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Abstract-Data are continuously evolving from a huge variety of 
applications in huge volume and size. They are fast changing, 
temporally ordered and thus data mining has become a field of 
major interest. A mining technique such as clustering is 
implemented in order to process data streams and generate a set of 
similar objects as an individual group. Outliers generated in this 
process are the noisy data points that shows abnormal behavior 
compared to the normal data points. In order to obtain the 
clusters of pure quality outliers should be efficiently discovered 
and discarded. In this paper, a concept of pruning is applied on 
the stream optics algorithm along with the identification of real 
outliers, which reduces memory consumption and increases the 
speed for identifying potential clusters. 
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I. INTRODUCTION  

Traditional data mining methods are not that successful in 
case of huge data streams, as off-line mining is not applicable. 
There are some requirements for clustering algorithms. Fast 
processing of data points and identification of outliers must be 
clear and precise [1]. Data uncertainty is an added issue. 
Different data type should be treated differently which is also an 
issue. An arbitrary shape of clusters makes hard to distinguish 
the accurate shape of the cluster [2]. There are many different 
applications like network traffic analysis, sensor network, 
internet traffic etc. that produce stream data [20]. Random 
sampling, sliding window, histograms, multi-resolution 
methods, sketches and randomized algorithm are some basic 
data sampling techniques for mining data streams [13]. 
Classification of stream data is possible with algorithms such as 
the Hoeffding tree, the Concept Adaptive Very Fast Decision 
tree (CVFDT), the Very Fast Decision Tree (VFDT), and the 
classifier ensemble approach.  

Accuracy, efficiency, compactness, separateness, purity, 
space limitation and cluster validity are an important issue in the 
aspect of clusters quality. Different types of clustering methods 
like partitioning, hierarchical methods, model based, density 
based, grid based, constraint-based and evolutionary methods 
etc. are used for clustering stream data. Various algorithms are 
developed for clustering in data streams. Micro-clustering 
algorithms for data streams are as follows: Den Stream 
Algorithm, Stream Optics Algorithm, HDD Stream Algorithm 

[19] etc. Density grid-based algorithms for data streams are as 
follows: D-Stream Algorithm, MR-Stream Algorithm, 
DENGRIS Algorithm[19] etc. Table I gives a basic mapping of 
several existing algorithms that contains the description of their 
advantages and disadvantages. 

Clustering is a key task in data mining. There are various 
other additional challenges by data streams on clustering such as 
one pass clustering, limited time and limited memory. Along 
with this, finding out clusters with arbitrary shapes is very much 
necessary in data stream applications. Density-based clustering 
method is of significant importance in clustering data streams, as 
it has the tendency to discover arbitrary shape clusters as well as 
outliers. In density based clustering, a cluster is defined as areas 
of higher density than the remaining data set. Clustering 
algorithms requires very tedious calculations for detecting the 
outliers. Handling noisy data, limited time and memory, 
handling evolving data, and handling high dimensional data are 
also to be considered. An outlier is defined as a data point which 
shows abnormal behaviour to the system and it is application 
dependent. In stream data mining the data points are huge in 
number thus it may be possible that during clustering of such 
data points few of the data points which does not belong to 
clusters or does not take part in clustering due to its distance 
from the cluster will be termed as outliers. It is required to 
remove such data points. As data generation is continuous and 
fast, a structure should be established to handle the mining 
process. Clustering provides a solution to such types of issues in 
stream data mining 

II. PROPOSED ARCHITECTURE  

In this paper a modification is applied on the stream optics 
algorithm by applying a pruning method and setting a threshold 
value cut off points for data dynamically. The extension of the 
most basic density algorithm (DBScan) is OPTICS which is 
based on the ordering point in the stream data mining. Its 
concept is to continuously increase the given cluster till the 
density in the neighborhood cross some of the threshold value. 
For each data point in a given cluster from the group of the 
cluster, the neighborhood of given radius has to contain at least a 
minimum number of points.  

One of the important advantages of this method is that it can 
find clusters of arbitrary shapes and can be used to filter out 
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noise. It considers clusters as dense regions of the objects in the 
data space which are separated by low-density regions. For 
interactive and automatic cluster analysis this algorithm 
determines an augmented cluster ordering. An ordering of 
clusters is done to obtain basic clustering information and 
deliver the intrinsic clustering architecture. The core distance 
represents the smallest value from the core. The reachability 
distance considers the greater value of the core distance of the 
second object and the Euclidean distance between the two 

objects. This creates an ordering of the objects in a database and 
stores the suitable reachability distance and core distance for 
each object. The major drawback of the OPTICS method is that 
if there is no core object the reachability distance between two 
objects is undefined. The same basic scheme is applied for the 
stream OPTICS algorithm modified with the addition of an 
iterative property of the threshold value and with the concept of 
pruning in order to optimize and time complexity.  

