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Abstract—Choosing the training algorithm and 
determining the architecture of artificial neural networks are 
very important issues with large application. There are no 
general methods which permit the estimation of the adequate 
neural networks size. In order to achieve this goal, a pruning 
algorithm based on the relevancy index of hidden neurons 
outputs is developed in this paper. The relevancy index depends 
on the output amplitude of each hidden neuron and estimates his 
contribution on the learning process. This method is validated 
with an academic example and it is tested on a wind turbine 
modeling problem. Compared with two modified versions of 
Optimal Brain Surgeon (OBS) algorithm, the developed 
approach gives interesting results. 
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I. INTRODUCTION  
The Feedforward Neural Networks (FNNs) [1, 2] have been 

successfully used to solve many problems, such as: dynamic 
system identification, signal processing, pattern classification 
[3, 4] and intelligent control [5]. One of the difficulties of a 
FNNs applying process is the determination of the optimal 
network architecture. In general, if the network structure is too 
small, it may not be able to learn the training samples. On the 
other hand, large-sized networks learn easily but show poor 
generalization capacities due to over-fitting. Thus, algorithms 
that can determine the appropriate network architecture 
automatically are highly desirable. Research in this field can be 
classified in two categories: constructive [6] and pruning 
approaches [7]. Recent interest has been growing on pruning 
strategies [8-10] that start with large-sized network and remove 
unnecessary hidden neurons or weights either during the 
training phase or after convergence to a local minimum. The 
most known methods are Optimal Brain Damage (OBD) [11] 
and Optimal Brain Surgeon (OBS) [12] which eliminate the 
neurons or weights with the smallest saliency one by one, 
which significantly increases the complexity of the procedure 
computation and the running time.  

 In this paper, an improved pruning algorithm based on 
hidden neurons’ outputs is investigated and compared with two 
algorithms  derived from the OBS method. The rest of paper is 

organized as follows. Section 2 presents briefly analysis of 
OBS algorithm and the description of two modified versions of 
this algorithm namely (Unit-OBS) [13] and (Fast-Unit-OBS) 
[14]. A pruning algorithm based on relevancy index of hidden 
neurons outputs is introduced in section 3. Section 4 illustrates 
the obtained simulation results. Finally, the conclusion is 
presented in section 5.  

II. RELATED WORKS  
A simple (FNN)s with a single output is represented in 

figure 1 (the generalization to more outputs units is 
straightforward). 

 
 
 
 
 
 
 
 
 
 

Fig. 1.  Feedforward Neural Network. 

This neural network is parameterized in terms of its 
weights, where:  

   mTm21 wwww  ,,,   (1) 

The training data consists of N patterns {xj,yj}, j=1, …, N. 

The error function for a given pattern is defined as:  

 2dp yy21J )(   (2) 

The global error function is described as:  
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A. OBS approch 
In [11], an OBD method which calculates the saliency only 

with the pivot elements of the Hessian matrix without 
retraining after the pruning process was introduced. To 
overcome this problem, the (OBS) algorithm which determines 
and removes the weight that has the smallest effect on the 
neural network performance and adjusts the remaining weights 
according to the error function gradient was proposed [12]. The 
OBS algorithm assumes that the network has been trained to a 
local minimum of the error, so the second-order Taylor 
expansion of the error function with respect to the weights can 
be expressed as:  

 )(
2
1 3wOwHww

w
JJ T

T

 







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  (4) 

where H denotes the Hessian matrix composed by the 
coefficients of the second order derivatives of the error 
function. 

In order to minimize the error given by (3), OBS algorithm 
deletes one of the weights having a value tending to 0 and 
removes the particular weight wq which satisfies the following 
equation:    

 0wwe qTq   (5) 
 

where eq represents the unit vector corresponding to weight wq qqT wew  . 

