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Abstract—This paper presents an implementation of a mobile 
application that provides a real-time personalized assessment of 
patient’s activities by using a Flexible Bayesian Classifier. The 
personalized assessment is derived from data collected from the 
3-axial accelerometer sensor and the counting steps sensor, both 
widespread among nowadays mobile devices. Despite the fact that 
online mobile solutions with Bayesian Classifier have been rare 
and insufficiently precise, we have proven that the accuracy of 
the proposed system within a defined data model is comparable 
to the accuracy of decision trees and neural networks. 

Keywords-activity recognition; real-time mobile application; 
Flexible Bayesian Classifier. 

I. INTRODUCTION  

Major goals of an intelligent system for patient monitoring 
are detection of health deterioration and notifying medical staff 
if a patient's health condition is life-threatening. A basic 
prerequisite for making a correct assessment is a reliable, 
accurate, timely source of raw data which indicate patient's 
vital signs. Further, the collected raw data is modeled with 
context-aware approach, in other words, the raw data is placed 
in an appropriate context. This is necessary because the 
collected data as raw facts cannot help in decision-making. It is 
necessary to analyze data features that can contribute to the 
making of the right decision. The development of the sensor 
network technologies (Bluetooth [1] and ZigBee [2]) focuses 
on health care ("HealthCare" profiles) and development of 
standardized wearable medical sensing devices (Continua 
Health Alliance [3]). The following parameters can be pointed 
out as the most important Quality of Context (QoC)-parameters 
[4]: precision, probability of correctness, trust-worthiness, 
resolution and up-to-datedness. In addition to the vital signs, a 
very important precondition for assessing the patient's health 
condition is also a correct assessment of physical activities 
which the patient performs at a given time. Therefore, all 
intelligent systems designed for patient monitoring, as for an 
example the system in [5], firstly assess the patient physical 
activity and secondly provide an evaluation of the patient's 
health. The considerable physical activities of the patient are 

resting, sitting, standing and physically demanding activities, 
for example climbing up the stairs or running. 

In order to estimate the activity of the patient, appropriate 
sensing devices are required. A very common approach to 
estimate activity is a combination of 3-axial accelerometers 
and/or 3-axial gyroscope and/or 3-axial magnetic sensors. The 
patient should always carry/wear the aforementioned sensors 
because he/she should be monitored by the system 
continuously in everyday activities. Various placements of the 
sensing devices on human body have been proposed. The most 
common placements of sensing devices are: mobile phone in a 
front pocket of trousers [6], accelerometer sensors on five 
different positions: elbow, wrist, knee, ankle and hip [7], 
mobile phone in left pocket, right pocket, belt, wrist and upper 
arm [8], mobile phone in hand or where patient typically holds 
it while doing specific activity in [9] etc. Usually the research 
focus is on offline testing of designed systems, whereas very 
few researchers implement and test systems in a real time 
(online) [9, 10]. From the beginning, the basic concept has 
been that these systems are generally applicable to any patient, 
while the latest studies show examples of personalized systems 
[8]. The personalized system gives an estimate for the patient 
based on his/her collected data. In a personalized system, the 
data must be collected for every patient in order to train the 
system and later to make an assessment. This type of systems 
should be more accurate than the generalized systems which 
are based on a common large database with collected data, 
where the same data are used for assessment for any patient.  

This paper presents an implementation of the mobile 
application that provides real-time personalized assessment of 
physical activity. The presented personalized mobile 
application collects sensor data from a patient using his/her 
mobile phone in a free living environment, both for system 
training and decision making. A target group for the presented 
application is a group of chronic patients and process of 
collecting sensor data for certain activities may be limited. In 
addition, in real life, a certain activity is done less often than 
other, for example we climb up the stairs less often than we 
walk, and unfortunately sitting is the most common body 
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posture. Therefore, the application allows that a different 
number of data instances are collected per activity. The 
patient's movement data is gathered using a 3-axial 
accelerometer sensor and sensor for counting steps, both 
available in nowadays mobile devices. The mobile phone is 
designated to be carried in pockets of trousers, skirts or track 
suits - where it fits in the execution of certain activity. All 
above system's features are selected in accordance with the 
understandable desire of patients that the monitoring system 
has to be easy to carry and use [11]. 

