be repeated K times for each
iteration t=1,…,T, where 2Nk and T is the number of
generations. The next step will be applied:

Xt+1 from Xt. This is achieved by removing the 2k worst
solution in Xt (the ones with the furthest distances) and
replacing them with 2k new offsprings. Additionally, to apply
the GA to solve TSP, two points have to be considered:

• Initial population constructor. Which means initial
solution to the problem has to be provided

• Determine fitness, crossover and mutation operators.
Which means that a criterion for improving the
solution (new iteration) has to be specified.

The GA will be repeated for a pre-specified number of
iterations.

C. Constraint Programming (CP) [7]

Constraint Programming techniques have been developed
since early 1990s. They have two common features:

• constraint propagation

• distribution (labeling) connected with search.

Constraint propagation will lead to Constraint
Programming (CP). It would automatically remove from the
domain of variables all values that do not fulfill constraints. Let
us consider these examples:

• Let X-Y=3 or X<Y. These 2 given constraints would
provide information about the values of the variables X
and Y, but it is in a poorly usable form. CP will work
to simplify such information. If we have, beside X-

Engineering, Technology & Applied Science Research Vol. 6, No. 2, 2016, 927-930 929

www.etasr.com Alameen et al.: Improved Genetic and Simulating Annealing Algorithms to Solve the Traveling…

Y=3, another information that X+Y=7, then the
solution would be: X=5 and Y=2. This simplification
will be carried out by a special algorithm, the
constraint solver, a fixed part of the CP.

• If we have two variables x and y, with x∈{1..5} and y
∈{1..6}. We introduce here a constraint with x>y+1,
then the constraint propagation will reduce the domains
to the following values: x∈{3, 4, 5} and y∈{1, 2, 3}
because values {1, 2} from x domain do not fulfill the
constraint x>y+1 and the y values {4, 5, 6} also
conflict with the given constraint.

• In the last example, if we add another constraint
x+y=6, then none of the values can be removed.

Usually we don’t have the joy of such simple constraints.
They are often connected with each other. Therefore, constraint
propagation would not remove all values that are in conflict
with all constraints and its performance is measured as a trade-
off between number of removed values and execution time.

Actually, constraint propagation does not lead to the
solution (example above). This explains the need to always add
a distribution connected with the search. Distribution is based
on incorporation of an additional constraint, often it is a
constraint about equality of one variable to one value. A major
task of the distribution is to find or choose a proper variable
and a suitable value. As soon as this is achieved, a consistency
is checked and there will be three possibilities:

• a solution is found

• variables domains are narrowed, but there is no unique
solution, so distribution is conducted with another
variable

• the additional constraint is inconsistent with other
constraints, so the backtrack is made and from the
chosen variable domain a chosen value is removed.

This is an iterative process and it is called “search”. Search
is responsible for stopping after finding the first solution or
some number of solutions or all solutions. Search forms a
search tree, where each node is a state of variables.

IV. COMPUTATIONS

This paper applies SA and GA to 12 benchmark problem
from the TSP library [8]. The size of each problem increase by
almost a factor of 2 in order to survey the effect of the
reduction. TSP instances that considered in this paper are
shown in Table I.

The distance between the cities were calculated and placed
in to a symmetric distance (cost) matrix then:

R*=R- R
100

s
 (7)

otherwise

5001problem theof size750 theif ...0,20,40,60

750problem theof size250 theif ...0,15,30,45

250problem theof size theif ...0,10,20,30

s
 (8)

R is the maximum distance in the distance matrix. All the
distance values above R* should be neglected. The above
domain reduction technique suggests that the arcs between far
cities will not be considered. The solution starts by taking all
distances, then based on the size of the problem the domain
will be reduced by 10% from the maximum distance then 20%
and so on until no feasible solution can be obtained (in case the
size of the problem less than or equal to 250). The solution
considered in this case will be the one with the least distance or
cost. Table II provides the results of applying genetic algorithm
and simulating annealing to solve TSP combined with domain
reduction.

