
Engineering, Technology & Applied Science Research Vol. 6, No. 4, 2016, 1067-1074 1067

www.etasr.com Abid et al.: A Pruning Algorithm Based on Relevancy Index of Hidden Neurons Outputs

A Pruning Algorithm Based on Relevancy Index of
Hidden Neurons Outputs

Slim Abid
Control & Energy Management Lab

(CEM LAB)
National School of Engineering of Sfax

University of Sfax, Tunisia
abid_slim_enis@yahoo.fr

Mohamed Chtourou
Control & Energy Management Lab

(CEM LAB)
National School of Engineering of Sfax

University of Sfax, Tunisia
mohamed.chtourou@enis.rnu.tn

Mohamed Djemel
Control & Energy Management Lab

(CEM LAB)
National School of Engineering of Sfax

University of Sfax, Tunisia
mohamed.djemel@enis.rnu.tn

Abstract—Choosing the training algorithm and
determining the architecture of artificial neural networks are
very important issues with large application. There are no
general methods which permit the estimation of the adequate
neural networks size. In order to achieve this goal, a pruning
algorithm based on the relevancy index of hidden neurons
outputs is developed in this paper. The relevancy index depends
on the output amplitude of each hidden neuron and estimates his
contribution on the learning process. This method is validated
with an academic example and it is tested on a wind turbine
modeling problem. Compared with two modified versions of
Optimal Brain Surgeon (OBS) algorithm, the developed
approach gives interesting results.

Keywords- pruning algorithm; OBS approach; relevancy index;
hidden neurons

I. INTRODUCTION
The Feedforward Neural Networks (FNNs) [1, 2] have been

successfully used to solve many problems, such as: dynamic
system identification, signal processing, pattern classification
[3, 4] and intelligent control [5]. One of the difficulties of a
FNNs applying process is the determination of the optimal
network architecture. In general, if the network structure is too
small, it may not be able to learn the training samples. On the
other hand, large-sized networks learn easily but show poor
generalization capacities due to over-fitting. Thus, algorithms
that can determine the appropriate network architecture
automatically are highly desirable. Research in this field can be
classified in two categories: constructive [6] and pruning
approaches [7]. Recent interest has been growing on pruning
strategies [8-10] that start with large-sized network and remove
unnecessary hidden neurons or weights either during the
training phase or after convergence to a local minimum. The
most known methods are Optimal Brain Damage (OBD) [11]
and Optimal Brain Surgeon (OBS) [12] which eliminate the
neurons or weights with the smallest saliency one by one,
which significantly increases the complexity of the procedure
computation and the running time.

 In this paper, an improved pruning algorithm based on
hidden neurons’ outputs is investigated and compared with two
algorithms derived from the OBS method. The rest of paper is

organized as follows. Section 2 presents briefly analysis of
OBS algorithm and the description of two modified versions of
this algorithm namely (Unit-OBS) [13] and (Fast-Unit-OBS)
[14]. A pruning algorithm based on relevancy index of hidden
neurons outputs is introduced in section 3. Section 4 illustrates
the obtained simulation results. Finally, the conclusion is
presented in section 5.

II. RELATED WORKS
A simple (FNN)s with a single output is represented in

figure 1 (the generalization to more outputs units is
straightforward).

Fig. 1. Feedforward Neural Network.

This neural network is parameterized in terms of its
weights, where:

   mTm21 wwww  ,,,  (1)

The training data consists of N patterns {xj,yj}, j=1, …, N.

