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Abstract. The concept of value at risk (VaR) is a measure that is increasingly used for 

estimation of the maximum loss of financial position at a given time for a given 

probability. The aim of this manuscript is to show the most recent approaches for 

quantifying market risk. In particular, the manuscript investigates whether extreme value 

theory outperforms econometric calculation of VaR in emerging stock markets such as 

Montenegrin market. The paper is motivated by the desire that necessary attention is 

given to risks in Montenegro. Daily return of highly volatile stock EPCG (Elektroprivreda 

Crne Gore) from Montenegrin stock exchange is analysed for the period from January, 

2004 – June, 2013. The sample of this structure and time dimension has not been 

discussed in empirical literature. Therefore, it is necessary to use the experience of the 

developed world's financial institutions which have studious approach to risk management, 

as well as the latest theoretical knowledge. 

Key Words: Extreme value theory, Value at Risk, fat tails, GARCH model, peak over 

threshold, generalized Pareto distribution 

INTRODUCTION 

The risk from extreme events is present in all fields of risk management. 

Methodology used for the assessment of financial markets participants’ rate of exposition 

to risk, gives the estimation of value at risk. Value at risk (Value-at-risk, or abbreviated 

VaR) is the maximum loss of financial position over a given time period at a given 

confidence interval. It includes all types of financial risk and the application in the 

analysis of market risk is to be presented in this manuscript. 

It is intended to show the latest approaches to quantification of market risk in this 

paper, in a theoretical and practical context. The aim of this manuscript is to present the 
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estimation of VaR based on the analysis of specificities of financial time series, and to 

give empirical results of measuring Value at risk in Montenegrin financial market that is 

still developing. These include econometric evaluation, Riskmetrics methodology, quantile 

estimation and estimation based on extreme value theory. Econometric evaluation is 

derived from GARCH model, while Riskmetrics methodology uses IGARCH model.  

There is a general opinion in literature data that there is no universal model giving the 

best estimation and forecast of VaR. Numerous papers observing the application of 

different approaches in developed financial markets confirm this – Caporin (2003), 

Christoffersen, et al. (2001), Angelidis, et al. (2004), Wong, et al. (2002), Alexander and 

Leigh (1997), Harimantzis, et al. (2006), Peters (2001), Embrechts, et al. (1999), McNeil, 

et al. (2000), Guermat and Harris (2002), So and Yu (2006).  

On the other hand, there are very few papers observing the comparison of VaR 

models in developing financial markets. Gençay and Selçuk (2004) analized parameter 

models and quantile estimation of VaR of stock exchange indices in developing Central 

and Eastern European countries. These results show that generalized Pareto distribution 

and extreme value theory are basic tools in risk management in developing countries. 

Živković (2007) observed different approaches to VaR measuring on the example of new 

members and candidate countries for EU membership (Bulgaria, Romania, Croatia and 

Turkey). The conclusion of this research is that application of VaR models is not 

successful enough in financial markets of these countries because the returns show the 

existence of heavy tails, asymmetry and heteroscedasticity. Further researches followed 

in 2009, where Živković and Aktan analized VaR models of the returns of Turkish and 

Croatian stock-exchange indices with the onset of global financial crisis. It was 

concluded in this paper that extreme value theory and hybrid historical simulation are the 

best, while other models underestimate the level of risk. Anđelić, Djoković and Radišić 

(2010) observed Slovenian, Croatian, Serbian and Hungarian markets and concluded that 

under stable market conditions, the analized models give good forecasts of VaR 

estimations with 5% level of significance, while under the conditions of market volatility 

analized models give good estimations of VaR parameters with 1% level of significance. 