In the proposed personalized mobile application, the 
Flexible Bayesian Classifier (FBC) is a chosen algorithm for 
the assessment and it is implemented according to [12]. 
Flexible and Naïve Bayesian classifiers (NBC) with minor 
changes are implemented in the WEKA environment, as well 
[13], but it is not applicable for Android platforms. There are 
several sources, such as [10], stating that the Naïve Bayesian 
classifier shows a very low accuracy. In [10], its accuracy is 
48% while the k-nearest neighbor (KNN) algorithm has an 
average accuracy of 92%. Both algorithms showed that mobile 
phones’ resources are sufficient for them. Naïve Bayesian 
classifier demanded more processing power (42% compared to 
KNN's 29%). However, when it comes to memory the situation 
is opposite and the KNN needed about 21.9 MB while the NBC 
demanded about 12.6 MB. In [9], a 1-Nearest Neighbor 
classifier has been implemented in a mobile phone, while a 
Naïve Bayesian classifier has been tested offline within WEKA 
environment. Although it seems to be too simple and the 
current real-time implementations are rare and aren't 
promising, NBC with the careful selection of the training data 
showed [14, 15] that in some applications, even in medicine, its 
effectiveness can be compared with neural networks and 
decision trees. Therefore, one of the objectives of this paper is 
to identify the relevant features of the collected data from 
accelerometer and sensor that counts steps. The following 
standard activities are selected for testing: sitting, standing, 
walking, running or jogging, climbing up the stairs and 
descending the stairs. We show here that, the real-time 
personalized mobile application using FBC implemented on a 
mobile phone with average performances provides activity 
assessment with satisfying accuracy. Convenient periods for 
prediction as well as the minimum amount of samples in a 
training data model are determined experimentally. Offline 
tests are carried out in WEKA environment and the FBC is 
compared to other algorithms, such as J48 and Multilayer 
Neural Network. A real-time testing of the proposed mobile 
application is conducted in a free living environment, and the 
results are presented in this paper.  

II. RAW DATA COLLECTION AND PRE-PROCESSING  

An assessment of activities is made based on the time series 
obtained from the real-time signals. The data is collected by 
accelerometer sensor for all three axes: x, y and z. The Android 
API offers four abstract frequencies for its accelerometer: 
Fastest, Game, Normal, and UI. However, the various sensors 
implemented in mobile phones do not support all four 
frequencies, but they support only one or two frequencies. The 
fastest frequency supported by the most mobile phones at the 
market is 50 Hz. This is quite acceptable for the recognition of 

physical activity of the patient [8]. The chosen time period for 
signal analyses is 8s with an overlap of 4s. This practically 
means that an assessment is actually provided every 4s. The 
signal features used for the assessment are calculated for all 
three x, y, z axes, and resulting acceleration r, which is 
calculated as: 

222 zyxr   

Android OS runs onSensorChanged() event every time 
there is a change in the sensor values. Usually, this event does 
not occur more frequently than 50Hz. Therefore, it is 
convenient to use a special timer task that is executed on a 
separate thread. The application runs the thread every 20ms and 
stores currently detected accelerations on x, y, z axes along with 
data from sensor which counts steps for later use. In this 
manner, there are 50 samples for x, y and z axes collected in 
one second. Within chosen period of 8s there are 400 samples 
per axis, and all together 1200 samples for all three axes. The 
obtained signal is preprocessed in order to calculate the energy 
of the signal. The role of preprocessing is to eliminate noise in 
the signal which occurs as a result of irregularities in the sensor 
operation. The noise can be generated also by quick 
movements of person, such as turning a mobile phone, or 
walking over obstacles, and so on. First, the signal is smoothed 
by signal interpolation increasing the number of samples per 
second to 100. After that, a simple moving average filter of 
length five is applied. The filter proved to be enough to smooth 
false peaks, but also to preserve specific forms of signals that 
allow us to distinguish activities. After preprocessing the signal 
contains 800 samples within the interval of 8s. Algorithms for 
data classification extract appropriate features from the raw or 
smoothed signal, in the same way which human would use to 
classify activity by observing signals charts. All statistical 
features are calculated from the raw data. These calculations 
are acceptable to the capabilities of mobile phones, while 
calculation of energy of smoothed signal represents moderately 
demanding task.  