TABLE I.  APPROACH, ADVANTAGES, AND DISADVANTAGES OF EXISTING ALGORITHMS 

Algorithm Approach Advantages Disadvantages 

STREAM [1] Partitioning Space and time complexity is low. 
It does not have flexibility of computing the clusters at user 

defined time periods. 

Clu-STREAM [2] 
Partitioning & 
Hierarchical 

It provides flexibility of computing the clusters at 
user defined time periods. 

Does not support concept drift and gives the clusters of 
arbitrary shapes. 

HPStream [3] 
Partitioning & 
Hierarchical 

High dimensional projected clustering of data 
stream 

An Average number of projected dimension parameters and 
number of clusters requires detail domain knowledge. 

DEN-Stream [4] Density Based Gives arbitrary shape clusters. 
Deleting and merging of the micro clusters does not allow 

release of any memory space. 

D-Stream [5] 
Density and 
Grid Based 

It supports density decaying and monitors 
evolving behaviour for real time data streams. 

Does not support handling of multiple dimensional data 

E-Stream [6] Hierarchical High performance then other algorithm User complexity of setting high number of parameters 

DBSCAN [7] Density Based Can analyze the cluster for large dataset Inputting the Parameter setting is very much difficult 

Stream-Optics [8] 
Density Based 

 
Plotting of cluster structure based upon time. For cluster extraction it is not supervised technique 

MR-Stream [9] Density Based Improves the performance of the clustering. In high dimensional data, it lacks its working 

HDD-Stream [10] 

 
Density Based High Dimensional data is clustered. 

It takes more amount of time in searching the neighbor 
clusters. 

DENGRIS [11] Density Based 
Using sliding window model the distribution of 

recent most records are captured precisely 
No evaluation to show its effectiveness compared with other 

state off art algorithms. 

SOMKE [12] 

 
Density Based 

Use in non-stationary data efficiently and 
effectively. 

Cannot handle unbalance data. 

LeaDen-Stream [13] 
Density and 
Grid Based 

It supports density decaying and monitors 
evolving behaviour for real time data streams. 

Does not support handling of multiple dimensional data 

POD – Clus [14] Model Based Supports Concept Evolution and data fading 
Computation and updating of pairwise distance takes a lot of 

time in data streams 

BIRCH [15] Hierarchical 
Overcomes the inability to undo what was done in 

previous step 
Does not perform well if the cluster is not in spherical shape. 

SPE-Cluster [16] 
Partitioning 

Based 
Solve the problem of specifying the number of 

cluster. 
Cannot Discover Arbitrary 

Shape clusters. 

COBWEB [17] Model Based It identifies the outliers effectively. It does not provide compact representation. 

    
Data stream input in the form of small chunks is called data 

chunks. Here a windowing concept is used because stream data 
are huge. Data are fitted into a window frame and then passes 
ahead. Different parameters like window size, threshold value, 
and radius are set by the user. After that, an one-way online 
process is used in which data chunks are fitted into the window 
and then the clustering process is applied. In the online phase, 
micro-clustering is performed and basic DBScan algorithm is 
used. The micro clustering is done by the selection of the 
centroid with nearest data point's i.e. cluster mean value of 
object. The output of these will be the data points with k cluster 
and n objects. The clustering is done based on distance. These 
will now be input to the offline phase with the parameters like 

core distance, epsilon and fixed value of min point, generating 
distance. The proposed scheme is depicted in Figure 1. 

In the offline phase, the Stream Optics algorithm is used for 
clustering. Macro clustering takes place and the data points form 
clusters of good quality. Two phase work is required because 
due to the nature of data streams. Points which have not yet been 
part of any clusters are distinguished by giving them weight. For 
every new iteration, this value will be incremented to make sure 
it is part of real outlier. Based on the application of a threshold 
value, points termed as real outliers are detected. Thus the node 
or the data points, which are outliers, will be pruned off which 
will reduce the memory consumption and the time taken for 
generation of the potential clusters. These will improve the 
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purity of the potential clusters. For each threshold value set the 
whole dataset is been checked with the prime motto of 
maintaining the quality of the clusters.  The algorithm is broken 
down in steps in Figure 2. 