Nikolić-Đorić and Đorić (2011) observed the movement of stock-exchange index in 

Serbian financial market and concluded that GARCH models combined with extreme 

value theory – peaks over threshold method, decrease the mean value of VaR, as well as 

that given models are better than RiskMetrics method and IGARCH model. Also, 

Mladenović, Miletić and Miletić (2012), based on analysis of stock-exchange indices in 

Central and Eastern European countries (Bulgaria, Czech Republic, Hungary, Croatia, 

Romania and Serbia), came to conclusion that the methodology of extreme value theory 

is slightly better than GARCH model regarding the calculation of VaR, but general 

suggestion is to use both approaches for better measuring of market risk.  

The purpose of this paper is to compare performance of econometric models, quantile 

estimation and extreme value theory in evaluting Value-at-Risk in Montenegrin stock 

exchange over long period that includes years of financial crisis. Results will be 

interesting given the recession period is included, and are relevant on micro and 

macroeconomic level. In particular, the manuscript investigates whether extreme value 

theory can outperform econometric calculation of VaR in emerging stock markets, and, in 

particular, Montenegrin stock market has not been discussed in empirical literature. 

Now we are going to observe a portfolio of some risky assets and determine portfolio 

value as Vt at a moment in time t. Let us assume that we want to determine the level of 
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risk over the period [t,t+h]. We mark the random variable of portfolio loss as 
( ) ( )t h t h tL V V V h      . Cummulative function of loss distribution is marked as FL 

where ( ) ( )LF x P L x  . In this case, VaR at significance level α (α  (0,1) - most often 

α = 0.01 or α = 0.05, i.e. 1% and 5%) is actually an α-quantile of distribution function FL 

and represents the smallest real number satisfying the inequation )(xFL , i.e.: 

 inf( ( ) ).LVaR x F x    (1) 

Expected shortfall (ES) is a measure closely related to VaR and practically often 

indicated as a measure overcoming conceptual disadventages of VaR. For loss L, with its 

expected absolute value being definite, expected shortfall at significance level α is 

defined as 

 

1
1

( ) ,
1

u LES q F du





   (2) 

where qu(FL) is the quantile function of distribution function FL. It is obvious that 

measure ES depends only on loss distribution, and ES  VaR. Therefore, this measure 

represents expected return value in case a marginal value (usually VaR) is exceeded.  

1. METHODOLOGIES OF VAR  

The type of value at risk estimation can be: 1. Quantile estimation (historical 

simulation), 2. Econometric evaluation (GARCH models) and 3. Estimation based on 

extreme value theory.  

1.1. GARCH model  

Generalized autoregressive conditional heteroscedasticity (GARCH) model, 

introduced by Bollersev (1986) and Taylor (1986), represents the generalization of 

autoregressive conditional heteroscedasticity model – ARCH, developed by Engle in 

1982. Log returns, usually expressed in percents, are marked as rt. Innovation at moment 

t is ttt ra  . Then, the model can be presented as follows (Tsay, 2010): 
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Parameters of equation (3) representing autoregressive moving-average model 

(ARMA) of orders p and q, ARMA (p,q), are marked as 0 1 1, ,..., , ,...,p q     . The 

random member of the model, at, is the function of t - series of independent and 

identically distributed random variables having a normal or t-distribution with zero mean 

and variance equal to 1. By the second equation in the model - (4), conditional variance 
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of returns rt is modeled, 2 2

1(( ( )) )t t t tE r E r    , where t1 is available data set with 

moment t-1 inclusive. In other words, conditional variance (volatility) is expected 

squared deviation of observations from the mean given the available data set.  

Parameters 0 1 1, ,..., , ,...,u       of conditional variance equation satisfy the conditions 

0 0,   1,..., 0,u    
1,..., 0,    

max( , )

1

( ) 1
u

i i

i



 


  .  

If the series t is a random variable with standardized normal distribution, i.e. 

t : N(0,1) then conditional distribution of random variable rh+1 for available data with the 

moment h inclusive, also has a normal distribution with mean ˆ (1)hr  and variance 2ˆ (1)h . 