The corresponding expression for the minimum error is 
modified caused by changing a given weight depicted as:  

 
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
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So as to resolve this constrained optimization problem, we 
introduce Lagrange’s method which leads to find the 
corresponding optimum value of Lagrange function L after 
deleting wq as:  

  qq12qq Hw21L   (7) 

The remaining weights are updated according the following 
equation:   

 q1qq1q eHHww 


][
 (8) 

with [H-1]qq denotes the diagonal element (q,q) of the inverse of 
the Hessian matrix H-1. 

The OBS algorithm needs inverse Hessian matrix to update 
the weights which is the most disadvantage of this algorithm. It 
has been proposed a procedure to calculate  H-1 based on a 
recursive method as [12]:  

  
  1n1nT1n 1n11n1n1n1n11n XHXp HXXHHH









  (9) 

with  48pn0 1010etHHIH   , .  
However, one of the main difficulties of OBS approach is 

that it requires a great amount of computation and a huge time 
for pruning procedure. 

B. Unit-OBS algorithm 
The Unit-OBS pruning algorithm removes the unneeded 

neuron in one step with minimal increase in error [15]. This 
approach reduces both the computation complexity and the 
running time. The details of the Unit-OBS algorithm are as 
follows: 

 Step 1: Train the neural network to minimum error based on 
some local optimization method. 

 Step 2: Compute H-1. 

 Step 3: For each neuron u: 

 Compute the number of output weights for the neuron 
u and record it as m(u). 

 Form the unit matrix M for neuron u which:  

 ],,,[ )(uqm2q1q eeeM   (10) 

 where q1, q2,…, qm(u) denote the sequence number of 
each output weight with:  

 



 0010e iTqi   ,,,,  (11) 

 Calculate the error deviation after deleting neuron u:  

   wMMHMMw21uJ T11TT  )(  (12) 

 Step 4: Find the neuron u0 that gives the smallest increase 
in error noted )( 0uJ : if  t0 EuJ  )(  then the algorithm 
will stop; otherwise go to step 5. 

where Et indicates a preselected threshold. 

 Step 5: Remove neuron u0 and update the other weights 
using the following equation:  

   wMMHMMHw T11T1   (13) 

The unavoidable drawback for this algorithm is the 
complexity of computing the Hessian matrix whose dimension 
is equal to the number of initial weights of the network. In 
order to overcome this disadvantage a modified version of 
Unit-OBS algorithm has been proposed in [14]. 

C. Fast Unit-OBS algorithm  
In this case, the size of the Hessian matrix depends on the 

number of hidden neurons. 

The relevance of each hidden neuron is described by the 
following equation:  

  uu12uu Hw21L   (14) 
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where the weight mean is given by:  

                                      



m
1i uiu wm1w  (15) 

where wui denotes the output weights for the hidden neuron 
u and m indicates the number of wui. 

The steps of the Unit-OBS-algorithm are as follows: 

 Step 1: Train the neural network to minimum error based on 
some local optimization method. 

 Step 2: Compute H-1. 

 Step 3: For each hidden neuron u; compute the relevance Lu 
and find the neuron u0 that gives the smallest value which 
will be noted L. 

 Step 4: If L is greater than the preselected threshold Lt, than 
go to step 5. Otherwise: 

 delete the selected hidden neuron and adjust the other 
weights of the remaining neurons based on the 
following equation:  
  

   u1uu1u eHHww 
  (16) 

with :  

 



 0010e uu   ,,,,  (17) 

 
 return to the step 2. 

 Step 5: Stop the pruning approach and it may be desirable 
to retrain the network at this stage. 

Despite the improvements in algorithms Unit-OBS and 
Fast-Unit-OBS which have reduced the computation time of 
the pruning procedure, these methods still need of calculating 
the inverse of the Hessian matrix .To overcome this problem, a 
pruning algorithm that eliminates the hidden neurons having a 
low impact on learning performances without using the inverse 
of the matrix is proposed in the next section. 