III. RESULTS & DISCUSSIONS 

Various parameters like cluster purity, number of clusters, 
SSQ, threshold, memory and time consumption are evaluated. 
Then these evaluated parameters are used for comparison and 
performance evaluation. Net Beans is used for the simulation 
studies in our research work. The Forest Cover Type data set 
and sensor data set are used for evaluation and algorithms are 
computed for 50000 and 100000 data records respectively. 
Different threshold values were tested and an optimum value 
was chosen in each case (3 for the the Forest Cover Type data 
set and 14 for the sensor data set). Tables II to V sum up the 
results. 

 

 
Fig. 1.  The proposed scheme 

 
Fig. 2.  The proposed algorithm 

TABLE II.  OVERALL RESULT SUMMARY OF FOREST COVER DATASET WITH 
DIFFERENT PARAMETER AT VARIOUS THRESHOLD VALUES BEFORE PRUNING. 

Threshold 
Value 

Maximum   
Time      
(Sec) 

Maximum 
Memory 

(Mb) 

Number 
of 

Cluster 

Sum of   
Squared 

Error 

No. of 
Noise 
Points 

Purity 

1 44427 171.46 22 1.31 19 93.02 
2 44327 163.09 23 1.21 19 92.13 
3 44162 138.99 21 1.46 12 91.29 
4 43966 128.56 25 1.35 15 91.35 
5 44636 137.21 24 1.42 10 93.82 
6 44172 138.18 21 1.38 17 92.95 

TABLE III.  OVERALL RESULT SUMMARY OF FOREST COVER DATASET WITH 
DIFFERENT PARAMETER AT VARIOUS THRESHOLD VALUES AFTER PRUNING 

Threshold 
Value 

Maximum    
Time      
(Sec) 

Maximum 
Memory 

(Mb) 

Number 
of 

Cluster 

Sum of 
Squared 

Error 

No. of 
Noise 
Points 

Purity 

1 43783 145.46 16 1.15 23 95.53 
2 43643 132.09 16 1.02 22 95.68 
3 43580 110.99 13 1.02 17 95.87 
4 43480 100.56 14 1.00 21 95.17 
5 43939 109.21 14 1.06 16 95.42 
6 43172 111.18 9 1.18 20 95.34 

TABLE IV.  OVERALL RESULT SUMMARY OF SENSOR DATASET WITH 
DIFFERENT PARAMETER AT VARIOUS THRESHOLD VALUES BEFORE PRUNING 

Threshold 
Value 

Maximum    
Time      
(Sec) 

Maximum 
Memory 

(Mb) 

Number 
of 

Cluster 

Sum of 
Squared 

Error 

No. of 
Noise 
Points 

Purity 

2 15499 53.06 21 1.27 17 92.33 
10 15370 57.06 23 1.47 20 93.80 
13 15434 52.06 25 1.33 13 91.08 
14 15498 58.06 24 1.09 16 93.61 
15 15156 54.06 25 1.29 12 93.33 
2 15499 53.06 21 1.27 17 92.33 

TABLE V.  OVERALL RESULT SUMMARY OF SENSOR DATASET WITH 
DIFFERENT PARAMETER AT VARIOUS THRESHOLD VALUES AFTER PRUNING 

Threshold 
Value 

Maximum    
Time      
(Sec) 

Maximum 
Memory 

(Mb) 

Number 
of 

Cluster 

Sum of 
Squared 

Error 

No. of 
Noise 
Points 

Purity 

2 14938 27.06 17 1.02 19 95.74 

10 14797 26.21 9 1.09 24 94.94 

13 14704 27.12 7 1.07 19 95.52 

14 14938 27.06 8 1.02 19 96.29 

15 14578 27.06 6 1.08 16 95.31 

16 14704 26.08 6 1.07 15 94.96 

IV. CONCLUSION 

Handling data streams shows increased complexity due to 
their constant, huge and potentially infinite nature. Working 
with data streams challenges the memory, space, time and 
handling changes along with speed and multiple source of data 
generation. Thus, the algorithms used for offline data mining 
and management may prove insufficient in such application and 
variations may be required. Such a variation of the OPTICS 
algorithm is proposed in this paper. Simulations are performed, 
results are discussed and an overall improvement is documented. 
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