Then, 5%-quantile of conditional distribution, representing the estimation of VaR at 95% 

confidence level and for forecast horizon 1 step ahead, is computed as:  

 ˆ ˆ(1) 1,65 (1).h hr   (5) 

If random variable t  has Student’s t distribution, with υ degrees of freedom, then the 

5%-quantile of conditional distribution is computed as follows: 
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where (1 )t p   is the corresponding critical value of (1  p) quantile from t distribution 

with υ degrees of freedom.  

GARCH(1,1) model has the following form: 
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2 2 2

0 1 1 1 1.t t ta         (8) 

If the model GARCH(1,1) satisfies the parameters sum 1 + 1 = 1, then the model 

describes the process of unlimited growth of conditional variability. Such a model is 

known as integrated GARCH model – IGARCH(1,1). It is in the basis of VaR estimation, 

representing the standard approach to risk measuring – RiskMetrics. 

This methodology was developed by company J. P. Morgan (Longerstaey, 1995), and 

it implies that conditional distribution of the series of log daily returns is 
2

1 : ( , )t t t tr N   , where t is conditional mean, and t
2
 is conditional variance of series 

rt. The following relations are valid for them: 

 
2 2 2

1 10, (1 ) , 0 1.t t t tr            (9) 

Volatility forecast for one period ahead in time shows that 
2 2 2

1 (1 ) .t t tr       

The previous relation indicates that 
2

1( )t i t tVar r     for i  1, and therefore, 
2 2

1[ ]t tk k   . If the significance level is 5%, portfolio risk according to RiskMetrics 

methodology is computed using formula 1,65t+1, i.e. daily VaR value of the portfolio is  

 11,65 .tVaR Valueof financial position     (10) 
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1.2. Quantile estimation (Historical simulation)  

Historical simulation begins from the assumption that return distribution in the 

forecast period is the same as in the sampling period. Thus, the given return values of the 

sample are arranged according to size into a growing series in the form 

(1) (2) ( )... nr r r    with the first minimal and last maximal value. 

Let us assume that returns are independent and identically distributed random variables 

with constant distribution whose probability density function is f(x), and corresponding 

function of cumulative distribution F(x). Let xp be p-quantile of the function F(x). If 

f(xp)  0, then the statistic r(l), where l = np, 0 < p <1, has approximately normal 

distribution with mean value xp and variance 
2(1 ) / [ ( )]pp p n f x , i.e. 

 ( ) 2

(1 )
: ( , ), .

( )
l p

p

p p
r N x l np

nf x


  (11) 

1.3. Extreme value theory – Peak over threshold method (POT)  

The extreme value theory is a very good methodological frame for the research of the 

trend of distribution tail. If we consider the problem of sample maximum, we come to the 

main mathematical problem which is in the basis of the extreme value theory.  

Let X1, X2,... be the series of independent, non-degenerate random variables having an 

even distribution, with the common distribution function F. Let us observe the maximum 

values of variables (M1 = X1) 

 1max( ,..., ),n nM X X  (12) 

where 2n  . 

For the joint limiting distribution function of maxima Mn, based on the character of 

their independence, it is: 

 1

1 1

( ) ( ,..., ) ( ) ( ) ( ).
n n

n

n n i

i i

P M x P X x X x P X x F x F x
 

          (13) 

We will mark the right end of distribution F with 

 sup( : ( ) 1).Fx x R F x    (14) 

Then, for every Fx x ,  

 ( ) ( ) 0, ,n

nP M x F x n     (15) 

and, if Fx   , for Fx x  

 ( ) ( ) 1.n

nP M x F x    (16) 

Therefore, distribution function, as n , becomes degenerate. In order to obtain 

non-degenerate marginal distribution, it is necessary to carry out normalization (De Haan 

& Ferreira, 2006).  