III. PROPOSED ALGORITHM 
The basic idea of the algorithm proposed in this paper has 

been inspired from the pruning approach in [16] which consists 
of estimating the sensitivity of the global error changes with 
respect to each connection during the training phase and 
removing the weight which presents the smallest sensitivity 
value. The neural network will be retrained and the pruning 
process will be executed as capacities learning are satisfactory. 
However, the success of this approach depends on the size of 
the initial neural structure. Indeed, for the case of large-sized 
network, the number of weight increases hugely which 
degrades the performance of the approach significantly.  

The proposed method consists of finding the contribution of 
each hidden neuron in the network which reduces the 
complexity of the procedure and eliminates the one having the 
least effect on the cost function. This effect is estimated by 

calculating the relevancy index which depends on the output 
amplitude of each hidden neuron defined as follows:  

 
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1u pu
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where puO  indicates the output of the uth hidden node for a 
given pattern and Nc denotes the number of hidden ones. 

The average value of relevancy index is defined as:  

 c
N
1u uavu NRIRI c

  (19) 

Each hidden neuron with a relevancy index smallest than 
the average value should be deleted. 

It is to be noted that we are interested in a multi input-single 
output (MISO) model and the weights update law is based on 
the back-propagation algorithm which can explained as:  

 wJw p



  (20) 

where  denotes the learning rate. 

The proposed pruning algorithm can be described as 
follows: 

 Step 1: Train the neural network based on the back-
propagation algorithm to obtain a tolerated value of the 
training criterion noted Jt. 

 Step 2: Calculate the relevancy index for each hidden 
neuron using equation (18). 

 Step 3: Remove each hidden neuron u which satisfies the 
following test:  

 avuu RIRI   (21) 

If there is no neuron that satisfies the test (21), than go to 
step 5. 

 Step 4: Maintaining the same average value of the 
relevance index, train the obtained structure with a reduced 
number of iterations noted m and return to step 2. 

 Step 5: Stop the pruning approach and retrain the network 
at this stage.  

It can be seen that the proposed algorithm is based on a 
pruning strategy avoiding the computation the inverse of 
Hessian matrix which consists the main contribution of this 
approach. 

IV. SIMULATIONS RESULTS AND DISCUSSIONS 
In this section, we present the simulation results. Initially, 

the capacities of the proposed algorithm are verified on an 
academic example. Then, we use this algorithm for wind 
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turbine neural modeling. Through two simulation examples the 
proposed algorithm will be compared with the Unit-OBS and 
the Fast-Unit-OBS algorithms according to some performances 
criteria. 

A. First example 
The goal is to present the learning set to the studied 

algorithms and to show that they can determine a number of 
hidden neurons close to the one of the neural network used to 
generate the learning set. 

Figure 2 shows the neural network generating the learning 
set with an input vector  )(),(),(),( 2ku1ku2ky1ky  , 
3 hidden neurons and y as the output where the activation 
function in the hidden neurons and the output neuron is the 
sigmoid one. 

 
 
 
 
 
 
 
 
 
 
 

Fig. 2.   Neural Network generating the learning set. 

Figures 3 and 4 represent the input signal used respectively 
for the training and validation sets. 

The efficiency of each algorithm is computed as: 

 100N 3N1eff c
fc 







 
%  (22) 

with fcN indicates the final number of hidden neurons for 
the obtained structure after the pruning procedure. 

The initials values of weights and the numerical parameters 
are selected based on several simulations to obtain the best 
performances in terms of training capacities and convergence 
time. 
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Fig. 3.  Training input signal. 
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Fig. 4.  Validation input signal. 

The simulation results describing the performances of Unit-
OBS, Fast-Unit-OBS and the proposed algorithms are given in 
Table I where for each algorithm a set of initial neural 
structures has been considered. Table II shows the average of 
performances for the studied algorithms. 

It can be seen that the investigated approaches provide 
similar and satisfactory performances. On the other hand, the 
proposed algorithm avoids the complex calculation of the 
inverse of the Hessian matrix which considers the main 
advantage of this method. To confirm these interpretations, we 
test the studied algorithms on neural modeling problem of wind 
turbine. 