The error function for a given pattern is defined as:

 2dp yy21J)( (2)

The global error function is described as:

 



N
1p pJN1J (3)


y

xi

x2

x1
wi

1 1



wi

Engineering, Technology & Applied Science Research Vol. 6, No. 4, 2016, 1067-1074 1068

www.etasr.com Abid et al.: A Pruning Algorithm Based on Relevancy Index of Hidden Neurons Outputs

A. OBS approch
In [11], an OBD method which calculates the saliency only

with the pivot elements of the Hessian matrix without
retraining after the pruning process was introduced. To
overcome this problem, the (OBS) algorithm which determines
and removes the weight that has the smallest effect on the
neural network performance and adjusts the remaining weights
according to the error function gradient was proposed [12]. The
OBS algorithm assumes that the network has been trained to a
local minimum of the error, so the second-order Taylor
expansion of the error function with respect to the weights can
be expressed as:

)(
2
1 3wOwHww

w
JJ T

T

 









 (4)

where H denotes the Hessian matrix composed by the
coefficients of the second order derivatives of the error
function.

In order to minimize the error given by (3), OBS algorithm
deletes one of the weights having a value tending to 0 and
removes the particular weight wq which satisfies the following
equation:

 0wwe qTq  (5)

where eq represents the unit vector corresponding to weight wq qqT wew  .

The corresponding expression for the minimum error is
modified caused by changing a given weight depicted as:

 















  0wwewHw21 qTqTq /..minmin (6)

So as to resolve this constrained optimization problem, we
introduce Lagrange’s method which leads to find the
corresponding optimum value of Lagrange function L after
deleting wq as:

  qq12qq Hw21L  (7)

The remaining weights are updated according the following
equation:

 q1qq1q eHHww 


][
 (8)

with [H-1]qq denotes the diagonal element (q,q) of the inverse of
the Hessian matrix H-1.

The OBS algorithm needs inverse Hessian matrix to update
the weights which is the most disadvantage of this algorithm. It
has been proposed a procedure to calculate H-1 based on a
recursive method as [12]:

  
  1n1nT1n 1n11n1n1n1n11n XHXp HXXHHH









 (9)

with  48pn0 1010etHHIH   , .
However, one of the main difficulties of OBS approach is

that it requires a great amount of computation and a huge time
for pruning procedure.

B. Unit-OBS algorithm
The Unit-OBS pruning algorithm removes the unneeded

neuron in one step with minimal increase in error [15]. This
approach reduces both the computation complexity and the
running time. The details of the Unit-OBS algorithm are as
follows:

 Step 1: Train the neural network to minimum error based on
some local optimization method.

 Step 2: Compute H-1.

 Step 3: For each neuron u:

 Compute the number of output weights for the neuron
u and record it as m(u).

 Form the unit matrix M for neuron u which:

],,,[)(uqm2q1q eeeM  (10)

 where q1, q2,…, qm(u) denote the sequence number of
each output weight with:

 



 0010e iTqi   ,,,, (11)

 Calculate the error deviation after deleting neuron u:

   wMMHMMw21uJ T11TT )((12)

 Step 4: Find the neuron u0 that gives the smallest increase
in error noted)(0uJ : if  t0 EuJ )(then the algorithm
will stop; otherwise go to step 5.

where Et indicates a preselected threshold.

 Step 5: Remove neuron u0 and update the other weights
using the following equation:

   wMMHMMHw T11T1  (13)

The unavoidable drawback for this algorithm is the
complexity of computing the Hessian matrix whose dimension
is equal to the number of initial weights of the network. In
order to overcome this disadvantage a modified version of
Unit-OBS algorithm has been proposed in [14].

C. Fast Unit-OBS algorithm
In this case, the size of the Hessian matrix depends on the

number of hidden neurons.

The relevance of each hidden neuron is described by the
following equation:

  uu12uu Hw21L  (14)

Engineering, Technology & Applied Science Research Vol. 6, No. 4, 2016, 1067-1074 1069

www.etasr.com Abid et al.: A Pruning Algorithm Based on Relevancy Index of Hidden Neurons Outputs

where the weight mean is given by:

 



m
1i uiu wm1w (15)

where wui denotes the output weights for the hidden neuron
u and m indicates the number of wui.

The steps of the Unit-OBS-algorithm are as follows:

 Step 1: Train the neural network to minimum error based on
some local optimization method.

 Step 2: Compute H-1.

 Step 3: For each hidden neuron u; compute the relevance Lu
and find the neuron u0 that gives the smallest value which
will be noted L.