Analyzing previous studies [6, 8, 9, 15, 16], we select the 
following signal features: 

1. The signal energies for all three axes: x, y and z, as 
well as the resultant acceleration r are calculated by using FFT. 
FFT is performed over 512 samples twice for each interval 
with an overlap of 224 samples (2x512-224=800). Before FFT, 
Hann window function is applied to the signal. The obtained 
FFT coefficients are normalized with sum of window function 
coefficients. For the resulting complex FFT coefficients x[i], 
energy is calculated as [15]: 
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The signal energy of an acceleration data can discriminate 
low intensity activities such as lying from moderate intensity 
activities such as walking and high intensity activities such as 
jogging [16]. 

2. Arithmetic means for all three axes x, y, z and 
resultant  r  are calculated using raw data.   

3. Minimum and maximum values for all three axes x, y, 
z and resultant  r  are calculated using raw data. 

4. Standard deviations for all three axes x, y, z and 
resultant r are calculated using raw data: 
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where n is a number of samples. 

5. Skewness is a measure of the asymmetry of the 
probability distribution. A negative skewness means that 
distribution is skewed to the left, and in the other words above-
average values are more frequent. A positive skewness means 
that distribution is skewed to the right and below-average 
values are more frequent. 
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6. Kurtosis is a measure that indicates whether a 
probability distribution is flatter or more peaked than the 
normal distribution. Kurtosis has a negative value for flattened 
and positive value for pointed probability distribution. 
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7. In [15], it is stated that by using correlation between 
axes it is possible to differentiate walking and jogging from 
climbing the stairs up and down. Therefore, the correlations of 
x and y, x and z, x and r, y and z, y and r, z and r are calculated. 
The correlation of x and y is calculated using a covariance as: 
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8. In addition to the data collected from the 
accelerometer, the mobile application collects data from the 
sensor for counting steps (SENSOR STEP COUNTER).The 
patient can carry mobile phone in different pockets in clothing, 
thus the step counter can register more steps or some steps can 
be skipped. The counter is only reset when the device is 
rebooted and in the meantime continues to count the detected 
steps. Therefore, an interesting feature for a single 8s time 
interval is a number of steps counted during interval. The 
number of steps is not reliable feature to distinguish the 
activities, for example the difference between walking and 
climbing the stairs. However, it is important feature to identify 
the resting compared to the significant physical efforts. 

The [6] gives the signal properties for x, y and z axes for 
several activities under controlled conditions. These activities 
are still standing and sitting, and walking/jogging while the 
phone with sensor is placed in the pants front pocket. In the 
case of still sitting a mobile phone with sensor is usually 
positioned horizontally, thus the Earth’s gravitation causes that 
the accelerometer measures a value of about 9.8 m/s2 on the 
axis z. In this case, there are very small changes of acceleration 
on the axes x and y. Aforementioned values are typical for any 
activity which is based on sitting without any significant 
movements, examples of such activities can be working at the 
computer, turning around, moving the legs, etc. In the same 
way, for the still standing with a phone in the pants front 
pocket, the acceleration on y-axis is close to the gravitational 
acceleration. This is due to the fact that for standing the mobile 
phone is in its vertical orientation and its axis y is orthogonal to 
the ground. 

