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Abstract. Reversible Computing circuits are characterized by low power consumption 

and their proximity to circuits for quantum computing. The Fredkin gate was one of the 

earliest proposed controlled reversible circuits, which however, was soon superseded by 

the Toffoli gate, the NOT, and CNOT gates, which constituting a flexible functionally 

complete set could also realize the Fredkin gate as a building block. In quantum computing 

circuits, the Fredkin gate (under the name controlled SWAP) plays an important role 

regarding the superposition of states. The present paper studies extensions of the Fredkin 

gate in terms of mixed polarity in the reversible domain and an application in quantum 

computing. 
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1. INTRODUCTION 

The earliest contributions to the development of reversible computing circuits may be traced 

back to E. Fredkin [6] and T. Toffoli [26] who introduced the first controlled reversible gates. 

A reversible gate realizes a bijection. Therefore, it does not lose information. If the outputs are 

known, then the inputs may be precisely recovered. The realization of reversible circuits as 

fanout-free and feedback-free cascades of reversible gates was stimulated by R. Landauer‘s 

Theorem [9] stating that erasing or deleting information in a circuit produces heat dissipation. 

Moreover, C. Bennet [2] showed that a computer could work with low power dissipation if all 

its circuits would be reversible. 

Since the early times most work on the synthesis of reversible circuits has been based 

on the set of gates {NOT, CNOT, Toffoli}, known as NCT, which is functionally complete. 

The symbols and functionality of these gates in a common environment of two (eventually) 

controlling lines and a target line are shown in Fig. 1.  
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Fig. 1 Symbols and functionality for the reversible gates NOT, Controlled NOT and Toffoli 

The NOT gate (represented with an EXOR symbol) is not controlled and acts directly on 

its target line. In the CNOT and Toffoli gates, control signals and target signals are 

distinguished. The NOT component acts on the target signal whenever the control signals have 

the value 1. Black dots identify which signal or signals are controlling the NOT component. 

The design of minimal Boolean circuits is known to be NP-complete, and the design  

of minimal reversible circuits is NP-Hard [20]. This has led to the development of different 

heuristics to synthesize reversible circuits [4], [17], [21], [24], [25], and also to post-

processing strategies to improve the minimization of circuits [19], [23]. 

In the last 25 years there have been important developments that have contributed to the 

improvement of the synthesis methods. Among the most relevant from the hardware point of 

view are the increasing speed of computers and the increasing size of memories. This has 

opened the possibility of including search [12], evolutionary algorithms [7], [8], [10] or SAT 

solvers [17] for the synthesis of reversible/quantum circuits. At the software side, the 

development of specialized efficient Libraries may be mentioned. At the level of gates, both the 

use of the value 0 for control signals identified by “white dots” [23], [14], frequently referred to 

as “mixed polarity”, and the use of disjoint control signals [13], [15] may be mentioned. In what 

follows, the “generalization” of Fredkin gates in the reversible domain and a relevant 

application in the quantum domain will be analyzed. It may be mentioned that in [5] the term 

“Generalized Fredkin Gate” is used, referring to Fredkin gates with multiple control lines. 

2. THE REVERSIBLE DOMAIN 

It is not known whether the Fredkin gate ever had an own representation symbol (other than 

a box with three inputs and three outputs). Possibly a first symbolic representation was introduced 

in [11], which has been later replaced by the symbol used in circuits for quantum computing, as 

in e.g. [5]. In the literature this gate appears frequently as a Toffoli and CNOTs building block, 

as shown in Fig. 2 (left). In what follows, this building block will frequently be called simply 

Fredkin “gate” and will be used to illustrate the effects of mixed polarity. At the output side, 

variables will have a prime apostroph sign. (Complemented variables, on the other hand,  will 

have a dash over their names, as frequently used in switching theory.)  In the Barenco et al. based 

quantum model [1], Fig. 2 (right), a white box represents a V gate, whose functionality equals 

the square root of NOT and the box with a diagonal represents the adjoint of V. 