 Step 4: If L is greater than the preselected threshold Lt, than
go to step 5. Otherwise:

 delete the selected hidden neuron and adjust the other
weights of the remaining neurons based on the
following equation:

   u1uu1u eHHww 
 (16)

with :

 



 0010e uu   ,,,, (17)

 return to the step 2.

 Step 5: Stop the pruning approach and it may be desirable
to retrain the network at this stage.

Despite the improvements in algorithms Unit-OBS and
Fast-Unit-OBS which have reduced the computation time of
the pruning procedure, these methods still need of calculating
the inverse of the Hessian matrix .To overcome this problem, a
pruning algorithm that eliminates the hidden neurons having a
low impact on learning performances without using the inverse
of the matrix is proposed in the next section.

III. PROPOSED ALGORITHM
The basic idea of the algorithm proposed in this paper has

been inspired from the pruning approach in [16] which consists
of estimating the sensitivity of the global error changes with
respect to each connection during the training phase and
removing the weight which presents the smallest sensitivity
value. The neural network will be retrained and the pruning
process will be executed as capacities learning are satisfactory.
However, the success of this approach depends on the size of
the initial neural structure. Indeed, for the case of large-sized
network, the number of weight increases hugely which
degrades the performance of the approach significantly.

The proposed method consists of finding the contribution of
each hidden neuron in the network which reduces the
complexity of the procedure and eliminates the one having the
least effect on the cost function. This effect is estimated by

calculating the relevancy index which depends on the output
amplitude of each hidden neuron defined as follows:

 






















N
1p N

1u pu
puu c OON1RI (18)

where puO indicates the output of the uth hidden node for a
given pattern and Nc denotes the number of hidden ones.

The average value of relevancy index is defined as:

 c
N
1u uavu NRIRI c

 (19)

Each hidden neuron with a relevancy index smallest than
the average value should be deleted.

It is to be noted that we are interested in a multi input-single
output (MISO) model and the weights update law is based on
the back-propagation algorithm which can explained as:

 wJw p



 (20)

where  denotes the learning rate.

The proposed pruning algorithm can be described as
follows:

 Step 1: Train the neural network based on the back-
propagation algorithm to obtain a tolerated value of the
training criterion noted Jt.

 Step 2: Calculate the relevancy index for each hidden
neuron using equation (18).

 Step 3: Remove each hidden neuron u which satisfies the
following test:

 avuu RIRI  (21)

If there is no neuron that satisfies the test (21), than go to
step 5.

 Step 4: Maintaining the same average value of the
relevance index, train the obtained structure with a reduced
number of iterations noted m and return to step 2.

 Step 5: Stop the pruning approach and retrain the network
at this stage.

It can be seen that the proposed algorithm is based on a
pruning strategy avoiding the computation the inverse of
Hessian matrix which consists the main contribution of this
approach.

IV. SIMULATIONS RESULTS AND DISCUSSIONS
In this section, we present the simulation results. Initially,

the capacities of the proposed algorithm are verified on an
academic example. Then, we use this algorithm for wind

Engineering, Technology & Applied Science Research Vol. 6, No. 4, 2016, 1067-1074 1070

www.etasr.com Abid et al.: A Pruning Algorithm Based on Relevancy Index of Hidden Neurons Outputs

turbine neural modeling. Through two simulation examples the
proposed algorithm will be compared with the Unit-OBS and
the Fast-Unit-OBS algorithms according to some performances
criteria.

A. First example
The goal is to present the learning set to the studied

algorithms and to show that they can determine a number of
hidden neurons close to the one of the neural network used to
generate the learning set.

Figure 2 shows the neural network generating the learning
set with an input vector  )(),(),(),(2ku1ku2ky1ky  ,
3 hidden neurons and y as the output where the activation
function in the hidden neurons and the output neuron is the
sigmoid one.

Fig. 2. Neural Network generating the learning set.

Figures 3 and 4 represent the input signal used respectively
for the training and validation sets.