The problem comes to the determination of real constants an > 0 and bn, so the 

variable (Mn  bn) / an has non-degenerate marginal distribution, as n , i.e. 

lim ( ) ( )n

n n
n

F a x b G x


  . G represents the non-degenerate distribution function and such 

distributions are called extreme value distributions. 



J. CEROVIĆ 180 

Let the real constants be an and bn (an > 0), so for every n applies 

 lim {( ) / } lim ( ) ( ),n

n n n n n
n n

P M b a x F a x b G x
 

      (17) 

for non-degenerate distribution function G(x). If this condition applies, it is said that F is 

in the domain of attraction of maxima from G, i.e. ( )F D G . 

Extreme value distribution includes three parameters -  - shape parameter, n - 

location parameter, and n > 0 is scale parameter. They can be assessed in two ways: 

using parametric or non-parametric methods. Traditional approach – block maxima 

method largely dissipates data because only maximum values from great blocks are used. 

This is reported as the biggest disadvantage of this model, so in practice it is increasingly 

being replaced with the method based on peaks over threshold, where all data 

representing extremes are used, in the context of exceeding some high level. The given 

method is to be exposed as follows.  

If we mark a certain threshold as u, and we observe the series of daily log returns rt, 

then if  i
th

 excess happens on the i
th

 day, this model is focused on the data (ti, rti
  u). The 

basic theory of this new approach observes conditional distribution from r = x + u which 

is for r  x + u given that threshold is exceeded, r > u: 

 
( ) ( ) ( )

( ) .
( ) 1 ( )

P u r x u P r x u P r u
P r x u r u

P r u P r u

      
    

  
 (18) 

The main distribution used for the modeling of excess over the threshold is 

generalized Pareto distribution, defined in the following way: 
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where  (u) > 0 and 0x   for 0  , and 0 ( ) /x u     when  < 0. Therefore, we 

conclude that conditional distribution from r, if r > u, approximates well with generalized 

Pareto distribution with parameters   and  (u) =  +  (u  ). Parameter  (u) is called 

scale parameter, and   is shape parameter. 

Generalized Pareto distribution has a very significant feature. If the excess 

distribution from r with the given threshold u0 is generalized Pareto distribution with 

shape parameter   and scale parameter  (u0), then for arbitrary threshold u > u0, the 

given excess distribution for threshold u is also generalized Pareto distribution with shape 

parameter   and scale parameter 0 0( ) ( ) ( )u u u u     .  

When the parameter   = 0, then generalized Pareto distribution is exponential 

distribution. Therefore, it is suggested to carry out a graphic examination of the tail 

behaviour using QQ plot. If   = 0, then the graph of the excess is linear.  

Peaks over thresholds model has a problem regarding the choice of an adequate 

threshold. This is how the given problem is usually solved in practice. 
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For the given high threshold u0, let the excess r  u0 follow generalized Pareto 

distribution with parameters  and  (u0), where 0 <   <1. Then, the mean excess over 

the threshold u0: 

 0

0 0

( )
( ) .

1

u
E r u r u




  


 (20) 

The mean excess function in the mark  e(u) is defined, for every  0uu  , as: 

 0 0( ) ( )
( ) ( ) .

1

u u u
e u E r u r u

 



 
   


 (21) 

Therefore, for the given value , the mean excess function is the linear function of 

excess u  u0. Hence, for the determination of the given threshold u0, a simple graphic 

model is used, forming the empirical mean excess function as 
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   (22) 

where Nu is the number of returns exceeding the threshold u, and rt
i
 are the values of given 

returns. Threshold u is chosen so the empirical mean excess function is approximately 

linear for r > u.  

For the given probability p in the upper tail, (1-p)-quantile of log return rt is 

 
{1 [ ln(1 )] } 0,

ln[ ln(1 )] 0.

D p
VaR

D p
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VaR evaluation is much more stable using the peaks over thresholds method because 

with the traditional approach, VaR is very sensitive to changes in the size of blocks n.  

