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Geography has a long tradition in studies of geographical distribution of flora
and fauna. Detailed mappings of the distributions of biota over wide regions
can produce highly valuable biogeographical data, but are extremely labori-
ous. These challenges in biogeographical mapping, as well as the need for
mitigation tools for the adverse impacts of human disturbance on the land-
scape and biodiversity, have stimulated the development of new approaches
for assessing biogeographical patterns. Particularly, the ability to model distri-
bution patterns of organisms and habitat types has recently increased along
with the theoretical and methodological development of biogeography and
spatial ecology, and modern spatial techniques and extensive data sets (pro-
vided e.g., by earth observation techniques). However, geographical data have
characteristics which produce statistical problems and uncertainties in these
modelling studies: 1) the data are almost always multivariate and intercorre-
lated, 2) the data are often spatially autocorrelated, and 3) biogeographical
distribution patterns are affected by different factors operating on different spa-
tial and temporal scales. Especially remote sensing and geographic informa-
tion data provide powerful means for studies of environmental change, but
also include pitfalls and may generate biased results. Quantitative analysis and
modelling with correct and strict use of spatial statistics should also receive
more attention. The issues discussed in this paper can have relevance in sev-
eral fields of application of geographical data.
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Introduction

Spatial patterning and distribution of organisms
has traditionally attracted much interest and has
stimulated research in geography. Consequently,
issues such as which environmental factors ex-
plain the distribution of various plants has con-
tinuously had a central role in biogeographical
research since the pioneering work of Alexander
von Humboldt in the early 19th century (von
Humboldt 1807; Turner 1989).

Nowadays, the spatial distribution of organisms
is also strongly affected by the adverse impacts
of human disturbance, particularly habitat loss
and fragmentation (Tilman et al. 1994; Enoksson

et al. 1995; Huxel & Hastings 1999; Noss 2001;
Fahrig 2002; Schmielgelow & Mönkkönen 2002;
see also Watson 2002). This development has giv-
en rise to increasing concern about the potential
loss of important natural values and has inspired
a development of new techniques to map and
monitor wide areas of land. Such techniques are
clearly urgently required to analyse and model
human-based impacts on landscape and biodiver-
sity (Griffiths et al. 1993). The technical tools and
theoretical framework needed in the modelling of
spatial distribution of species in landscapes have
actually improved due to the recent methodolog-
ical developments in biogeography and spatial
ecology, as well as in statistical methods and spa-
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tial data analysis (Scott et al. 1993; Stoms & Estes
1993; Hanski 1998; Debinski et al. 1999; Guisan
& Zimmermann 2000; Roy & Tomar 2000).

However, the integration of geographical anal-
ysis and modelling and GI (geographic informa-
tion) technology and spatial data from different
sources requires transdisciplinary skills between
geography, ecology, statistics and social sciences.
Thus the pitfalls for the misuse of GIS technology
with its high calculation capacity are very obvi-
ous. Several recent papers dealing with spatial
data have highlighted the fact that the correct use
of spatial statistics with GI and RS (remotely
sensed) data is increasingly important (Stoms
1992; Luoto 2000a; Liebhold & Gurevitch 2002;
Perry et al. 2002).

Geographical data sets have several character-
istics which separate them from many other kinds
of data sets. These features produce severe statis-
tical problems and uncertainties in the modelling
studies of biogeographical distribution data. First,
spatial data are almost always multivariate, i.e.
there are more than one variate or analyte of in-
terest, which are correlated to some degree. Sec-
ond, the spatial location of each data point can
be described by its geographic coordinates. This
positional association is often also manifested in
another way, namely through some form of spa-
tial correlation (Legendre 1993; Brito et al. 1999).
Thirdly, distribution patterns and processes are
often affected by different factors operating on dif-
ferent scales. Spatial systems generally show char-
acteristic variability on a range of spatial, tempo-
ral and organizational scales and therefore, there
is no single natural scale on which geographical
phenomena should be studied (see Wiens 1989;
Levin 1992; Stoms 1994).

Many of the above-mentioned problems are
currently topical in geography, especially in stud-
ies with GI and RS data sets (Högmander & Møller
1995; Augustin et al. 1996). This paper does not
aim at representing a fully comprehensive review
covering all the relevant issues and their back-
grounds in contemporary geographical data min-
ing, analysis and modelling. Instead, we focus in
this commentary paper on some selected key is-
sues in the development of biogeography and
landscape ecology, and particularly on the possi-
bilities and potential pitfalls of analysing and
modelling spatial data, which are attracting in-
creasing attention. Many of the methodological
issues and problems touched upon in this paper
are those which researchers in biogeography and

landscape ecology constantly face, and moreover,
similar questions are also of importance in other
fields of geography. Thus, the ideas presented here
are applicable in several other fields of study
where geographical data are applied.