The efficiency of each algorithm is computed as:

 100N 3N1eff c
fc 







 
% (22)

with fcN indicates the final number of hidden neurons for
the obtained structure after the pruning procedure.

The initials values of weights and the numerical parameters
are selected based on several simulations to obtain the best
performances in terms of training capacities and convergence
time.

0 50 100 150 200 250 300 350 400 450 500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fig. 3. Training input signal.

0 20 40 60 80 100 120 140 160 180 200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fig. 4. Validation input signal.

The simulation results describing the performances of Unit-
OBS, Fast-Unit-OBS and the proposed algorithms are given in
Table I where for each algorithm a set of initial neural
structures has been considered. Table II shows the average of
performances for the studied algorithms.

It can be seen that the investigated approaches provide
similar and satisfactory performances. On the other hand, the
proposed algorithm avoids the complex calculation of the
inverse of the Hessian matrix which considers the main
advantage of this method. To confirm these interpretations, we
test the studied algorithms on neural modeling problem of wind
turbine.

B. Second example
In the last years, a growing interest in renewable energy has

been evident [17]. Wind energy has become competitive and
considerable technological progress has been achieved in the
field of wind turbines. The energy production depends on many
factors essentially the choice of robust methods for controlling
wind turbines [18]. This step can be accomplished as well as
the model describes the system dynamics correctly, which
shows the importance of the selection of modeling strategy.

 In this work, modeling of the turbine is provided via a
neural model whose architecture is selected based on a pruning
approach. The rigid model with only one degree of freedom
[19-21] is given by:

atgaat kTTI  (23)

The point (.) designates the first order time derivative, Tg is
the generator torque and Ir, Ig, kr, kg are the moment of inertia
of rotor side masses, the moment of inertia of generator side
masses, the mechanical damping in the rotor side and the
mechanical damping in the generator side respectively, where:

g2grt InII  is the total inertia of generator side masses,

g2grt knkk  is the equivalent mechanical damping.

For model (23) agg n  is satisfied, where: aa   is

the rotor rotational speed and gg   is the rotational speed of
the high speed shaft, while gn designates the gear ratio between
the primary shaft and the secondary shaft, a and g are the
azimuthally rotor position and the azimuthally position of the

 u(k) Training

samples k

Validation

samples k

 u1(k)

1 6

7

2

4 8

5

3

 y(k-1)

u(k-1)

u(k-2)

1

 y(k-2)

9
y(k)

Engineering, Technology & Applied Science Research Vol. 6, No. 4, 2016, 1067-1074 1071

www.etasr.com Abid et al.: A Pruning Algorithm Based on Relevancy Index of Hidden Neurons Outputs

high speed shaft. The captured aerodynamic torque Ta is given
in terms of the power coefficient Cp(,) as:

      


 ,pa
32a CkvR21kT (24)

where  is the specific speed defined as:

vR a (25)

v is the effective wind speed,  is the air density, and R
denotes the blades rotor radius. The power coefficient Cp(,)
is estimated using aerodynamic data obtained from wind tunnel
measurements. It is generally represented under the form of an
analytical formula which gives Cp() for various values of the
pitch angle .

In the literature [22] one finds the following approximation:

  ]exp[, BACp  (26)

where:






















2cc1G GcB cBcGcA
3 32

6 541
 (26)

with the coefficients ci, i=1... 6 are identified from real Cp
curves.

Using the Euler approximation and for small values of the
sampling period, the discrete model describing the wind turbine
can be expressed as follows:

         







 kIkI kTI kTtk1k atttgtaaa (27)

t denotes the sampling period.

The goal of this study is to determine an adequate neural
model of the wind turbine. This model should be able to learn
nonlinear dynamics of the wind turbine and gives good
generalization ability.