Leg movements and turning around can disturb these 
features. The test data collected during everyday activities, 
which are not strictly controlled; show that they are a reflection 
of patient’s habits and behavior. Figure 1 illustrates the 
measured signals for all three axes in the case of sitting (above) 
and standing (below). The signals are shown after pre-
processing with resolution of 100 samples per second. Thick 
lines represent the signal after smoothing explained above, and 
thin lines which are visible in some areas represent raw 
interpolated signal. Figure 2 shows signals collected for 
activities of walking (above) and running (below). A difference 
between smoothed and raw interpolated signal is more visible 
here. Figure 2 shows signals when a mobile phone was located 
in the trousers pocket for walking and in the wider tracksuits 
front pocket for running. In repetitive activities (i.e. walking 
and running) regular peaks can be seen at y and z axes. In the 
case of different placement of the phone, a frequency of peaks 
does not have to follow the same rule [6]. For example in [6], 
the time between successive peaks on the y-axis is: ½ s for 
walking and ¼s for running. These peaks clearly indicate that it 
is the activity with periodic behavior and frequency of these 
peaks is the highest for running. If signal smoothing decreases 
significant peak values, minimum and maximum values of raw 
data will preserve higher peak values on the axis y. 

The signals for activities descending the stairs (above) and 
climbing the stairs up (below) are illustrated in Figure 3 The 
descending the stairs signal has a noticeable feature of the 
series of small peaks on the axis y. The z-axis values show a 
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similar trend with negative acceleration, reflecting the regular 
movement down each stair [6]. The peaks on the axis x are 
small and semi-periodical. The acceleration on the axis x 
alternates between positive and negative values. The signal on 
axis x has a similar behaviour in both examples. When 
climbing up the stairs the patient is usually slower and the 
frequency of peaks on the y axis should be lower. In the case of 
climbing up the stairs z axis has higher positive peaks, and 
again as with the descending down the stairs it is negative 
where y is positive and vice versa. 

Based on the presented signal in Figure 3, one can conclude 
that it is very difficult to distinguish climbing up and 
descending down the stairs. Sitting and standing are different 
from all other activities. Moderate walking is differentiated 
easily from running, as exhaustive activity. For the system for 
patient monitoring, even these classes of activities: resting, 
moderate and exhaustive; provide sufficient information for the 
assessment of vital signs.  

 

 

 
Fig. 1.  Examples of x, y and z signals for sitting (above) and standing 

(below). 

III. FLEXIBLE AND NAÏVE BAYESIAN CLASSIFIER 

Naïve Bayesian classifier (NBC) has a high accuracy if 
classification model learns from data set that can be 
represented as a conjunction of discrete and/or continuous 
attributes [12]. As a result, the classifier gives the most 
probable class from a limited set of classes C. The classifier 
learns from a set of samples. The sample is an n-tuple of 
attribute values (a1, a2, ..., an). Testing is usually performed 
using a special set of samples or a training data set is divided 
into n folds. In such case, the classifier learns iteratively. In 

each iteration one fold is used for testing and n-1 folds are used 
for learning. A task of trained classifier is to determine the 
class of a new example.  

 

 

 
Fig. 2.  Examples of x, y and z signals for walking with phone in a right 

trousers pocket (above) and running with mobile phone in a wider tracksuits 
front pocket (below). 

Bayesian classifier is a conditional probability model and it 
can be abstractly described as .),...,3,2,1( AnAAACP  Here, C 

is a set of possible classes and A1,…, An is an example of input 
test data. Bayesian classifier computes the conditional 
probability of each class for a given tuple of attributes and then 
predicts the most probable class.  

Using Bayes' theorem, the conditional probability can be 
decomposed as: 

),...,3,2,1(

),...,3,2,1(*)(
),...,3,2,1(

AnAAAP
CAnAAAPCP

AnAAACP   

The numerator of the previous equation can be rewritten as: 

( )* ( 1, 2, 3,..., ) ( )* ( 1 )* ( 2, 3,..., , 1)
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Fig. 3.  Examples of signals for activity taking the stairs down (above) and 

taking the stairs up (below). 