Benchmarks in the development of
biogeography and spatial ecology

In 1807, von Humboldt described the latitudinal
and altitudinal distribution of vegetative zones.
His work ’Ideen zu einer Geographie der Pflan-
zen nebst einem Naturgemälde der Tropenländer’
provided an inspiration to studies of the geograph-
ic distribution of plants and animals. Throughout
the 19th century, botanists and zoologists de-
scribed and explained the spatial distributions of
various taxa mainly by macroclimatic factors such
as temperature and precipitation (Turner 1989;
Granö & Paasi 1997).

The emerging view was that strong interde-
pendencies between climate, biota, and soil lead
to long-term stability of the landscape in the ab-
sence of climatic changes. The early biogeograph-
ical studies also influenced Clements’ theory (Cle-
ments 1936) of successional dynamics, in which
the stable endpoint, the climax vegetation, was
determined by macroclimate over a broad region.
Clements stressed temporal dynamics but did not
emphasise spatial patterning. The development of
gradient analysis (Whittaker 1967) allowed de-
scription of the continuous distribution of species
along environmental gradients. Abrupt disconti-
nuities in vegetation patterns were believed to be
associated with discontinuities in the physical
environment.

Watt (1947) first linked space and time on a
broader scale in biogeography. He described the
distribution of the entire temporal progression of
successional stages as a pattern of patches across
a landscape. The complex spatial pattern across
the landscape was constant, but this constancy in
the pattern was maintained by temporal changes
at each point. The modern concept of the shifting
steady-state mosaic, which incorporates natural
disturbance process, is related to Watt’s concep-
tualisation (Turner 1989).

The interest of biogeographers in spatial aspects
increased after the introduction of the theory of
island biogeography by MacArthur & Wilson
(1967). The new theory explained how distance
and area together regulate the balance between
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immigration and extinction in island populations.
The three basic characteristics of insular biotas
are: 1) the number of species increases with in-
creasing island size, 2) the number of species de-
creases with increasing distance to the nearest
continent or other source of species, and 3) a con-
tinual turnover in species composition occurs,
owing to recurrent colonisations and extinctions,
but the number of species remains approximate-
ly the same. MacArthur and Wilson (1967) pro-
posed that the number of species inhabiting an
island represents an equilibrium between oppos-
ing rates of colonisation and extinction.

The theory of island biogeography was based
on simple mathematical models and looked for
equilibria in species numbers using the data on
species occurrences. The basic assumption of
equilibrium in spatially defined ecological sys-
tems was later found to be inappropriate (Haila
2002). Since the 1980s, the theoretical presuppo-
sitions of island biogeography have been chal-
lenged, and empirical research has become mul-
tifaceted. Fragments of a particular habitat type
are viewed as elements in a heterogeneous land-
scape rather than as ‘islands’ surrounded by a
hostile ‘sea’. As the interest in island biogeogra-
phy declined, it was replaced by metapopulation
(Levins 1969) as the paradigm of spatial ecology
(Hanski 1998, 1999).

Spatial dynamics has received increasing atten-
tion in many areas of biogeography and ecology
during recent decades (Mooney & Godron 1983;
Turner 1989; Wiens 1997; Hanski 1999). The role
of spatial landscape pattern, i.e. the distribution
and structure of different habitats, in influencing
species distribution is also increasingly studied by
landscape ecologists (Naveh & Lieberman 1984;
Turner 1989; Forman 1995) and metapopulation
ecologists (Verboom et al. 1991; Thomas et al.
1992; Hanski 1999). Finally, the influence of spa-
tial locations of individuals, populations and com-
munities on their dynamics has been demonstrat-
ed in a number of recent spatial ecological stud-
ies (Hanski & Gilpin 1997; Hanski 1999).

Nowadays, three different approaches in large-
scale spatial ecology can be distinguished (Hanski
1998): 1) theoretical ecology, 2) landscape ecol-
ogy and 3) metapopulation ecology. Theoretical
ecologists have investigated a range of models
depicting individuals with localized interactions
and restricted movement range in uniform space,
demonstrating how population dynamics can gen-
erate complex dynamics and spatial patterns with-

out any environmental heterogeneity (Tilman &
Kareiva 1997). By contrast, landscape ecologists
have been occupied by descriptions of the gener-
ally complex physical structure of real environ-
ments, distribution of resources in landscapes,
and the movements of individuals (Forman 1995;
Wiens 1997). Metapopulation ecology makes the
simplifying assumption that suitable habitat patch-
es for the focal species occur as a network of ide-
alised habitat patches varying in area, degree of
isolation and quality and surrounded by uniformly
unsuitable habitat (Hanski & Gilpin 1997; Hanski
1998).