 

Fig. 2 Representation of the Fredkin gate as an NCT  building block with positive control 

(left) and its Barenco et al. based quantum model (right) 



 The Fredkin Gate in Reversible and Quantum Environments 255 

The functionality of the building block representing the Fredkin gate is given by: 
 

𝑐3
′ = 𝑐3 ⨁ 𝑐1(𝑐2 ⨁ 𝑐3) =  𝑐3 ⨁ 𝑐1𝑐2 ⨁ 𝑐1𝑐3 = 𝑐1𝑐2 ⨁ 𝑐1̅𝑐3, 

 𝑐2
′ = 𝑐2 ⨁ 𝑐3 ⨁ 𝑐3

′  =  𝑐2 ⨁ 𝑐3 ⨁ 𝑐1𝑐2 ⨁ 𝑐1̅𝑐3  =  𝑐1̅𝑐2 ⨁ 𝑐1𝑐3,  (1) 

                                                                𝑐1
′ = 𝑐1 .                                                        

Equations (1) may be expressed in the following summary: 

 

 c1 = 0 c1 = 1 

c2’ c2 c3 

c3’ c3 c2 

 

The tableau expressed in words means that whenever c1 has the value 0, the Fredkin 

gate behaves as an identity, whereas when c1 has the value 1, then the target signals c2 and 

c3 are exchanged. This means that the Fredkin gate behaves as a “controlled SWAP” 

although this name is hardly used in the community working on reversible circuits. 

An important property of the Fredkin gate is its completeness.In (1), let c2 = 1. Then: 

c2’ = 𝑐1̅ ⊕ 𝑐1𝑐3 = 1 ⊕ 𝑐1 ⨁𝑐1𝑐3 = 1 ⨁ 𝑐1𝑐3̅ = 𝑐1̅ ∨ 𝑐3 = 𝑐1 → 𝑐3 

On the other hand, if for some x  𝑐1 → (𝑥 → 0) then 𝑐1 → (�̅�  ∨ 0) = 𝑐1 → (�̅�) =
          �̅�1 ∨ �̅� =   𝑐1𝑥̅̅ ̅̅  = NAND(𝑐1, 𝑥). 

Since NAND is functionally complete, so is also Fredkin complete. 

A different formal representation of the Fredkin gate, appropriate to determine e.g. the 

performance of  (simulated) circuits [28], is that of a transfer matrix. 

                                                                            c1  c2  c3        c1’c2’c3’ 

                                

[
 
 
 
 
 
 
 
1 0
0 1

0 0
0 0

0 0
0 0

1 0
0 1

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

1 0
0 0

0 0
1 0

0 1
0 0

0 0
0 1]

 
 
 
 
 
 
 

∙

[
 
 
 
 
 
 
 
0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1
1

1
1

0
1]
 
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 
0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 1 0
1
1

0
1

1
1]
 
 
 
 
 
 
 

 . (2) 

Equation (2) shows a Fredkin-Matrix as a blockdiag(I4, SWAP), where I4 denotes the 

4⨯4 identity matrix. It becomes clear that the product of the Fredkin-Matrix with a matrix 

of all possible inputs preserves c1, c2 and c3 when c1 = 0, since the I4 submatrix is active 

and  c1’c2’c3’ = c1 c3 c2 when c1 = 1, since then the SWAP submatrix is active. 

If a white dot is placed on the c1 line of the original Fredkin gate, it is fairly obvious, 

that this will change the polarity of the control. The gate will become active when  c1 = 0 

and it will remain inhibited, behaving  as an identity, when  c1 = 1. 

The circuit and the quantum model of a Fredkin gate, which is active when the control 

signal c1 has the value 0 is shown in Fig. 3, where the quantum model uses the same two-

qubit-gates as in Fig. 2, but in a different order. 

=  
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Fig. 3 A Fredkin gate with negative control and its quantum model 

Since the quantum cost of a reversible gate is obtained as the gate count of the Barenco 

et al. quantum model of the gate [22], [27], it becomes apparent that Fredkin gates with 

positive or negative control have the same quantum cost of 7. 

A set of new behaviors is obtained if white dots are introduced in the lines c2 or c3, 

indicating that a signal is effective if it has the value 0. A first pair of equivalent variations 

is shown in Fig. 4. 

                              

Fig. 4 Fredkin gate equivalent variations 

The functionality of the building block at the left of Fig. 4 is given by: 

 

𝑐3
′ = 𝑐3  ⊕ 𝑐1(𝑐3̅  ⊕ 𝑐2) =  𝑐3  ⊕ 𝑐1𝑐3̅  ⊕ 𝑐1𝑐2 = 1 ⊕ 𝑐3̅  ⊕  𝑐1𝑐3̅  ⊕ 𝑐1𝑐2 = 

                                                   = 1 ⊕ 𝑐1̅𝑐3̅  ⊕ 𝑐1𝑐2, (3) 

𝑐2
′ = (𝑐3  ⊕ 𝑐2)  ⊕ 𝑐3

′ = 1 ⊕ 𝑐3  ⊕ 𝑐1̅𝑐3̅  ⊕ 𝑐2   ⊕ 𝑐1𝑐2 = 𝑐1̅𝑐2  ⊕ 𝑐1𝑐3̅, 

                                                             𝑐1
′ = 𝑐1 .                                                             

Equations (3) may be summarized as follows: 

 

In words: If c1 = 0 the building block behaves as an identity and if c1 = 1 both targets 

will be exchanged and complemented. 

