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Abstract—This paper addresses the use of the kriging  approach 
to predict the springback in the air bending process. The 
materials and the geometrical parameters, which significantly 
affect the springback, were considered as inputs, and the 
springback angle was considered as the response. A verified 
nonlinear finite element model was used to generate the training 
data required to create the kriging  metamodel. The training 
examples were selected based on computer-generated D-optimal 
designs. A comparison between the kriging approaches and the 
response surface methodology is conducted and discussed. The 
results showed that kriging accurately predicts the finite element 
springback results. Comparing the accuracy of kriging with a 
response surface methodology shows that kriging with a 2nd 
degree polynomial and exponential correlation function predicts 
the springback more accurately than the response surface 
methodology. 

Keywords-Metamodels; Springback; Kriging; Response Surface 
Methodology; D-Optimal Designs  

I. INTRODUCTION  

Springback is a common phenomenon that occurs in sheet 
metal bending after unloading the static loads due to elastic 
recovery. In recent years, numerous investigations have been 
conducted on the springback phenomenon in sheet metal 
bending processes via experimental [1-5], analytical [6-9], and 
numerical [10-12] methods for different shapes, processes and 
material parameters. Many types of geometries have been 
performed to predict the springback, including pure/air bending 
[4, 10, 13], V-bending [1, 14-15], U-bending [16-19], L-
bending [7, 20-21], draw-bending [2-3, 6], beams subjected to 
repeated bending [5], and tube bending [22]. 

A number of analytical models based on the geometry and 
the material characteristics have been conducted using the 
analytical methods for springback predictions. The recent 
approaches to analytical solutions include the prediction of 
springback considering Young's modulus variation with a 
piecewise hardening function [23], friction modeling of high 
strength steels [24-25], semi-analytical modeling of springback 
[26], U-bending as a function of stress distribution in the 
thickness of sheet metal [27], springback prediction of an 
asymmetric thin-walled tube [28], and an analytical springback 
model for lightweight hexagonal close-packed sheet [29]. In 

general, most of the analytical models assume a simplified 
process and material properties due to the complexity of the 
problem. 

The finite element method is a powerful tool for analyzing 
sheet bending processes with various materials and test 
conditions [1, 11, 30-32]. Because a large number of FEMs is 
required to develop an accurate approximation for springback 
prediction, it is not practical, relatively time-consuming, and 
computationally expensive to apply it for a complex process, 
such as metal forming. In addition, a direct link between finite 
element code and optimization routines can lead to inefficient 
results because a large number of iterative calls are required 
during the optimization. Recently, there has been a great 
increase in the application of metamodels instead of the 
complex analytics models that are limited by assumptions [33-
34]. Several metamodeling techniques with various degrees of 
complexity have been extensively applied, such as the response 
surface methodology [35-38], artificial neural network [39-42], 
radial basis function [43-45], and kriging [46-49]. Some of 
these techniques are suitable for global approximations, i.e., 
can be used for representing the complete design space, while 
others are more suitable for local approximations of a part of 
the design space. The existing studies to predict springback in 
the air bending process mostly use training data from 
experiments with real-life systems. Consequently, these studies 
considered only inadequate materials and tool geometry [37, 
39-41, 50]. 

In this study, the kriging approach is developed to predict 
springback in the air bending process. The finite element 
simulation is employed to generate the training data required to 
train the kriging metamodel. The use of a finite element 
analysis permits the mapping of a large range of materials and 
geometrical tool dimensions. The kriging metamodel is 
compared with the traditional response surface methodology 
(RSM) to show the merits of the kriging metamodel to predict 
springback. 

II. METAMODEL GENERATION 

A metamodel [46] is a mathematical approximation of a 
computationally expensive numerical model. Using a 
metamodel, one can study the behavior of the response 
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function more efficiently and can perform an optimization very 
rapidly. The mathematical approximation can be written as: 

   xgxfy       (1)

where f(x) is the simulation model function, and g(x) is the 
metamodel approximation to y, which maps the design 

variables X to the predicted response Ŷ .The predicted 

response Ŷ  will differ from the observed response y from the 
simulation model.  

 Yy


                 (2)

where the error ε represents the approximation error. To build 
a metamodel, n runs of the simulation model with different 
variable settings  ni XXXX .......,,, 21  and the k design 

variables are required. 