Potential of remote sensing and
GIS-based modelling

Along with the conceptual advances discussed in
the previous section, the availability of modern
computer software and hardware (e.g., geograph-
ical information systems, increased computer
speed and memory) has recently expanded our
abilities to address many of the most interesting
and critical problems in biogeography. Prior to the
availability of these tools, analysis of many of the
important issues associated with spatial data was
impossible because of the sheer magnitude of the
data sets and the complexity of their analysis
(Liebhold & Gurevitch 2002; Nagendra 2001).

Spatial data on the geographical distribution of
habitats and species are often sparse, and factors
affecting their distribution patterns are insuffi-
ciently known. For modelling and predicting spe-
cies distribution and location of areas with con-
siderable ecological and nature conservation val-
ues, accurate data would be desirable. In reality,
such data covering extensive areas is often not
available or it is too expensive to be acquired by
research projects. As highlighted by several au-
thors (e.g., Margules & Austin 1991; Cherril et al.
1995; Debinski et al. 1999; Nagendra & Gadgil
1999), it is necessary to develop spatial model-
ling methodologies for rapid and cost-effective
mapping of large areas to assess their ecological
value for nature conservation.

The ability to analyse, model and predict dis-
tribution patterns of habitats and species on the
basis of landscape variables derived from RS and
GI data could mitigate the damage caused by hu-
man land use and facilitate the preservation of
biodiversity (Scott et al. 1993; Stoms & Estes
1993; Debinski & Humphrey 1997; Gould 2000;
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Guisan & Zimmermann 2000; Roy & Tomar 2000;
Nagendra 2001; Suárez-Seoane et al. 2002). The
growth in the availability of remotely sensed data
and the development of GIS techniques allows
access to an extensive assortment of potential spa-
tial covariates, so that analyses of factors affect-
ing biogeographical distribution patterns can be
adapted to different spatial applications. Moreo-
ver, they enable us to derive predictive models
from relations within the data and to spatially ex-
trapolate potential species distribution, abun-
dance and/or habitat preferences from those mod-
els to wider areas (Stoms & Estes 1993; Brito et
al. 1999).

In several studies species distribution patterns
for selected taxonomic groups have been mod-
elled using remotely sensed environmental data,
for example birds, mammals, plants, reptiles and
butterflies (Austin et al. 1990; Pereira & Itami
1991; Augustin et al. 1996; Brito et al. 1999;
Gould 2000: Luoto et al. 2002a). Debinski et al.
(1999) suggested that GI and RS data could be
employed in modelling of species distribution,
because species are often significantly correlated
with one or more remotely sensed habitat types,
particularly when they are highly specialized in
their habitat utilisation. In order to build predic-
tive models of species distribution using remote-
ly sensed data, a species must either be common
enough and/or habitat-specific enough to exhibit
a significant relationship with remotely sensed
data. Thus satellite imagery can provide one po-
tential basis for deriving surrogates (see Gaston
1996) of species level biodiversity. However, as
pointed out by Nagendra (2001), the modelling
of species-RS relationships can include several
pitfalls.

The inaccuracies of the prediction models high-
light the need to be careful and to avoid applying
the models rigidly and uncritically. Thus both
good biogeographical and ecological knowledge
of the predicted species and actual field check-
ing are needed to evaluate the results of the pre-
dictive models in unknown terrain. In order to
achieve complete assessment of the area con-
cerned, landscape analysis and monitoring must
be integrated with confirmatory field studies
(Heikkinen 1998).

RS and GI data and techniques, if carefully ap-
plied, can also be used in monitoring short- or
longer-term changes in different aspects of biodi-
versity and land cover (Stoms & Estes 1993; John-
ston 1998; Nagendra & Gadgil 1999). For exam-

ple, the conversion of forests to urban or inten-
sively managed agricultural areas can be detect-
ed, and rates of change measured, by superim-
posing satellite images taken on different years
(Iverson et al. 1989). Changes in habitat quality
can be reflected by the changes in landscape el-
ement heterogeneity (Stoms & Estes 1993). For
example, agricultural areas are usually character-
ised in remotely-sensed images by more regular
shapes than natural landscapes.