The "naive" conditional independence assumes that each 
attribute Ai is conditionally independent of any other attribute 
Aj for j ≠ i, when the class is C. In other words: P(Ai│C, Aj) = 
P(Ai│C) for i ≠ j. Under independence assumption explained 
above new expression for the numerator is: 
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Then the Bayes' theorem of (7) is given as: 
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The denominator is often omitted from the calculation of 
probability, because for each class C it has the same value. The 
sum of all probabilities of all possible classes should be equal 
to the probability of certain event. Thus all calculated 
probabilities are normalized with sum of all probabilities. 

The probability of a certain class (prior) can be easily 
calculated from the learning data set as a ratio of number of 
samples in the class and total number of samples. Furthermore, 
if a domain of an attribute is finite (discrete) set of values, then 
its probability can be expressed as the number of samples 

where the attribute has a certain discrete value a from a set of 
discrete values A and given class is c from C, P (A = a │C = c). 
However, in the most cases attributes have continuous values 
and the probability for the given class is modeled by some 
continuous probability distribution function over the range of 
its values for the given class. The probability of continuous 
attributes is often modeled using normal or Gaussian 
distribution, and it is calculated as [12]: 
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For each continuous attribute and each class it is required to 
calculate mean and standard deviation. The standard deviation 
is a measure that is used to quantify the amount of variation or 
dispersion of data values. A low standard deviation means that 
elements of given set tend to be very close to the mean, and a 
high standard deviation indicates that elements of given set 
have a wider range of values. To clarify the estimation process, 
consider a small data set in which there are two classes (+ and -
), a nominal attribute X1 which takes values a and b, and a 
continuous attribute X2 [12]. If there are five training examples: 
(+; a; 1); (+; b; 1.2); (+; a; 3.0); (-; b; 4.4); (-; b; 4.5), then the 
corresponding conditional probabilities are [12]: 

P(C = +) = 3/5 

P(X1 = a /C = +) = 2/3 

P(X1 = b/ C = +) = 1/3 

P(X2 = x/C = +) = g(x; 1.73; 1.21) 

Here, 1.73 is the average value of X2 where the class is +, 
while 1.21 is the standard deviation of X2 where the class is +. 

In [12] the advantage of using the kernel function over 
Gaussian normal distribution is highlighted. A kernel is a non-
negative real-valued integrable function K satisfying the 
following two requirements [17]: 
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The kernel estimation with Gaussian kernels (one can use 
other kernel functions as well) look much the same, except that 
the estimated probability is averaged over a large set of kernels 
[12]: 
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Kernel functions are calculated for each xj from X I where 
the class c is from C and μj = xj. Also nc  is a number of 
samples for the given class c.  A parameter h is called width 
parameter and it shrinks to zero as the number of instances 
goes to infinity. Thus, as Flexible Bayesian classifier (FBC) 
observes more training samples, its probability estimates 
become increasingly local [12]. FBC is far more demanding 
when it comes to storage and computational complexity 
compared to the NBC. However, FBC proved that for 200 
samples its accuracy is as high as accuracy of the NBC. While 
for the distribution of data that does not meet the requirement 
of normality it is much more accurate than NBC. 

A WEKA [13] is an environment for testing algorithms of 
artificial intelligence and it is very often used in the scientific 
researches for offline testing. WEKA supports both types of 
Bayesian classifier. A width parameter h of the kernel function 
is calculated as an average of the sum of differences of 
successive attribute values. Attributes from the collected data 
set are sorted. Differences of successive values are summed, if 
values are not identical. At the end this sum is divided with a 
number of different attribute values. This parameter is called 
precision in the WEKA environment and it is used to compute 
the kernel function and for rounding up attribute values. In 
order to avoid redundancy of the attribute values after rounding 
up only different values are allocated and stored with the 
number of repetitions of these values (weight). In this way, the 
amount of data for storing is significantly reduced when the 
attribute has values which change rarely. This leads also to the 
reduction of the number of evaluations of kernel function. For 
example, the step counter sensor has a value zero for activity of 
sitting. 