A. Response surface methodology 

RSM [35] is a set of mathematical methods for enhancing 
processes and products. The relationship between the response 
(y) and the vector independent factors (x) can be expressed by: 

 )(xfy               (3)

where ε is the random error, which is expected to be normally 
and independently distributed with a mean of zero and a 
standard deviation σ. The broadly used RSM functions are low-
order polynomials and can be expressed as: 

 


k
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For considerable curvature, a second-order polynomial can 
be expressed as:   
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The parameters in (4) and (5) are typically determined by a 
least squares regression analysis. The least squares estimators 

of the regression coefficients b are denoted by b


. The 
regression model may be written as: 

y Xb e= +     (6)

Thus, Y is a vector of n responses, X is an n × p design 
matrix consisting of variable settings, β is a vector of p 
regression variables and ε is a vector of the n errors. In the 
design matrix, each row corresponds to one design point, and 
each column corresponds to one regression coefficient. The 
fitted regression model becomes: 

Y Xb=


                           (7) 

Assuming that β has a zero mean and a variance-covariance 

matrix given by nI2 , the so-called ordinary least-squares 

estimator of β is [38]: 

( ) 1T TX X X yb
-

=


       (8) 

the variance-covariance matrix of 


 is then of the form 

( ) ( ) 12 TVar X Xb s
-

=


  (9) 

B. Kriging metamodel 

The kriging interpolation method [47], developed in the 
field of spatial statistics and geo-statistics, has been widely 
used in recent years to model deterministic simulations. 
Kriging predicts the value of a new point using stochastic 
processes.  Kriging consists of a combination of a known 
polynomial plus fitting errors, as shown in 10: 

( ) f ( ) ( )TY x x Z xb= +     (10)

where Y(x) is the unknown response of interest, 

1 2 pf(x) [f (x),f (x),...,f (x)]T= is the (P×1) vector of regression 

functions, and T

1 2 pβ [β ,β ,...,β ]= is the (P×1) vector of 

unknown coefficients. Tf (x)β  globally approximates the 

design space. In many cases, Tf (x)β is assumed to be a 
constant (ordinary kriging), or it may be a first-order or 
second-order polynomial. “Z(x)” is a stochastic process, which 
has a mean of zero, variance of σ2, and the following 
covariance matrix: 

2cov ( ), ( ) ([ ( , ])i j i jZ S Z S R R S Ss=é ùë û     (11)

Z(X) performs localized deviations, so that the kriging 
model interpolates ns sampled data. The correlation matrix R 
is ns × ns is symmetric with ones along the diagonal. [R(Si, Sj)] 
is a user-defined correlation function. The selection of the 
correlation function determines on how to fit the data. In this 
study, the most popular correlation function is Gaussian, in 
which the exponent 2 is used in  (12).  

1
( , ) exp

ni j i j

k k kk
R S S S Sq

=
= - -é ù

ê úë ûå     (12)

The quantities j
k

i
k SS and  are the kth components of the 

sampled points Si and Sj, respectively. As part of the kriging 
approximation, the unknown θk terms are determined. The 
maximum likelihood estimation of θk can be calculated by 
maximizing the following expression:  

2
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2
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2

Zs


is the estimated process variance and can be calculated by:  

1
2 ( ) ( )T

Z

s

Y F R Y F

n
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s

-- -
=

 
                       (14) 

The kriging estimate at any untried point x is given by: 

( )T T 1Y(X) f (x)β r (x)R Y Fβ-= + -
 

       (15) 
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( ) 1T 1 T 1β F R F F R Y
-- -=


                  (16) 

sn1 2 TF [f(S ),f(S ),.....,f(S )]=           (17) 

F is a column vector with ns components, which is filled 
with ones when p(x) is a constant. )],....yy,[yY ns21 sss

 is 

the column vector of length ns, which contains the response 
values at each sampled point. 

III. METHODOLOGY OF SPRINGBACK PREDICTION USING A 

KRIGING METAMODEL 

The procedure to predict springback in the air bending 
process consists of the following phases. A schematic 
representation of the methodology for springback angle 
prediction using a kriging metamodel is shown in Figure 1. 

 

 
Fig. 1.  Flowchart of the methodology for springback prediction using 

kriging metamodel. 

A. Identify the design space and select the design variables 

The first step is to select the design variables (E, σy, K, n, t, 
Rp, Rd, Wd, θ1), which is a very important step for generating 
accurate models (Table I). The method for selecting the sample 
points, which is dependent on the design variables, is called the 
design of experiments (DOE). These sample points are used as 
the input variables for the next step. In this study, the D-
optimality experimental design criterion [51] was used to 
sample the design space. D-optimality is the most common 
criterion, which seeks to maximize |XT X|, the determinant of 
the information matrix (XT X) of the design. Equation 18 shows 

the selection of XT out of all possible design matrices chosen 
from ξn. 