Probably the best widely applicable option for
developing appropriate RS-GI based monitoring
of land cover and biodiversity changes is to focus
on landscape analysis on the habitat level (Na-
gendra 2001), and if possible, to identify chang-
es in the cover and distribution in the ecological-
ly most important habitat types, such as old-
growth forests (Stoms & Estes 1993; Mladenoff et
al. 1994; Pakkala et al. 2002). From a more ap-
plied perspective, the detection and assessment
of long-term trends in land use changes can help
in the formation of policy in anticipation of the
problems, e.g., loss of biodiversity, that result from
the changes (Campbell 1996). However, it must
be stressed that in order to develop truly success-
ful RS-GI based monitoring programmes it is im-
perative to have intensive ground truth data avail-
able, which can be used in identifying landscape
elements or habitat types on the basis of super-
vised classification (Nagendra & Gadgil 1999;
Gould 2000; Roy & Tomar 2000). Other critical
factors include errors in georeferencing, i.e. even
minor differences in the placement of two sepa-
rate maps derived from imagery acquired on dif-
ferent years, differences in the interpretation tech-
niques, or spectral differences between imagery
caused by clouds, haze, or other degrading fac-
tors (Campbell 1996, p. 576; Johnston 1998, p.
121–123).

Spatial autocorrelation

The lack of spatial independence in biogeograph-
ical data has typically been viewed as a problem
that can obscure the researcher’s ability to under-
stand the geographical patterns being studied.
Spatial autocorrelation examines the degree of
synchrony between variables observed across
geographic space and is important for a wide va-
riety of geographical and ecological phenomena
(Legendre 1993). Consequently, spatial autocor-
relation is nowadays increasingly incorporated



FENNIA 181: 1 (2003) 39Recent developments in spatial methods and data in …

into biogeographical models and analyses based
on spatial data (see Högmander & Møller 1995;
Koenig & Knops 1998; Guisan & Zimmermann
2000; Henebry & Merchant 2002).

A variable is said to be autocorrelated if a meas-
ure made at one point supplies information on
another measure of that variable recorded at a
point located a given distance apart (Rossi &
Queneherve 1998; Ferguson & Bester 2002). In
this case the values are not independent in a sta-
tistical sense. If spatial autocorrelation is present,
assessing the relationships between variables is
complicated by the ineffectiveness of most clas-
sical statistical tools such as ANOVA or correla-
tion analysis (Legendre 1993). The presence of
common patterns between two or more variables
may lead to spurious correlations, i.e. variables
are apparently related, although in fact they only
independently display a common spatial pattern.
In such cases, it is necessary to examine the rela-
tionships between variables while controlling the
effect of the common spatial structure.

Luoto et al. (2001) studied the occurrence pat-
tern of the Clouded apollo butterfly (Parnassius
mnemosyne) using a spatial grid system in south-
western Finland (Fig. 1). Spatial autocorrelation
was statistically highly significant (p < 0.001) in
the Clouded apollo distribution data and caused
some problems in the interpretation of the mod-
elling results. This was because the regression
analysis showed clear differences between the ex-
planatory capacity of predictive variables when
the modelling procedure was performed with and
without an adjusting spatial autocorrelation vari-
able. In a model with no spatial autocorrelation
variable, five environmental-topographical varia-
bles were included in the logistic regression mod-
el. However, when a spatial autocorrelation vari-
able was entered into the model only three of the
environmental-topographical variables remained
statistically significant. In this example, it appears
that the two excluded variables reflected mainly
the spatial structure of the data, without any clear
significant ecological relevance to the distribution
of Clouded apollo (see Legendre 1993; Luoto et
al. 2001).

Various methods have been devised for elimi-
nating or avoiding the effects of spatial depend-
ence in measuring or analysing geographical re-
sponses (Legendre 1993). For example, sampling
of spatial data has typically been carried out by
stratifying across space and averaging to infer un-
derlying processes and mechanisms. Recently,

however, biogeographers and spatial ecologists
have begun to acknowledge that there is much
important biology and ecology in the spatial de-
pendence of biotic responses, and have become
increasingly interested in examining spatial rela-
tionships directly. Whereas earlier research ig-
nored or sought to remove the effects of spatial
patterns of the data, the current approach is ex-
plicitly to analyse and model spatial patterns of
the data as a fundamental feature of the study
(Liebhold & Gurevitch 2002).

Most straightforwardly, spatial autocorrelation
from the grid square i can be calculated in a spa-
tial grid system as an average of the number of
occupied grids among a set of eight neighbour
grid squares of the square i (Augustin et al. 1996).
The significance of spatial dependence of the data
can be estimated by entering the spatial autocor-

Fig. 1. (A) Distribution of the Clouded apollo (Parnassius
mnemosyne) in the river Rekijoki area in southwestern Fin-
land. (B) Spatial autocorrelation of the Clouded apollo ob-
servations, measured by Moran’s I in relation to distance
(see Legendre 1993; Brito et al. 1999).
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relation variable as an additional explanatory var-
iable in the final model. For more explicit meth-
ods see Koenig & Knops (1998) and Brito et al.
(1999), in which various techniques to measure
and analyse the spatial pattern of the data are de-
scribed and reviewed.