The measure of Expected shortfall, as an expected loss if VaR is exceeded, then can 

be defined as 

 ( ) ( ),q q q q qES E r r VaR VaR E r VaR r VaR       (24) 

i.e. 

 
( )

.
1 1

q

q

VaR u u
ES

 

 


 

 
 (25) 

2. EMPIRICAL RESULTS  

The purpose of empirical analysis is the evaluation of risk measures for daily returns, 

for one stock in Montenegrin stock market. The best way is to choose a stock having 

showed a pronounced volatility in the previous period, able to illustrate advantages and 

disadvantages of each model. For these reasons, a stock of Elektroprivreda Crne Gore 

(EPCG) was chosen, illustrating models of VaR calculation. Time series of logarithmic 

returns of EPCG’s stock, were observed on daily basis in the period from 9
th

 January of 
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2004 until 18
th

 June of 2013 (2338 data in total). Log daily returns (or continuously 

compounded returns), represent the difference between logarithmic levels of prices in two 

successive days. It can also be expressed in percents, when these differences are 

multiplied by 100. The data are taken from the website of Montenegro berza AD 

Podgorica, retrieved from http://www.montenegroberza.com.  Empirical results are 

obtained using program package R.  

Daily return of the EPCG stock is stationary (Fig. 1). Its empirical distribution differs 

from normal distribution, which is indicated by the skewness and curtosis, as well as the 

joint indicator of normality – Jarque-Bera test-statistic (JB). These descriptive statistics 

are shown in Table 1. The value in parenthesis next to the value of test-statistic is the 

corresponding p-value.    

Table 1 Basic descriptive statistics of daily return for EPCG 

Variance Skewness Curtosis JB Box-Ljung 

(m=8) 

Box-Ljung (at
2
) 

23.96 0.6 19.88 38709.92  

(<2.2e-16) 

101.76  

(<2.2e-16) 

1032.92  

(<2.2e-16) 

The given return series is not too asymmetric, which can be seen from the skewness 

indicator, but the high curtosis indicates that the it is above normal, i.e. there are “heavy 

tails” – tails are heavier than those in normal distribution. Jarque-Bera (JB) normality test 

shows that the hypothesis of normality of returns can be abandoned even when the level 

of significance is 1%. JB test-statistic has an asymptotic 2
 distribution with two degrees 

of freedom.  

The next in Table 1. is Box-Ljung test-statistic (Box-Ljung). It is used for the 

determination of autocorrelation of order m between squared data and has asymptotic 2
  

distribution with m degrees of freedom. Null hypothesis in this test implies that the first m 

autocorrelation coefficients of squared data are zero and it is abondoned here. Value m is 

chosen in several ways and in practice the best form is m  ln(T), where T is the number 

of data of the observed variable (Tsay, 2010). In our case, for m this value is 8.   

 

 

Fig. 1 Daily return of EPCG stock  

0 500 1000 1500 2000

-0
.4

0
.2

Index

e
p

c
g

Time

e
p

c
g

1

2004 2006 2008 2010 2012

-0
.4

0
.2



 Value at Risk Measuring and Extreme Value Theory: Evidence from Montenegro 183 

 

Fig. 2 Autocorrelation functions (ACF) and partial autocorrelations for EPCG series 

To determine the existence of time-changing variability, the same  Box-Ljung test-

statistic is used, but for squared residual series (McLeod and Li, 1983, Tsay 2010). 

Return residual is defined as the difference between return level and mean of the return, 

i.e. .t t ta r    For the return of  EPCG, first the serial correlation was determined 

according to Box-Ljung test-statistic for the return data, and the same statistic for squared 

residuals also shows high volatility.      

As daily return rate of EPCG stocks has an unstable variance, its dynamic is evaluated 

using GARCH model. Based on the specification analysis – sample functions of 

autocorrelation and partial correlation (Fig. 2) – it is estimated that the best model is 

ARMA(1,3). Volatility movement is well described by model GARCH(1,1).   