TABLE I. PERFORMANCES OF THE STUDIED ALGORITHMS

Algorithm
Numerical
simulation
Parameters

cN fcN Efficiency (%) Generalization
error

Run
time

Unit-OBS =0.6, Et=8.10-5,
Jt=0.003, =9.10-5

5 3 100 0.0036 0’11"
8 5 75 0.0032 0’11"
11 4 90.91 0.0035 0’18"
14 3 100 0.0035 1’11"
20 4 95 0.0037 1’12"
25 3 100 0.0035 2’08"

Fast-Unit-OBS
=0.6,

Lt=Jt=0.003,
=10-8

5 3 100 0.0036 0’10"
8 3 100 0.0033 0’09"
11 4 90.91 0.0035 0’14"
14 2 92.86 0.0034 1’36"
20 5 90 0.0037 0’46"
25 4 96 0.0036 0’43"

Proposed algorithm =0.6, Jt=0.003,
m=20

5 2 80 0.0033 0’23"
8 3 100 0.0034 1’09"
11 3 100 0.0032 0’29"
14 3 100 0.0035 0’19"
20 5 90 0.0035 0’40"
25 5 92 0.0032 1’43"

The wind turbine parameters used in simulations are the

following [23, 24]:































4.18cand10.636.9c,309082.0c

,10.003.0c,02.0c,10.1023.1c

,5.7,sNmrad7.3k,sNmrad5.1k

,1,kgm4.34I,kgm10.25.3I

,165.43n,m38.21R,kgm225.1

6
2

54

2
32

2
1

opt
1

g
1

r

2
g

25
r

g
3







The input-output neural model describing the wind

turbine is presented in Figure 5. The model input vector is
constituted by the actual and previous generator torque

(Tg(k) and Tg(k-1)), the actual and previous rotor rotational
speed (a(k) and a(k-1)) and the actual value of wind speed
v(k). The model output is the future value of the rotor
rotational speed a(k+1). The selection of the input vector
and the value of the sampling period have been done after
several simulations. The chosen mean wind speed was set to
vmoy=12ms-1 and t=0.1s. Figures 6 and 7 represent
respectively the input signals Tg(k) and v(k), used in the
training (6.a and 7.a) and validation (6.b and 7.b) phases.

It is to be noted that each training algorithms have been
executed for different initial neural structures. The
simulation results describing the performances of the
algorithms studied in this paper are illustrated in Table III. It
can be seen that the proposed algorithm provides better
performances when compared to Unit-OBS and Fast-Unit-

Engineering, Technology & Applied Science Research Vol. 6, No. 4, 2016, 1067-1074 1072

www.etasr.com Abid et al.: A Pruning Algorithm Based on Relevancy Index of Hidden Neurons Outputs

OBS algorithms. For better illustration of the results
presented in Table III, they can be summarized in Table IV
which presents the average performance on final
architecture, generalization capacities and convergence time.

Table IV shows the contribution of the proposed
algorithm. In fact, we note that the algorithm based on
relevancy index leads to the simplest neural structure and
presents the least convergence time with satisfactory
generalization abilities. Moreover, the proposed method
avoids the complex computation of the inverse of the
Hessian matrix which considers the major drawback of the
OBS approach. Figure 8 gives the evolution of the identified
neural model output for the training (8.a) and validation (8.b)
sets using the proposed algorithm.

Fig. 5. Input-output neural model.

Fig. 6. Tg (k) used in the training and validation phases ((a): training, (b): validation).

(a) (b)

0 100 200 300 400 500 600
5

10

15

20

k



0 20 40 60 80 100 120 140 160 180 200
5

10

15

20


k

Fig. 7. v(k) used in the training and validation phases ((a): training, (b): validation).

Fig. 8. Training and validation performances for the proposed algorithm ((a): training, (b): validation).