Model building and verification

Several recent papers have criticized automatic
stepwise procedures, as they do not necessarily
select the most influential variables from a subset
of variables (Bustamante 1997; Mac Nally 2000;
Luoto et al. 2002a). Furthermore, the application
of stepwise procedures in spatial data sets can
give rise to statistically explicit, but ecologically
irrelevant results. This may lead to models which
agree closely with the observations in the study
sites but which give poor predictions when ex-
trapolated to unsurveyed areas (James & McCul-
loch 1990; Buckland & Elston 1993).

One pitfall in automatic stepwise model-build-
ing is the difficulty to produce ecologically and
geographically plausible regression models, par-
ticularly when the number of candidate explana-
tory variables is large and the potential causal re-
lationships between them and the response vari-
able are not a priori well-known. Strong coline-
arity among the environmental variables may give
rise to spurious regression models. In other words,
the ecologically most important variables may
well be excluded from the models when using
automatic stepwise regression procedures (‘statis-
tically-focused modelling’) (Flack & Chang 1987;
Mac Nally 2000). Several recent papers argue that
a more plausible regression model can be pro-
duced by the ‘ecologically-focused’ modelling
approach, in which the biologically most impor-
tant variables are forced to enter the model first
or are given priority when selecting more or less
equally important variables (Bustamante 1997;
Mac Nally 2000).

This argument is supported, for example, by
one modelling study of rare plant species richness
in SW Finland (Luoto et al. 2002b). The overall fit
of the ecologically-focused model developed in
the study decreased clearly less (from 57.1% to
50.1%) when it was fitted to the test set of grid
squares (i.e. a set of squares not used in develop-
ing the model), as compared with the correspond-
ing decrease in the statistically-focused model
(from 65.6% to 51.8%).

Another simple example can be considered: the
study material includes topographically heteroge-
neous grid squares in a river valley and squares
from gently sloping mountains some 300–500
metres higher. In this case the explanatory varia-
bles topographical heterogeneity and mean tem-
perature (or some other energy-related factor) of
a grid square would be intercorrelated. Most re-
searchers would probably agree that mean tem-
perature has a major impact on species richness
in this example (see Currie 1991; Heikkinen
1998). However, it may well be excluded from a
multiple regression model developed with typi-
cal automatic stepwise procedures due to coline-
arity, if simple topographical heterogeneity hap-
pens to have slightly better explanatory power in
statistical terms. In this example it may be well
justified to force more primary environmental var-
iables to enter the model first, and only afterwards
consider whether heterogeneity variables explain
some further variation in species richness (cf.
Begon et al. 1996).

Other examples where automatic stepwise
modelling procedures may produce less desirable
models are cases where climatic variables such
as mean temperature or rainfall are highly corre-
lated with altitude, latitude or longitude, particu-
larly if the latter variables produce a somewhat
better statistical fit. In such a case, it may be jus-
tified to select a biologically more meaningful
variable first into the model, e.g., temperature in-
stead of altitude (see Nicholls 1991; Bustamante
1997). These examples show that automatic re-
gression model-building procedures can result in
less causal relationships and consequently inac-
curate predictions, and that the variable-selection
process can be improved if the process is based
on existing knowledge and theory (cf. Mac Nally
2000).

Several studies show that abiotic variables of-
ten have considerable statistical power, at least in
the model building area. However, when the de-
rived models are extrapolated to wider areas their
predictive power can clearly decrease (Luoto et
al. 2002a). Especially in extrapolative, predictive
modelling, care should be taken to produce mod-
els that are ecologically more realistic than those
derived from automatic stepwise regression pro-
cedures (Milsom et al. 2000, Mac Nally 2000).
These ecologically-focused models may be less
powerful than the statistically-focused models in
model building, but can be still more appropri-
ately applied over large areas with different top-
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ographic and landscape characteristics (Luoto et
al. 2002a).

The importance of model verification is funda-
mental in predictive modelling (Boone and Krohn
1999). Not only should models be assessed with
respect to their ability to explain observed varia-
tion, but they should also be validated. This can
be done either using ‘leave-one-out’ jack-knife
and bootstrap techniques (random sampling with
replacement), or by evaluating the quality of the
derived model by fitting it to an independent data
set (the ‘split-sample’ or ‘training-evaluation data
sets’ approach) (Guisan & Zimmermann 2000;
Fleishman et al. 2001; Henebry & Merchant
2002; Suárez-Seoane 2002). Model predictions
must be regarded as testable hypotheses. If the
hypotheses are largely validated, then the model
can be legitimately employed, for example for
landscape management or conservation purpos-
es (Fleishman et al. 2001). Moreover, the derived
statistical models must also be tested for their ec-
ological sensibility (Austin et al. 1990).