It is straightforward to show that the gate at the right of Fig. 4 has the same functionality. 

Further variations, and eventually their equivalent NCT reversible circuits are analyzed below. 

 

Fig. 5 Second Fredkin gate variation 

 

V V  

c1 

c2 

c3 

c1‘ 

c2‘ 

c3‘ 



 The Fredkin Gate in Reversible and Quantum Environments 257 

The functionality of the building block of Fig. 5 is given by: 

𝑐3
′ = 𝑐3  ⊕  𝑐1(𝑐2  ⊕ 𝑐3̅) =  1 ⊕ 𝑐3̅  ⊕  𝑐1𝑐2  ⊕ 𝑐1𝑐3̅ = 𝑐1𝑐2  ⊕ 𝑐1̅𝑐3̅  ⊕ 1, 

        𝑐2
′ = 𝑐2  ⊕  𝑐3̅  ⊕ 𝑐3

′ =  𝑐2  ⊕ 𝑐1𝑐2  ⊕ 𝑐3̅  ⊕ 𝑐1̅𝑐3̅  ⊕ 1 =  𝑐1̅𝑐2 ⊕ 𝑐1𝑐3̅  ⊕ 1,  (4) 

                𝑐1
′ = 𝑐1.                                                         

Equations (4) may be summarized as follows: 

 

In words: If c1 = 0 then c2 will be complemented and c3 will be preserved. If c1 = 1 then 

the complement of c2, and c3 will be swapped.  

A third variation is shown in Fig. 6. 

 

Fig. 6 Third variation of the Fredkin gate 

The functionality of the building block of Fig. 6 is given by: 
 

𝑐3
′ = 𝑐3 ⨁ 𝑐1(𝑐2 ⨁𝑐3) =  𝑐1𝑐2  ⨁ 𝑐1𝑐3 ⨁𝑐3 = 𝑐1𝑐2  ⨁ 𝑐1̅𝑐3, 

                 𝑐2
′ = (𝑐2  ⊕ 𝑐3)  ⊕ (𝑐3

′  ⊕  1) =  𝑐2  ⊕ 𝑐3  ⊕  𝑐1𝑐2  ⨁ 𝑐1̅𝑐3  ⊕  1 = (5) 

=  𝑐1̅𝑐2  ⊕  𝑐1𝑐3 ⊕  1, 
                                                                      𝑐1

′ = 𝑐1 .   

Equations (5) may be summarized as follows: 

 

In words: If c1 = 0 then c3 will be preserved, but c2 will be complemented. If c1 = 1 then 

the signal c3 will be complemented and swapped with c2.  

From all former variations follows that a variation comprising two white dots at the 

bottom and a white dot at the center of the middle line will have the same functionality as 

the original Fredkin gate. This is illustrated in Fig. 7. 

 

Fig. 7 Equivalent Fredkin gates 
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For the same reasons, the following variations on the Fredkin gate are equivalent, as 

illustrated in Fig. 8. 

         

Fig. 8 Further equivalence of Fredkin variations 

An additional way of introducing variations on the Fredkin gate consists of replacing 

the classical Toffoli gate with a disjunct controlled Toffoli gate [13], [15] possibly called 

“OR-Toffoli”. For this gate, up-side-down triangles –(black or white)– are used instead of 

dots to identify the effectivity of driving control signals with value 1 and 0, respectively. 

Up-side-down triangles are used, based on their similarity with “”, the disjunction symbol 

in mathematical logic. 

A different variation, based on the OR-Toffoli gate, is shown in Fig. 9 and may be 

called “OR-Fredkin”. Notice that the quantum model based on [1] does not use an adjoint 

V gate, but otherwise it uses the same gates as in the quantum model of the classical Fredkin 

gate. Therefore, it has the same quantum cost, 7. 