 (a) (b)

0 100 200 300 400 500 600
7.5

7.6

7.7

7.8

7.9

8

8.1

8.2

8.3

8.4
real speed
estimated speed

0 20 40 60 80 100 120 140 160 180 200
7.5

7.6

7.7

7.8

7.9

8

8.1

8.2

8.3

8.4
real speed
estimated speed

Training Validationv(ms-1)

 samples samples

v(ms-1)

  1kTg

  kTg

 ka

 1ka 

1
1



 1ka 

 kv

samples k

a(rads-1)

samples k

a(rads-1)

Engineering, Technology & Applied Science Research Vol. 6, No. 4, 2016, 1067-1074 1073

www.etasr.com Abid et al.: A Pruning Algorithm Based on Relevancy Index of Hidden Neurons Outputs

TABLE II. AVERAGE OF PERFORMANCES FOR THE STUDIED ALGORITHMS

Algorithm Efficiency (%) Generalization error Run time
Unit-OBS 93.49 0.0035 0’52"

Fast-Unit-OBS 95.11 0.0035 0’36"
Proposed algorithm 93.67 0.0033 0’47"

TABLE III. ALGORITHMS PERFORMANCES FOR THE WIND TURBINE NEURAL MODELING PROBLEM.

Algorithm Numerical simulation Parameters cN fcN
Generalization

error Run time

Unit-OBS =0.4,
Et=8.10-5 Jt=0.01, =9.10-5

10 9 0.0058 1’42"
15 9 0.0080 2’01"
20 6 0.0056 2’44"
25 7 0.0048 2’41"

Fast-Unit-OBS =0.4, Jt=0.01,
Lt= 0.002, =10-8

10 8 0.0044 1’53"
15 14 0.0048 1’34"
20 13 0.0057 2’37"
25 13 0.0067 2’02"

Proposed
algorithm =0.4, Jt=0.01, m=10

10 6 0.0063 1’34"
15 6 0.0084 1’39"
20 7 0.0048 2’04"
25 5 0.0084 1’52"

TABLE IV. AVERAGE OF PERFORMANCES.

Algorithm fcN Generalization error Run time

Unit-OBS 8 0.0061 2’17"
Fast-Unit-OBS 12 0.0054 2’02"

Proposed algorithm 6 0.0070 1’47"

V. CONCLUSION
This paper presents a pruning algorithm based on relevancy
index that allows obtaining the adequate neural network
structure. The main advantage of this method is that it
avoids the calculating of the inverse of the Hessian matrix
which is indispensable for using any pruning algorithm
based on the OBS approach. To confirm the effectiveness of
the developed algorithm, it has been applied on an academic
example and on a wind turbine model. The simulation
results demonstrated that the proposed algorithm, compared
with the Unit-OBS and the Fast-Unit-OBS algorithms, not
only ensures the same training and generalization
performance but also shortens the runtime and simplifies
considerably the obtained neural structure after pruning
process what proves the potential utility of this algorithm.

REFERENCES
[1] P. Mehra, B. W. Wah, Artificial Neural Networks: Concepts and

Theory, IEEE Comput. Society Press, 1992
[2] J. M. Zurada Introduction to Artificial Neural Systems, St Paul, MN:

West, 1992
[3] V. E. Neagoe, C.T. Tudoran, “A neural machine vision model for

road detection in autonomous navigation”, U.P.B. Sci. Bull., Series C,
Vol. 73, No. 2, pp. 167-178, 2011

[4] E. Şuşnea, “Using artificial neural networks in e-learning systems”,
U.P.B. Sci. Bull., Series C, Vol. 72, No. 4, pp. 91-100, 2010

[5] A. Mechernene, M. Zerikat, S. Chekroun, “Indirect field oriented
adaptive control of induction motor based on neuro-fuzzy controller”,
J. Electrical Systems, Vol. 7, No. 3, pp. 308-319, 2011

[6] D. Liu, T. S. Chang, Y. Zhang, “A constructive algorithm for
feedforward neural networks with incremental training”, IEEE
Transactions on Circuits and Systems. Fundamental Theory and
Applications, Vol. 49, No. 12, pp. 1876-1879, 2002

[7] R. Reed, “Pruning algorithms-A survey”, IEEE Trans. Neural Net.,
Vol. 4, No. 5, pp. 740-747, 1993