Jointly estimated  ARMA(1,3)-GARCH(1,1) model is: 

 1 1 2 3

2 2 2

1 1

0.000016929 0.99696 0,87183 0.17137 0.051543 ,

0.00018531 0.17587 0.74366 .

t t t t t t

t t t

r r a a a a

a 

   

 

      

  
  

All  model coefficients are already significant at significance level  1%, except free 

members in both equations, which are significant at level 10%.  

The tests of residual normality, autocorrelation and conditional heteroscedasticity are 

given in Table 2. Therefore, it can be observed that the chosen model, which was the best 

of all econometric models (not all parameters were significant within other models), 

describes volatility really well. However, GARCH model did not remove autocorrelation 

successfully, which can be seen from Box-Ljung test. Autocorrelation was reduced 

enough, which can be concluded based on the autocorrelation of standardized residuals 

function, Figure 3. 
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Fig. 3 Autocorrelation of standardized residuals function of model ARMA(1,3)-GARCH(1,1) 

 

Table 2 Tests of ARMA(1,3)-GARCH(1,1) models: test-statistic and p-value 

JB Box-Ljung Q(10) Box-Ljung (at
2
) LM ARCH Test 

75584.7 (0) 37.75 (4,2e-05) 4.2146 (0.937) 5.46 (0.94) 

Table 3. forecasts levels of return and volatility (conditional standard deviations) for 

one day time horizon, which are used for the assessment of VaR. The assessments are 

computed for level of confidence 95% and 99%.   

Interpretation of the obtained result for VaR is as follows: if one possesses some 

value of EPCG stocks (for example, 1000€), then the possible loss for the owner of 

stocks for a one-day period does not exceed 7.483% of the value (74.83 €) with 

probability 95%. With the 99% probability, the estimation of the maximum loss is 

10.65% of the value (106.5 €).  

Table 3 Econometric evaluation of VaR for a one-day period  (EPCG return) 

Return forecast Forecast of conditional st. dev. VaR (95%) VaR (99%) 

-0.00092457 0.04619341 7.483% 10.65% 

 

Riskmetrics method for the calculation of VaR assumes that conditional mean value 

is zero and that return volatility follows IGARCH(1,1) model. The adjusted model is 

 
2 2 2
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where t is standard Gaussian series of white noise. Q statistic for squared standardized 

residuals is rather low (0.0005967), but not statistically significant.  

According to the adjusted model, volatility forecast for one period in advance is 

ˆ(1) 0.04951,   so 95% quantile of conditional distribution is 1.65 0.04951 0.0816915.   

VaR for  95% probability, one period in advance, for the position of, for example, 1000 €, 

will be 
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 1000€ 0.0816915 81.6915€.VaR      

According to the same principle, 99% quantile is 2.326 0.04951 0.11516026,   so 

VaR, for the given probability is approximately 115.16€. 

Quantile assessment of VaR is obtained as empirical 99% quantile, with the value of 

daily return for EPCG is 14.64244%, which means if we possess 1000 € worth EPCG 

stocks, the loss in  one-day period does not exceed 146.4244 €, with 99% probability. 

The measure of expected shortfall for the same probability is 23.19685%, which means 

that if VaR is exceeded, for the same possession of 1000€ worth EPCG stocks, the loss 

expected in one-day period is 231.97 €. With confidence level 95%, VaR amounts to 

5.395%, and the measure of expected shortfall is 11.69%. 

The following is the evaluation of VaR based on the new approach of extreme value 

theory – peaks over threshold method. Negative logarithmic returns of EPCG stocks 

are observed, and according to literature for the series of stable returns, we usually 

choose 2.5% for threshold u. Fig. 4 shows, based on Q-Q plot, that the given returns 

derogate from normal distribution, so it is concluded that coefficient   0. Also, the 

graph of  mean excess function  is linear up to threshold level 3%.  