TABLE I. TSP INSTANCES AND DIMENSION

Problem Number Size Description
1 29 bays29
2 48 gr48
3 101 eil101
4 202 gr202
5 493 d493
6 1002 pr1002
7 2103 d2103
8 3038 pcb3038
9 7397 pla7397
10 13509 usa13509
11 33810 pla33810
12 85900 pla85900

TABLE II. THE RESULTS OF THE IMPROVED SA AND GA

Problem
No.

SA GA Optimal
Solution

Improved
SA

Improved
GA

1 2020 2020 2020 2020 2020

2 5046 5046 5046 5046 5046

3 668 670 629 629 629

4 42518 45922 40160 40992 41374

5 54229 73417 35002 37898 379524

6 285534 348604 259045 261409 261409

7 103250 127831 80450 91693 91332

8 169782 183421 137694 148972 148972

9 318864
58

418940
01

23260728 23853401 23853401

10 351098
14

357102
28

19982859 22014415 22014415

11 713231
37

751151
03

66048945 66829102 66829102

12 200219
623

265892
412

14238264
1

14792011
4

14792011
4

Graphically the obtain results of Table 2 can be illustrated

as shown in Figures 1 to 6.

Engineering, Technology & Applied Science Research Vol. 6, No. 2, 2016, 927-930 930

www.etasr.com Alameen et al.: Improved Genetic and Simulating Annealing Algorithms to Solve the Traveling…

Fig. 1. TSP Instances 1-4 Solved by GA and SA

Fig. 2. TSP Instances 5-8 Solved by GA and SA

Fig. 3. TSP Instances 9-12 Solved by GA and SA

Fig. 4. TSP Instances 1-4 Solved by Improved GA and SA

Fig. 5. TSP Instances 5-8 Solved by Improved GA and SA

Fig. 6. TSP Instances 9-12 Solved by Improved GA and SA

V. CONCLUSION AND FUTURE WORK

As Table II suggests, small dimension problems can be
solved (optimally) sometimes no matter the algorithm applied.
For medium to large sized problems the solution obtained by
applying genetic algorithm is very close (if not the same) for
the solution obtained by applying simulating annealing. In brief
combining domain reduction with genetic algorithm and
simulating annealing provides the following important
advantages:

• improves the solution for one or both algorithms

• using either genetic or simulating annealing provides
similar results once domain reduction is combined with
the selected algorithm.

• the domain reduction approached improved the
accuracy of SA and GA and also minimized the
searching process iterations for the large size instances.

In order to acquire the full benefit of using domain
reduction with meta-heuristics, more well-known algorithms
should be considered. Algorithms like Tabu search and Ant
colony should be applied to solve TSP combined with domain
reduction in the future. Also, a general and more logical
domain reduction approach should be taken in order to
minimize the computation time.

REFERENCES
[1] G. Gutin, A. Yeo, A. Zverovich, “Traveling salesman should not be

greedy: domination analysis of greedy-type heuristics for the TSP”,
Discrete Applied Mathematics, Vol. 117, No. 1–3, pp. 81–86, 2002

[2] C. H. Papadimitriou, “The Euclidean traveling salesman problem is NP-
complete”, Theoretical Computer Science, Vol. 4, No. 3, pp. 237–244,
1977

[3] A. Corberán, M. Oswald, I. Plana, G. Reinelt, J. M. Sanchis, “New
results on the Windy Postman Problem”, Mathematical Programming,
Vol. 132, No. 1-2, pp. 309-332, 2012

[4] R. Martí, G. Reinelt, The Linear Ordering Problem. Exact and Heuristic
Methods in Combinatorial Optimization, Springer, Heidelberg, 2011

[5] S. Kirkpatrick, C. D. Gelatt Jr, M. P. Vecchi, “Optimization by
Simulated Annealing”, Science, Vol. 220, No. 4598, pp. 671–680, 1983

[6] L. M. Schmitt, “Theory of Genetic Algorithms”, Theoretical Computer
Science, Vol. 259, No. 1–61, 2001

[7] F. Benhamou, N. Jussien, B. O' Sullivan, Trends in constraint
programming, John Wiley and Sons, 2007

[8] Universität Heidelberg, TSPLIB, 2013 TSP data