[8] H. Honggui, Q. Junfei, “A novel pruning algorithm for self-
organizing neural network”, International Joint Conference on Neural
Networks, Atlanta, Georgia, USA, pp. 22-27, 2009

[9] D. Juan, E. M. Joo, “A fast pruning algorithm for an efficient adaptive
fuzzy neural network”, 8th IEEE International Conference on Control
and Automation Xiamen, China, pp. 1030- 1035, 2010

[10] Z. Zhang, J. Qiao, “A node pruning algorithm for feedforward neural
network based on neural complexity”, International Conference on
Intelligent Control and Information Processing, Dalian, China, pp.
406- 410, 2010

[11] Y. Le Cun, L. S. Denker, S. A. Solla, “Optimal brain damage” in
Advances in Neural Information Processing systems, D.S. Touretzky,
Ed. San Mateo, CA: Morgan Kaufmann, pp. 598-605, 1990

[12] B. Hassibi, D. Stork, G. Wolff, “Optimal brain surgeon and general
network pruning”, IEEE Int. Conf. Neural Networks, Vol. 1, pp. 293–
299, 1993

[13] A. Stahlberger, M. Riedmiller, “Fast network pruning and feature
extraction using the unit-OBS algorithm”, Advances in Neural
Information Processing Systems, Denver, Vol. 9, pp. 2-5, 1996

[14] J. -F. Qiao, Y. Zhang, H. -G. Han, “Fast unit pruning algorithm for
feedforward neural network design”, Applied Mathematics and
Computation, Vol. 205, pp. 622–627, 2008

[15] B. Hassibi, D. G. Stork, “Second-order derivatives for network
pruning: Optimal brain surgeon”, Advances in Neural Information
Processing Systems, Vol. 5, pp. 164-171, 1993

[16] E. D. Karnin, “A simple procedure for pruning backpropagation
trained neural networks”, IEEE Trans. Neural Networks, Vol. 1, pp.
239-242, 1990

[17] N. Ciprian, M. Florin, “Operational parameters evaluation for optimal
wind energy systems development”, U.P.B. Sci. Bull., Series C, Vol.
74, pp. 223-230, 2012

[18] A. Pintea. D. Popescu, “A comparative study of digital IMC and RST
regulators applied on a wind turbine”, U.P.B. Sci. Bull., Series C,
Vol. 74, No. 4, pp. 27-38, 2012

Engineering, Technology & Applied Science Research Vol. 6, No. 4, 2016, 1067-1074 1074

www.etasr.com Abid et al.: A Pruning Algorithm Based on Relevancy Index of Hidden Neurons Outputs

[19] P. Christou, “Advanced materials for turbine blade manufacture”,
Reinforced Plastics, Vol. 51, No. 4, pp. 22-24, 2007

[20] L. Fingersh, M. Hand, A. Laxson, “Wind turbine design cost and
scaling model”, National Renewable Energy Laboratory, Technical
Report NREL/TP-500-40566, 2006

[21] Y. D. Song, B. Dhinakaran, X. Y. Bao, “Variable speed control of
wind turbines using nonlinear and adaptive algorithms”, Wind
Engineering and Industrial Aerodynamics, Vol. 85, pp. 293-308, 2000

[22] K. Reif, F. Sonnemann, R. Unbehauen, “Nonlinear state observation
using H∞-filtering filtering riccati design”, IEEE Transactions On
Automatic Control, Vol. 44, No. 1, pp. 203-208, 1999

[23] A. Khamlichi, B. Ayyat, M. Bezzazi, L. El Bakkali, V. C. Vivas, C.
L. F. Castano, “Modelling and control of flexible wind turbines
without wind speed measurements”, Australian Journal of Basic and
Applied Sciences, Vol. 3, No. 4, pp. 3246-3258, 2009

[24] S. Abid, M. Chtourou, M. Djemel, “Incremental and Stable Training
Algorithm for Wind Turbine Neural Modeling”, Engineering Review
(ER), Vol. 33, No. 3, pp. 165-172, 2013