B. Second example 
In the last years, a growing interest in renewable energy has 

been evident [17]. Wind energy has become competitive and 
considerable technological progress has been achieved in the 
field of wind turbines. The energy production depends on many 
factors essentially the choice of robust methods for controlling 
wind turbines [18]. This step can be accomplished as well as 
the model describes the system dynamics correctly, which 
shows the importance of the selection of modeling strategy. 

 In this work, modeling of the turbine is provided via a 
neural model whose architecture is selected based on a pruning 
approach. The rigid model with only one degree of freedom 
[19-21] is given by:  

atgaat kTTI    (23) 

The point (.) designates the first order time derivative, Tg is 
the generator torque and Ir, Ig, kr, kg are the moment of inertia 
of rotor side masses, the moment of inertia of generator side 
masses, the mechanical damping in the rotor side and the 
mechanical damping in the generator side respectively, where: 

g2grt InII   is the total inertia of generator side masses, 

g2grt knkk   is the equivalent mechanical damping. 

For model (23) agg n  is satisfied, where: aa    is 

the rotor rotational speed and gg    is the rotational speed of 
the high speed shaft, while gn designates the gear ratio between 
the primary shaft and the secondary shaft, a and g are the 
azimuthally rotor position and the azimuthally position of the 
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high speed shaft. The captured aerodynamic torque Ta is given 
in terms of the power coefficient Cp(,) as:  

      


 ,pa
32a CkvR21kT   (24) 

where  is the specific speed defined as:  

vR a   (25) 

v is the effective wind speed,  is the air density, and R 
denotes the blades rotor radius. The power coefficient Cp(,) 
is estimated using aerodynamic data obtained from wind tunnel 
measurements. It is generally represented under the form of an 
analytical formula which gives Cp() for various values of the 
pitch angle . 

In the literature [22] one finds the following approximation:  

   ]exp[, BACp    (26) 

where: 


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2cc1G GcB cBcGcA
3 32

6 541
  (26) 

with the coefficients ci, i=1... 6 are identified from real Cp 
curves. 

Using the Euler approximation and for small values of the 
sampling period, the discrete model describing the wind turbine 
can be expressed as follows:  

         







 kIkI kTI kTtk1k atttgtaaa   (27) 

t denotes the sampling period. 

The goal of this study is to determine an adequate neural 
model of the wind turbine. This model should be able to learn 
nonlinear dynamics of the wind turbine and gives good 
generalization ability. 

TABLE I.  PERFORMANCES OF THE STUDIED ALGORITHMS 

Algorithm 
Numerical 
simulation 
Parameters 

cN  fcN  Efficiency (%) Generalization 
error 

Run 
time 

Unit-OBS =0.6, Et=8.10-5, 
Jt=0.003, =9.10-5 

5 3 100 0.0036 0’11" 
8 5 75 0.0032 0’11" 
11 4 90.91 0.0035 0’18" 
14 3 100 0.0035 1’11" 
20 4 95 0.0037 1’12" 
25 3 100 0.0035 2’08" 

Fast-Unit-OBS 
=0.6, 

Lt=Jt=0.003, 
=10-8 

5 3 100 0.0036 0’10" 
8 3 100 0.0033 0’09" 
11 4 90.91 0.0035 0’14" 
14 2 92.86 0.0034 1’36" 
20 5 90 0.0037 0’46" 
25 4 96 0.0036 0’43" 

Proposed algorithm =0.6, Jt=0.003, 
m=20 

5 2 80 0.0033 0’23" 
8 3 100 0.0034 1’09" 
11 3 100 0.0032 0’29" 
14 3 100 0.0035 0’19" 
20 5 90 0.0035 0’40" 
25 5 92 0.0032 1’43" 

 
The wind turbine parameters used in simulations are the 

following [23, 24]: 
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The input-output neural model describing the wind 

turbine is presented in Figure 5. The model input vector is 
constituted by the actual and previous generator torque 

(Tg(k) and Tg(k-1)), the actual and previous rotor rotational 
speed (a(k) and a(k-1)) and the actual value of wind speed 
v(k). The model output is the future value of the rotor 
rotational speed a(k+1).  The selection of the input vector 
and the value of the sampling period have been done after 
several simulations. The chosen mean wind speed was set to 
vmoy=12ms-1 and t=0.1s. Figures 6 and 7 represent 
respectively the input signals Tg(k) and v(k), used in the 
training (6.a and 7.a) and validation (6.b and 7.b) phases. 