It is noteworthy that due to the dynamics and
social factors affecting populations, not all suita-
ble sites for a species are necessarily occupied at
the same time. However, identification of unoc-
cupied, but nevertheless suitable, sites using spe-
cies-environment based modelling approaches
can be highly important for long-term conserva-
tion planning. Johnson & Krohn (2002) gave ex-
amples of dynamically changing seabird colonies,
for which carefully applied habitat occupancy
models could be used in identifying features as-
sociated with suitable, but at a particular time
unoccupied islands.

One additional problem in the biogeographi-
cal model building procedure is the spatial cov-
erage of the model building area. The models
should be based geographically and ecologically
on an appropriate sample of the area, especially
when they are used for spatial extrapolation. The
models often produce somewhat inaccurate pre-
dictions, especially in those cases where the land-
scape pattern is different from that of the model
building area (Luoto et al. 2002a).

Logistic regression analysis

The use of multivariate statistics to model bioge-
ographical distribution patterns has increased in
the past two decades and a wide variety of statis-
tical techniques is now available (see Walker

1990; Mladenoff et al. 1995; Bustamante 1997;
Brito et al. 1999). Probabilities of occurrences are
generally assessed using the logistic regression
methods. Logistic regression has been shown to
be a powerful tool, capable of analysing the ef-
fects of one or several independent variables, dis-
crete or continuous, over a dichotomic (presence/
absence) variable (Pereira & Itami 1991; Augus-
tin et al. 1996; Brito et al. 1999). Fitting a logistic
regression model to distribution data is a straight-
forward task and algorithms are available in sev-
eral statistical program packages.

Multiple logistic regression is an appropriate
and widely used method for statistical analysis in
different distribution problems in biological and
ecological studies (see Pereira & Itami 1991; Car-
roll et al. 1999). However, logistic regression has
not hitherto been very widely employed by geog-
raphers or landscape ecologists; rather it is pre-
ferred as a practical method for summarising spe-
cies distributions along environmental gradients
(see Peeters & Gardeniers 1998; Hill et al. 1999).
A more technical and detailed review of logistic
regression was presented by McCullagh & Nelder
(1989) and Collett (1991). Logistic regression has
the form:

π (x ) =
exp (α + βx)

1 + exp (α + βx)

where α is the constant and βx is the coefficient
of the respective independent variables. The prob-
ability of presence π (ranging from 0 to 1) is giv-
en as a function of the vector of this model and
becomes apparent after the logistic transforma-
tion, giving the form:

ln π (x) = α + βx
1 – π (x)

where ln denotes the natural logarithm (Rita &
Ranta 1993; Sokahl & Rohlf 1995).

In a model that attempts to explain the varia-
tion in distribution problems, the residuals can-
not be normally distributed, as they should be in
ordinary regression. This is because there are only
two possible values for the response variable in
data: 0 for absence and 1 for presence. Thus the
statistical theory developed for ordinary regres-
sion models is not applicable to binomial distri-
bution data. The use of ordinary regressions in
probability analysis may lead to estimates with-
out biological or even mathematical realism (Hos-

( )
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mer & Lemeshow 1989; Rita & Ranta 1993). In
logistic regression, the binary nature of the re-
sponse variable variation is the basis of parame-
ter estimation and thus, the logistic regression
models will not produce inappropriate values
(π (X) > 1 or π (X) < 0) for the probability of pres-
ence (Rita & Ranta 1993).

As mentioned earlier, logistic regression – al-
though the predominant method applied in spe-
cies-environment modelling exercises – is not the
only technique available for the modelling stud-
ies of species distribution patterns. Other statisti-
cal approaches include the following: General-
ized additive models (GAM), environmental en-
velope techniques, Bayesian logistic-based mod-
elling approach and neural networks. The discus-
sion of these techniques is beyond the scope of
this paper. However, information concerning
these approaches can be found from, for exam-
ple, Guisan & Zimmermann (2000), Mac Nally
(2000), Fleishman et al. (2001) and Suárez-Se-
oane et al. (2002).