 

Fig. 4 Q-Q plot of excess over 2.5% threshold and mean excess function plot 

Table 4 Result assessments of two-dimensional Poisson model of EPCG daily negative 

log returns
1
 

Threshold Exceeding n n n 

3% 213 0.271 (0.084) 0.02 (0.0056) -0.0383 (0.012) 

2.5% 251 0.31 (0.078) 0.017 (0.04) -0.03058 (0.008) 

2% 315 0.437 (0.072) 0.0109 (0.002) -0.015 (0.0045) 
1
Standard assessment errors are given in parentheses. 

The set of extreme events exceeding the 2.5% threshold has 251 data. Based on this 

data set, the distribution of maximal negative logarithmic returns for EPCG stocks is 
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modeled. Table 4 contains the estimation of parameters ,  and  for the given data set, 

with the variation of threshold from 2% to 3%. Given parameters are used for the 

calculation of VaR and the adequacy of the given model can be based on plots which can 

be seen in Fig. 5.  

The four plots show good accomodation of generalized Pareto distribution to the data. 

Q-Q plot (lower right graph) shows slight derogations from the straight line, which is also 

confirmed by tail probability assessment on the logarithmic scale (lower left graph), 

leading to conclusion that the modelling is appropriate.   

Peaks over threshold method gives results for VaR and expected shortfall, summed up in 

Table 5. It is concluded that parameter results are more stable compared to econometric 

modeling (GARCH model and RiskMetrics), which shows parameter estimation variations 

depending on the choice of type of GARCH model (GARCH(1,1) or IGARCH(1,1)). It is 

evident here that results of VaR and expected shortfall differ less depending on different 

values of threshold excess, and with the same probability assessment. General conclusion is 

that this approach is superior to the econometric evaluation of VaR.  

 

Fig. 5 Plots of generalized Pareto distribution adjustment to EPCG daily negative log returns 

Table 5 Assessments of results of VaR and expected shortfall based on peaks over 

thresholds method 

Threshold p-value VaR Expected Shortfall 

2.5% 
0.05 0.05490012=5.49% 0.1185879=11.86% 
0.01 0.14661115=14.66% 0.2514971=25.15% 
0.001 0.389812=38.98% 0.603948=60.39% 

2% 
0.05 0.0526414=5.26% 0.1246470=12.46% 
0.01 0.1473389=14.73% 0.2927310=29.27% 
0.001 0.4724329=47.24% 0.8697588=86.98% 

3% 
0.05 0.05526823=5.53% 0.1179026=11.79% 
0.01 0.14737246=14.74% 0.2443104=24.43% 
0.001 0.37328683=37.33% 0.5543650=55.44% 
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Further, in order to compare the results, Value at Risk obtained using different 

calculation methods can be summed. If we possess 1000€ worth EPCG stocks, with 5% 

level of significance, meaning there is 95% probability the loss would be lower or the 

same as VaR for the following trading day, the parameter value is: 1) 74.83€ applying 

ARMA(1,3)-GARCH(1,1) model; 2) 81.6915€ applying RiskMetrics method; 3) 53.95€  

by quantile estimation, and 4) 54.9€ applying peaks over threshold method (threshold is 

2.5%). 

The corresponding parameter values with 1% probability are: 1) 106.5€ applying 

ARMA(1,3)-GARCH(1,1) model; 2) 115.16€ applying RiskMetrics method; 3) 146.4244€ by 

quantile estimation, and 4) 146.6€ applying peaks over threshold method (threshold is 

2.5%). 

Due to different treatment in the estimation of statistic distribution tail behavior, there 

are different results obtained as well. The result of econometric assessment (ARMA-

GARCH models and RiskMetrics), in case all assumptions for its applications are 

accomplished, depends on the chosen model. Therefore, it is necessary, as we have 

shown on the example, that a detailed analysis of the specification of potential models is 

the first phase in the performance of Value at Risk evaluation. It can be concluded that 

econometric estimation proved to be unstable, as they are on the upper bound at 5% 

significance level, and at 1% significance level they are on the lower bound of possible 

VaR movement interval.  