IV. OFFLINE TESTING OF MODELED DATA IN THE WEKA 

ENVIRONMENT 

The data is prepared for testing in the WEKA testing 
environment in the following manner. Eight features explained 
in Section 2 are extracted from the raw class labelled data, and 
after that the data is normalized by scaling it between 0 and 1. 
The selected method of testing is a cross-validation with ten 
folds. It is a fact that there are certain sorts of activities which 
are done more frequently, for example sitting, standing and 
walking, compared to activities which occur rarely, for 
example use of the stairs and running. Taking this fact into 
account, a training data set is defined with more samples for 
more common activities.  

The simulation results show that the Flexible Bayesian 
Classifier with kernel estimator correctly classifies 92.68% of 
all the samples. True positive rates, which measure the 
proportion of positives that are correctly identified as such, are: 
1 for sitting, 1 for standing, 0.859 for walking, 0.958 for 
running, 0.761 for climbing the stairs, 0.866 for descending 
downstairs. Furthermore, the Naïve Bayesian Classifier with 
Gaussian estimator correctly classifies 88.18% of all the 
samples. Here true positive rates are: 0.99 for sitting, 0.988 for 
standing, 0.786 for walking, 0.952 for running, 0.658 for 
climbing the stairs, 0.724 for descending downstairs. These 
differences in accuracy can be seen in confusion matrix in 
Table I and Table II. 

We have tested the accuracy of the Flexible Bayesian 
Classifier for data set without features 5 and 6 (skewness and 
kurtosis). In this case FBC correctly classifies 90.21% of 
samples, and true positive rates by class are as follows: 1 for 
sitting, 1 for standing, 0.837 for walking, 0.958 for running, 
0.662 for climbing the stairs, 0.756 for descending the stairs. In 
comparison with previous FBC results, the use of these two 
features slightly increases the percentage of correctly classified 
samples for activities of walking and using stairs. The accuracy 
of FBC for data set without feature 7 (correlation) is 91.64%, 
and true positive rates by class are as follows: 1 for sitting, 1 
for standing, 0.823 for walking, 0.955 for running, 0.757 for 
climbing the stairs, 0.848 for descending the stairs. In 
comparison to the first results of FBC, it can be seen that the 
feature 7 affects all activities except sitting and standing. The 
accuracy of FBC for data set without  feature 8 (number of 
steps) is 92.03%, and the true positive rates by class are as 
follows: 1 for sitting, 1 for standing, 0.853 for walking, 0.955 
for running, 0.734 for climbing the stairs, and 0.843 for 
descending the stairs. In comparison to the first results of FBC 
it can be seen that this features 8 and 7 in the same way affect 
the estimates. 

TABLE I.  FLEXIBLE BAYESIAN CLASSIFIERS CONFUSION MATRIX 

a b c d e f classified as 

507 0 0 0 0 0 Sitting =a 
0 501 0 0 0 0 Standing = b 
0 0 437 1 11 60 Walking = c 
0 0 14 338 0 1 Running = d 
0 0 33 0 169 20 Upstairs = e 
0 0 4 0 25 188 Downstairs = f 

TABLE II.  NAÏVE BAYESIAN CLASSIFIERS CONFUSION MATRIX 

a b c d e f classified as 

502 0 0 0 5 0 Sitting =a 
0 495 0 0 0 6 Standing = b 
0 0 400 3 20 86 Walking = c 
0 0 17 336 0 0 Running = d 
0 0 49 0 146 27 Upstairs = e 
0 0 30 0 30 157 Downstairs = f 

TABLE III.  J48 DECISION TREE CONFUSION MATRIX 

a b c d e f classified as 

507 0 0 0 0 0 Sitting =a 
1 500 0 0 0 0 Standing = b 
0 0 459 2 25 23 Walking = c 
0 0 1 351 1 0 Running = d 
0 0 30 0 177 15 Upstairs = e 
0 0 19 0 24 174 Downstairs = f 