)(maxXX T XX T

Nn 



            (18) 

Maximizing the determinant of the information matrix (XTX) is 
equivalent to minimizing the determinant of the dispersion 
matrix (XT X)−1.   

1T

T

X)(X

1
XX


              (19) 

TABLE I.  THE DESIGN SPACE CONSIDERED IN THIS STUDY 

Material Parameters Geometric Parameters 
Input 

parameter 
E 

GPa 
σy 

MPa
K 

MPa 
n 

t 
mm 

Rp 
mm 

Rd 
mm 

Wd 
mm 

θ1 

(ο) 
Maximum 210 525 1585.4 0.48 6 20 20 100 126.9 
Minimum 67.34 60 164.12 0.06 1 2 1 40 53.22 

 

B. Generate the training points using FE simulation 

The first step in generating the training points is to build an 
accurate FE model of the air bending process using the design 
space obtained from the previous stage. Figure 2 shows a 
schematic of FE model.  

 


Fig. 2.  Schematic diagram of the finite element model. 

The material is assumed to be isotropic and homogeneous. 
The FE analysis is simplified to a 2D plane strain. A 4-node, 
iso-parametric, arbitrary quadrilateral plane-strain element is 
applied. This element uses bilinear interpolation functions by 
activation of the assumed strain formulation. The strain 
hardening is defined by Swift’s Eq. which is given by: 

nk )( 0                                  (20) 

The equivalent plastic stress s is described by Swift’s 
exponential hardening law, based on the material’s 
consistency K, the equivalent plastic strain e , and the 
hardening exponent n. The input parameters influencing the 
amount of springback are the modulus of elasticity, the 
strain-hardening coefficient n, the yield strength σy, and the 
geometrical parameters. The geometrical parameters include 
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the thickness of sheet t, radius of punch Rp, radius of die Rd, 
width of die Wd, and bending angle θ1. The developed 
metamodel can be represented by:   

1( , , , , , , , , )y p d dE K n t R R Wq s qD =     (21)

C. Metamodel building 

In this study, two metamodel techniques were used, KMM 
and RSM. Two training datasets were generated using the FE 
simulation stage. The first dataset is based on a linear-
interactions (LI) model. A model for two variables can be 
given by: 

0 1 1 2 2 12 1 2y b b X b X b X X= + + +          (22)

The second dataset is based on the full quadratic (FQ) 
model. For example, a quadratic model for two variables is  

2 2

0 1 1 2 2 12 1 2 11 1 22 2y b b X b X b X X b X b X= + + + + +  (23)

For validation, the metamodels use a dataset, which is 
different from the above selected datasets to create the 
metamodels. The study was performed using a combination of 
selected datasets and different regression functions for kriging 
to find the best metamodel for the prediction of the springback 
angle in the air bending process. The results are presented for 
the following kriging metamodels: 

• Kriging metamodel with a constant and an exponential 
correlation function (P0EXP)  

• Kriging metamodel with a 1st-degree polynomial and an 
exponential correlation function (P1EXP) 

• Kriging metamodel with a 2nd-degree polynomial and an 
exponential correlation function (P2EXP)  

D. Metamodel validation 

The accuracy of the metamodel is influenced by the 
metamodel type as well as the quality and quantity of the 
training dataset. The metamodels should be validated before 
being used as substitute models by comparing the metamodel 
results. In this study, useful means to determine the accuracy 
and the predictive capability of the metamodels are the 
normalized root-mean-squared error (NRMSE), the normalized 
maximum absolute error (NMAX), and the statistical 
correlation (R2). 
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where Y and Y


are measured and predicted values. 

Additionally,  Y


is the mean of the actual function values at m 
test points. The larger the R2, the more accurate the metamodel. 
The lower NRMSE and NMAX, the more accurate the 
metamodel. The R2 and the NRMSE provide a measure of the 
overall accuracy, while the NMAX is a measure of the local 
accuracy of the model. To provide a reliable accuracy, the 
validation set must be large enough and spread out over the 
design space. 

IV. DISCUSSION OF THE RESULTS 

Figure 3 shows the training points that are space-filling for 
two factors, the yield strength and the bending angle before 
springback θ1. From the histogram figures, the improvement in 
the space filling capabilities can be observed when the FQ 
model is used. The selected design points are closely and 
uniformly distributed through the design space. Table II 
summarizes the coefficient of determination (R2) for the full 
quadratic and linear interaction models 
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Fig. 3.  The datasets based on (a) FQ and (b) LI models. 