Further, the choice of tail distribution probability also has an important role in the 

calculation of VaR. The value of the observed sample of 2338 data may be considered 

big enough for empirical quantiles with 99% and 95% probability for giving good 

parameter estimation. For both levels of significance, quantile Value at Risk evaluation is 

very close to the assessment of the new approach of extreme value theory. We note that 

these two assessments at 1% significance level are on the upper bound of the possible 

VaR parameter range.  

Also, within the latter approach (Table 5), we can see that using a very low 0.1% 

probability, less reliable VaR evaluation are obtained. Therefore, that significance level 

was not used in other approaches.  

CONCLUSION  

Results of empirical analysis have multiple benefits. They show that the assessments 

of Value at Risk based on extreme value theory are better than econometric evaluations. 

It is obvious that econometric evaluations proved to be very unstable at the assessment of 

Value at Risk. Results showed that at 5% significance level, given evaluations are on the 

upper bound, and at 1% significance level, they are on the lower bound of possible Value 

at Risk movements. Therefore, it is not possible to say they either underestimate or 

overestimate the given parameter, but the estimation significantly changes depending on 

the level of confidence.  

Taking these results into account, a suggestion can be given to financial institutions to 

quantify risk using several methods: peaks over thresholds method (the latest approach of 

extreme value theory), historical evaluation (quantile) – for large samples, and 

RiskMetrics method (containing econometric method). For the purpose of simplicity, risk 

estimation can be focused on these three methods as they have been proven to be the best 
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regarding the range within which real value of VaR parameter can move. As it was said 

earlier, the real value of this parameter cannot be observed, so it is difficult to single out 

one estimation method as the best one. 

Furthermore, these results refer to Montenegrin stock market, that is small emerging 

economy and the results obtained in the analysis should be limited on emerging 

economies and financial markets that are still developing. These markets are 

characterized by a greater influence of internal trade and high volatility compared to 

developed countries, so evaluation of VaR with standard methods that assume a normal 

distribution is much more difficult.  Also, the observation period for measuring Value at 

Risk includes period of financial crisis, so that fact should be taken into account because 

of possible derogation of parameter results.  
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MERENJE PARAMETRA VREDNOSTI PRI RIZIKU I TEORIJA 

EKSTREMNIH VREDNOSTI: DOKAZ NA PRIMERU CRNE GORE 

Koncept vrednosti pri riziku je mera koja se sve više koristi za ocenu maksimalnog gubitka 

finansijske pozicije u određenom vremenskom periodu za datu verovatnoću. Cilj ovog rada je da 

pokaže najnovije pristupe merenja tržišnog rizika. Konkretno, rad ispituje da li je teorija 

ekstremnih vrednosti bolja od ekonometrijskog računanja VaR-a na berzanskim tržištima koja su u 

razvoju kao što je crnogorsko. Rad je motivisan željom da se riziku u Crnoj Gori posveti potrebna 

pažnja. Analiziran je dnevni prinos izraženo volatilne akcije EPCG (Elektroprivreda Crne Gore) sa 

Montenegroberze u periodu od januara 2004 do juna 2013. Ovakav uzorak i njegova vremenska 

dimenzija do sada nije razmatrana empirijski u literaturi. Stoga, neophodno je iskoristiti iskustva 

razvijenih svetskih finansijskih institucija koje studiozno pristupaju upravljanju rizikom, kao i 

najnovijih teorijskih znanja.  

Ključne reči: Teorija ekstremnih vrednosti, Vrednost pri riziku, teški repovi, GARCH model, 

prekoračenje iznad datog praga, generalizovana Pareto raspodela. 