Other critical issues in
biogeographical modelling

Comprehensive species distribution data over
large areas and regions rarely exist. Frequently,
the only data available for spatial modelling stud-
ies are herbarium records or museum specimens
(Margules & Austin 1994; Austin 2002; Johnson
& Sargeant 2002). However, these records have
usually been collected in an opportunistic man-
ner. This has resulted in incomplete and often bi-
ased data sets with regard to both the geographi-
cal and the taxonomical coverage (Margules &
Austin 1994). Thus, regional data sets or atlases
based on herbarium and other sources often pro-
vide only a limited basis for modelling exercises.
Such presence-only data sets are hampered by
false negatives – cells with no record of a species
that really is present (Johnson & Sargeant 2002).
There are empirical methods, such as BIOCLIM
(Busby 1991), for estimating distribution patterns
of species from presence-only types of species
data. However, these methods will only provide
an overall climatic envelope within which a spe-
cies occurs, and will tell nothing about where it
will be absent within the climatic limits of the
envelope (Austin 2002). Thus modelling studies
should preferably be based on true presence/ab-

sence records of species derived from geocoded
plots of specified size.

On the other hand, comprehensive field surveys
of species distribution patterns over wide areas
are generally too expensive or logistically impos-
sible to carry out. The best solution is to define
cost-effective survey designs that will yield unbi-
ased and sufficiently representative species distri-
bution data sets. It is important to ensure that a
survey samples the full range of vegetation com-
position and environmental space defined by the
major environmental gradients in the region. In a
similar vein, more accurate predictions of species
occurrence patterns can generally be attained if
the model-building grid squares are located all
over the area, covering effectively all biotopes and
environmental gradients. More information on the
appropriate survey designs and the subsequent
statistical modelling of species-environment rela-
tionships can be found from Walker (1990), Aus-
tin and Heyligers (1991), Margules & Austin
(1994), Wessels et al. (1998) and Austin (2002).

When carrying out the actual modelling exer-
cise, it is imperative to realise that the relation-
ships between species and their environments are
often nonlinear and should thus be modelled as
such (Austin et al. 1990; Heglund 2002). One
simple way of taking this into account is to incor-
porate squared terms of the predictor environmen-
tal variables into the modelling procedure (i.e.
second order polynomial regressions; see Busta-
mante 1997; Guisan & Zimmermann 2000;
Fleishman et al. 2001).

Problems of remote sensing data

Remote sensing provides an extensive source of
relatively cheap, reliable data. However, the use
of satellite images and digital aerial photographs
in biogeographical and landscape ecological
studies includes many potential pitfalls (Kalliola
& Syrjänen 1991; Nagendra 2001). Ecologically
and conservationally important habitat patches,
such as deciduous forests and semi-natural grass-
lands, are often missed in satellite imagery clas-
sification (Stoms 1992; Luoto et al. 2002a). When
Landsat-TM images are used, small habitat patch-
es inevitably remain below the level of resolution,
because only patches larger than one pixel
(900 m2) can be discriminated from the image.
However, it is possible that even some larger
patches are excluded from the classification due
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to the sensor properties or the patch shape, elon-
gation or location in relation to the pixel bound-
aries (Hyppänen 1996; Fisher 1997; Cracknell
1998). The problem is even more pronounced in
undulating topography with small-scale habitat
pattern and often with corridor-like patches (cf.
Guisan & Zimmermann 2000: 175). A small patch
on a steep slope appears smaller than it really is
and may therefore be indistinguishable (Lillesand
& Kiefer 1994).

Another bias in the classification originates
from the fact that the spectral reflectance of a pix-
el is influenced by the reflectance of its neigh-
bourhood, caused by the movement of the sen-
sor (Fisher 1997). Moreover, when using multi-
spectral and multitemporal data, the blending be-
tween adjacent pixels is pronounced. This is a re-
sult of the fact that pixels of different bands of an
image do not always overlap and pixels of imag-
es from different dates seldom overlap (Cracknell
1998). Fisher (1997) and Cracknell (1998) dis-
cussed the problem of rectangular spatial units,
because pixels seldom match the true shape or
size of natural objects. This is not a problem in
large, homogenous areas such as coniferous for-
ests or fields, but in the case of linear habitats,
e.g., semi-natural grasslands or riverside forests,
it undoubtedly affects the size and detection of
patches (cf. Nagendra 2001).

When using satellite imagery as the source data
for the habitat map, some uncertainties must be
expected. It would be feasible, however, to im-
prove the habitat classification by using aerial
photographs or new high-resolution satellite im-
agery (e.g., IKONOS with 4 m resolution). The ar-
eas requiring more detailed data could be select-
ed on the basis of topography and the fragmenta-
tion of habitats.

Scale

The problem of pattern and scale is one of the
central problems in biogeography and spatial
ecology. Biogeographical study problems require
interfacing of phenomena that occur on very dif-
ferent scales of space, time and organization and
therefore, there is no single natural scale on which
geographical phenomenon should be studied (see
Wiens 1989; Levin 1992; Stoms 1994). The ob-
server imposes a perceptual bias, a filter through
which the system is viewed. Furthermore, every
organism is an ‘observer’ of the environment, and

has its own perceptual spatial and temporal scale.
This has fundamental significance for the study of
biogeographical systems, since the distribution
patterns and processes that are unique to any
range of scales will have unique causes and eco-
logical consequences (Levin 1992; Heglund
2002).