From the results in Table II, it can be observed that the 
model in which examples were selected based on the FQ model 
shows a higher correlation coefficient when compared with the 
model in which examples were selected based on the LI model. 
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Finally, the model with examples selected based on the FQ 
model reached a significant level (0.0012 in the case of P2EXP), 
which is more reliable than the model based on the LI model 
(0.026 in the case of P2EXP). Therefore, the FQ model shows a 
better fit when compared to the LI model, and the R2 values for 
the full quadratic models are satisfactory. 

TABLE II.  COEFFICIENT OF DETERMINATION R2 

Model LI FQ 
RSM 0.9165 0.9945 
P0EXP 0.9694 0.9852 
P1EXP 0.9696 0.9879 
P2EXP 0.9740 0.9988 

 
Figure 4 shows the relationship between the normalized 

error and the metamodel type for both the fitted LI (Fig. 4a) 
and FQ (Fig. 4b) models. Fig. 4a refers to the NMAX and Fig. 
4b refers to the NRMSE. The accuracy of all of the kriging 
metamodels and the RSM model is greater in the case of 
selecting examples based on the FQ model than on the LI 
model. There are large differences in the normalized error 
between the FQ model and the LI model. From Fig. 4a, it can 
be observed that when selecting examples based on the FQ 
model the best model with the minimum NMAX is the P2EXP 
followed by the RSM.   
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Fig. 4.  The relationship between normalized error and metamodel type for 
both trained models. 

Figure 5 shows the result of the metamodel-predicted 
springback angle versus the actual FEM. Fig. 5a, 5b and 5c 
refer to the KMM of P0EXP, P1EXP and P2EXP, respectively. Fig. 

5d refers to the RSM model. For accurate prediction, all of the 
points should lie on the 45° line. In the case of P0EXP and 
P1EXP, the prediction of the kriging metamodel is not accurate 
compared with P2EXP and RSM, as shown in Figs. 5c and 5d.  

In the case of RSM and P2EXP, all of the points are close to 
the 45° line. The lines representing ± 5% accuracy are drawn to 
show the percentage error in the prediction. From Fig. 5c, it can 
be observed that all of the predictions are within ±5% accuracy. 
The maximum absolute error in the prediction of springback is 
2.8%. Fig. 5d shows the best RSM predicted springback versus 
the simulated FEM prediction. It can be observed that out of 50 
predictions, most of the predictions are within ± 5% accuracy; 
seven predictions are within ± 10% and one prediction is 
outside the ±10% accuracy. 

0

5

10

15

20

25

0 5 10 15 20 25

R
S

M
 P

re
d

ic
ti

on

FEM Prediction

10%

5%(a) P0EXP

0

5

10

15

20

25

0 5 10 15 20 25

R
S

M
 P

re
d

ic
ti

on

FEM Prediction

10%

5%(b) P1EXP

 

0

5

10

15

20

25

0 5 10 15 20 25

R
S

M
 P

re
d

ic
ti

on

FEM Prediction

10%

5%(c) P2EXP

0

5

10

15

20

25

0 5 10 15 20 25
R

S
M

 P
re

d
ic

ti
on

FEM Prediction

10%

5%(d) RSM

 
Fig. 5.  The metamodel predicted springback angle versus simulated FEM 

results. The straight lines are confidence intervals (CIs). 

V. CONCLUSIONS 

In this study, the kriging metamodeling approach was 
implemented to predict the springback angle for the sheet metal 
air bending process. A comparative analysis of different 
metamodel schemes based on the kriging predictions has been 
conducted. On the basis of the computational results, the 
metamodels proposed avoid a great number of time-consuming 
evaluation processes and have significant merit in the aspect of 
accuracy. The kriging metamodels selected using a D-optimal 
design based on the full quadratic model are able to provide 
more accurate prediction of the springback than the 
metamodels based on the linear-interactions model. The 
kriging metamodel with a 2nd-order polynomial trend function 
and an exponential correlation function provides a minimal 
normalized error compared with alternative metamodels 
investigated in this paper; this error compares the prediction of 
the springback angle by the metamodels and the finite element 
simulation outputs. The springback angle of sheet-metal 
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forming can be efficiently predicted using the kriging 
metamodel instead of the response surface methodology.  
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