It is to be noted that each training algorithms have been 
executed for different initial neural structures. The 
simulation results describing the performances of the 
algorithms studied in this paper are illustrated in Table III. It 
can be seen that the proposed algorithm provides better 
performances when compared to Unit-OBS and Fast-Unit-
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OBS algorithms. For better illustration of the results 
presented in Table III, they can be summarized in Table IV 
which presents the average performance on final 
architecture, generalization capacities and convergence time.  

Table IV shows the contribution of the proposed 
algorithm. In fact, we note that the algorithm based on 
relevancy index leads to the simplest neural structure and 
presents the least convergence time with satisfactory 
generalization abilities. Moreover, the proposed method 
avoids the complex computation of the inverse of the 
Hessian matrix which considers the major drawback of the 
OBS approach. Figure 8 gives the evolution of the identified 
neural model output for the training (8.a) and validation (8.b) 
sets using the proposed algorithm. 

 
 
 
 
 
 
 
 
 
 

Fig. 5.  Input-output neural model. 

 
Fig. 6.  Tg (k) used in the training and validation phases ((a): training, (b): validation). 
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Fig. 7.  v(k) used in the training and validation phases ((a): training, (b): validation). 

 

 
 
 
 
 
 
 
 
 
 

Fig. 8.  Training and validation performances for the proposed algorithm ((a): training, (b): validation). 
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TABLE II.  AVERAGE OF PERFORMANCES FOR THE STUDIED ALGORITHMS 

Algorithm Efficiency (%) Generalization error Run time 
Unit-OBS 93.49 0.0035 0’52" 

Fast-Unit-OBS 95.11 0.0035 0’36" 
Proposed algorithm 93.67 0.0033 0’47" 

TABLE III.  ALGORITHMS PERFORMANCES FOR THE WIND TURBINE NEURAL MODELING PROBLEM. 

Algorithm Numerical simulation Parameters cN  fcN  
Generalization 

error Run time 

Unit-OBS =0.4, 
Et=8.10-5  Jt=0.01, =9.10-5 

10 9 0.0058 1’42" 
15 9 0.0080 2’01" 
20 6 0.0056 2’44" 
25 7 0.0048 2’41" 

Fast-Unit-OBS =0.4, Jt=0.01, 
Lt= 0.002, =10-8 

10 8 0.0044 1’53" 
15 14 0.0048 1’34" 
20 13 0.0057 2’37" 
25 13 0.0067 2’02" 

Proposed 
algorithm =0.4, Jt=0.01, m=10 

10 6 0.0063 1’34" 
15 6 0.0084 1’39" 
20 7 0.0048 2’04" 
25 5 0.0084 1’52" 

TABLE IV.  AVERAGE OF PERFORMANCES. 

Algorithm fcN  Generalization error Run time 

Unit-OBS 8 0.0061 2’17" 
Fast-Unit-OBS 12 0.0054 2’02" 

Proposed algorithm 6 0.0070 1’47" 
    

V. CONCLUSION 
This paper presents a pruning algorithm based on relevancy 
index that allows obtaining the adequate neural network 
structure. The main advantage of this method is that it 
avoids the calculating of the inverse of the Hessian matrix 
which is indispensable for using any pruning algorithm 
based on the OBS approach. To confirm the effectiveness of 
the developed algorithm, it has been applied on an academic 
example and on a wind turbine model. The simulation 
results demonstrated that the proposed algorithm, compared 
with the Unit-OBS and the Fast-Unit-OBS algorithms, not 
only ensures the same training and generalization 
performance but also shortens the runtime and simplifies 
considerably the obtained neural structure after pruning 
process what proves the potential utility of this algorithm. 
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