The pattern detected in any biogeographical
mosaic is a function of scale, and the ecological
concept of spatial scale encompasses both extent
and grain (Turner et al. 1989; Wiens 1989; For-
man 1995). Extent is the overall area encom-
passed by an investigation or the area included
within the landscape boundary. Grain is the size
of the individual units of observation. For exam-
ple, a fine-grained map might structure informa-
tion into 1 m2 units, whereas a map with a coars-
er resolution would have information structured
into 1 ha units (Turner et al. 1989).

Extent and grain define the upper and lower
limits of resolution of study and any inferences
about scale-dependence in a system are con-
strained by the extent and grain of investigation
(Wiens 1989). From a statistical perspective, it is
not reasonable to extrapolate beyond the popu-
lation sampled or to infer differences between
objects smaller than the experimental units. Sim-
ilarly, in the assessment of landscape structure, it
is not possible to detect pattern beyond the ex-
tent of the landscape or below the resolution of
the grain (Wiens 1989).

As with the concept of landscape and patch, it
may be ecologically more meaningful to define
the scale from the perspective of the organism or
ecological phenomenon under consideration. For
example, from an organism-centred perspective,
grain and extent may be defined as the degree of
acuity of a stationary organism with respect to
short- and long-range perceptual ability (Kolasa
& Rollo 1991). Thus, grain is the finest compo-
nent of the environment that can be differentiat-
ed close to the organism, whereas extent is the
range at which a relevant object can be distin-
guished from a fixed vantage point by the organ-
ism.

It has been suggested that information can be
transferred across scales if both grain and extent
are specified (Allen et al. 1987; Kunin 1998).
However, it is partially unclear how observed
landscape patterns vary in response to changes in
grain and extent, and whether landscape metrics
obtained on different scales can be compared. The
limited work on this topic suggests that landscape
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metrics vary in their sensitivity to changes in scale
and that quantitative and qualitative changes in
measurements across spatial scales will differ de-
pending on how scale is defined (Turner et al.
1989). According to Wickham & Riitters (1995),
identical classifications for the same area could
be arrived at from sensors with different spatial
resolving powers, and the resultant landscape
metric values should not be dramatically affect-
ed by the difference in spatial resolution.

The key to modelling and understanding of bi-
ogeographical issues lies in elucidation of the
mechanisms underlying the observed patterns
(Wiens 1989; Noss 1992). The difficulties embed-
ded in these attempts are pronounced in the stud-
ies using GI or RS data, because spatial data pro-
vide information between fine-scale ecological
variation and large-scale geographical–spatial gra-
dient, overlapping both. This can lead to the situ-
ation described by Levin (1992), where the mech-
anisms underlying the biogeographical patterns
operate on different scales from those on which
they are observed, producing rather poor fit of the
models (see also Heglund 2002).

Recently, GI-based approaches have been used
on different scales to analyse and model biogeo-
graphical distribution patterns (Kunin 1998).
However, our understanding of the factors influ-
encing on different scales is limited, and we lack
the knowledge of how the different spatial mod-
elling scales affect the performance of biogeo-
graphical distribution models. There is an increas-
ing need to evaluate how the analysis and mod-
elling results behave on different spatial scales.

Conclusions

The applicability and employment of spatial data
derived from remote sensing and geographic da-
tabases to model and monitor biogeographical
distribution problems has increased considerably
in recent years. If remotely sensed data are to be
used effectively for biogeographical research,
techniques to integrate observations of landscape
pattern and habitat quality with data on biogeo-
graphical distribution patterns need to be devel-
oped further.

There are many national vegetation and land
cover maps available with information on poten-
tial sites of certain species or of high biodiversity.
Remote sensing and geographic information sys-
tems are uniquely poised to use these data, in

conjunction with spatial analysis and modelling,
to map and monitor species distribution and bio-
diversity patterns. Furthermore, predictive RS and
GI-based modelling can provide a basis for focus-
ing field assessment and allocating conservation
resources in areas where the distribution of spe-
cies is not well known (Gould 2000; Luoto
2000b).

Biogeographers and landscape ecologists typi-
cally view landscape as a mosaic of land cover
elements (habitats, biotopes and ecosystems) and
believe that their spatial arrangement controls or
affects the ecological processes operating within
them. A more holistic perspective in landscape
studies, which also takes into account the geo-
morphological, hydrological and climatological
aspects of the landscape, is needed for a compre-
hensive analysis and modelling of a certain area.
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