TABLE IV.  MULTILAYER PERCEPTRON CONFUSION MATRIX 

a b c d e f classified as 

507 0 0 0 0 0 Sitting =a 
0 501 0 0 0 0 Standing = b 
0 0 491 0 10 8 Walking = c 
0 0 2 349 1 1 Running = d 
0 0 14 0 199 9 Upstairs = e 
0 0 12 0 12 193 Downstairs = f 
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J48 decision tree algorithm correctly classifies 93.9% of 
samples, and true positive rates by class are as follows: 1 for 
sitting, 0.998 for standing, 0.902 for walking, 0.994 for 
running, 0.734 for climbing the stairs, and 0.802 for descending 
the stairs. The Multilayer Perceptron correctly classifies 97% 
of the samples, and true positive rates by class are as follows: 1 
for sitting, 1 for standing, 0.965 for walking, 0.989 for running, 
0.896 for climbing the stairs, and 0.889 for descending the 
stairs. 

V. REAL TIME TESTING OF THE PROPOSED MOBILE 

APPLICATION 

As stated above, we have designed the mobile application 
for testing purposes. It allows users to check the activity that 
will be carried out, and then to initiate the assessment of the 
activity. The application is based on the described Flexible 
Bayesian classifier which evaluates the data collected in 
periods of 8s, with 4s overlap. Therefore, the process of 
assessment must be done in less than 4s. The Flexible Bayesian 
classifier used for the activity assessment uses a personalized 
patient’s data model that is implemented within Java desktop 
application. At the first stage, the data collected from 
accelerometer and step counter is preprocessed and all 
described features are obtained, such as average, minimum or 
maximum value of signal or energy, etc. After that, the data is 
normalized. Further, all prior probabilities and the total number 
of samples per class are calculated, including precision for each 
attribute, values of the kernel functions followed with their 
weights. All assessed activities and activities checked by user, 
along with the system time required for the assessment are 
stored in a log file for later analysis. We used device with 
Android OS 5.0.2. for testing. The CPU ARMv7 rev 3 (v7I) 
has four cores with maximum frequency equal to 1190.4 MHz, 
and minimum frequency equal to 300.0 MHz. The number of 
samples collected for all activities is roughly equal to 2300. 
The log files show that with used mobile phone and its CPU, 
the process of assessing the data with preprocessing can be 
executed in less than 2s. The required memory resources are 
approximately 40 MB.  

TABLE V.  REAL-TIME TESTING USING MOBILE PHONE 

a b c d e f classified as 

641 0 0 0 0 0 Sitting =a 
3 415 0 0 0 1 Standing = b 
0 0 715 0 8 11 Walking = c 
0 0 4 200 4 5 Running = d 
0 0 45 2 82 18 Upstairs = e 
0 2 60 0 6 94 Downstairs = f 

 
The real-time analyses explained above shows similar 

behavior as the WEKA classifier in simulation. The mobile 
application is tested for all activities and the results are 
presented in Table V. The activities of sitting and standing are 
mostly correctly assessed. The activities of walking and 
running are also highly accurately assessed, their true positive 
rates are: 0.974 and 0.939, respectively. The activities related 
to the use of stairs are more often wrongly assessed and falsely 
interpreted as walking. The testing of the stairs activities in the 

real-time situations shows that they are less accurate compared 
to the WEKA environment. The results of testing show that 
true positive rates are only: 0.558 climbing the stairs and 0.580 
descending the stairs. 

VI. CONCLUSION 

Real-time testing using the mobile applications shows that 
it is possible to use the Flexible Bayesian classifier to predict 
accurately the patient's activity if features are carefully 
selected. The offline test results show that for the selected data 
model, the accuracy of the Flexible Bayesian classifier can be 
compared to the accuracy of the J48 decision tree and the 
Multilayer Perceptron. Based on obtained results, it can be 
concluded that the Flexible Bayesian classifier can very 
precisely distinguish resting, moderate activities and exhaustive 
activities such as running. The patient carries the phone with 
sensor at arbitrary position making the proposed system non-
intrusive. The presented data model can be extended with new 
sensor devices, for example with gyroscope, which would 
increase the accuracy even further. In this way, the presented 
FBC implementation shows that it is one of the best choices in 
the field of mobile healthcare services. 
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