                     

Fig. 9 The OR-Fredkin gate and its quantum model  

The functionality of the building block of Fig. 9 (left) is given by: 

𝑐3
′ = 𝑐3  ⊕ (𝑐1  ∨ (𝑐2  ⊕ 𝑐3)) =  𝑐3  ⊕ 𝑐1  ⊕ 𝑐2  ⊕ 𝑐3  ⊕  𝑐1(𝑐2  ⊕ 𝑐3) = 

          =  𝑐1  ⊕ 𝑐2  ⊕ 𝑐1(𝑐2  ⊕ 𝑐3) =  𝑐1  ⊕  𝑐2  ⊕ 𝑐1𝑐2  ⊕  𝑐1𝑐3 = 𝑐1̅𝑐2 ⊕ 𝑐1𝑐3̅,  (6) 

 𝑐2
′  = 𝑐3  ⊕ 𝑐2  ⊕ 𝑐3

′ =  𝑐3  ⊕ 𝑐2  ⊕ 𝑐1̅𝑐2 ⊕ 𝑐1𝑐3̅ =  1  ⊕  𝑐1̅𝑐3̅  ⊕ 𝑐1𝑐2, 

                                                              𝑐1
′ = 𝑐1.                                                           

Equations (6) may be summarized as follows: 

 c1 = 0 c1 = 1 

c2’ 𝑐3 𝑐2̅ 

c3’ 𝑐2 𝑐3̅ 

 

An equivalent NCT circuit may be obtained, as shown in Fig. 10, where the two gates 

in the middle have the functionality of the OR-Toffoli gate. 

 

Fig. 10 An NCT equivalent circuit for the OR-Fredkin gate 
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Another variation is illustrated in Fig. 11, where for an OR-Toffoli gate, a white dot at 

the input side is introduced. 

 

Fig. 11 A simple variation of the OR-Fredkin gate 

The functionality of the building block of Fig. 11 is given by: 

𝑐3
′ = 𝑐3  ⊕ (𝑐1  ∨ (𝑐2  ⊕ 𝑐3̅)) =  𝑐3  ⊕ (𝑐1  ⊕ (𝑐2  ⊕ 𝑐3̅)  ⊕ 𝑐1(𝑐2  ⊕ 𝑐3̅)) = 

= 𝑐3  ⊕ 𝑐1  ⊕ 𝑐2  ⊕  𝑐3̅  ⊕ 𝑐1(𝑐2  ⊕ 𝑐3̅) = 1 ⊕ 𝑐2  ⊕ 𝑐1(𝑐2  ⊕ 𝑐3) =  

                                                          = 1 ⊕ 𝑐1̅𝑐2  ⊕  𝑐1𝑐3 , (7) 

𝑐2
′ = 𝑐2 ⊕ 𝑐3̅  ⊕ 𝑐3

′ = 𝑐2 ⊕ 𝑐3̅  ⊕  1 ⊕ 𝑐1̅𝑐2  ⊕ 𝑐1𝑐3 = 𝑐1𝑐2  ⊕ 𝑐1̅𝑐3 , 

                                                               𝑐1
′ = 𝑐1.                                                            

Equations (7) may be summarized as follows: 

 c1 = 0 c1 = 1 

c2’ 𝑐3 𝑐2 

c3’ 𝑐2̅ 𝑐3̅ 

In words: If c1 = 0 then c2 will be complemented and swapped with c3, whereas if  c1 = 

1 there will be no swapping, but c3 will be complemented. Fig. 12 shows an equivalent 

NCT circuit for the modified Fredkin gate of Fig. 11. 

 

Fig. 12 Equivalent (more complex) NCT circuit for the gate of Fig. 11 

Two equivalent variations are shown in Fig. 13, with a different distribution of the 

white dots/triangle. 

        

Fig. 13 Equivalent variations of the OR-Fredkin gate 

The functionality of the building block at the left of Fig. 13 is given by: 

𝑐3
′ = 𝑐3  ⊕ 𝑐1  ∨ (𝑐2  ⊕ 𝑐3) =  𝑐1 ⊕ 𝑐2  ⊕ 𝑐1𝑐2  ⊕ 𝑐1𝑐3 = 𝑐1̅𝑐2  ⊕ 𝑐1𝑐3̅ , 

          𝑐2
′ = 𝑐2  ⊕ 𝑐3  ⊕ 𝑐3

′  ⊕ 1 =  𝑐2  ⊕  𝑐3̅  ⊕ 𝑐1̅𝑐2  ⊕  𝑐1𝑐3̅ = 𝑐1𝑐2  ⊕ 𝑐1̅𝑐3̅ ,  (8) 

                                                               𝑐1
′ = 𝑐1.                                                         
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Equations (8) may be summarized as follows: 

 c1 = 0 c1 = 1 

c2’ 𝑐3̅ 𝑐2 

c3’ 𝑐2 𝑐3̅ 

In words: c3 will be complemented and  if c1 = 0 then  it will be swapped with c2. If 

c1 = 1 then no swapping takes place. It is simple to show that the circuit shown at the right 

of Fig. 13 has the same functionality. An NCT circuit equivalent to the variation, is shown 

in Fig. 14. It may be seen that its quantum cost [22], [27] and depth is higher by 1 with 

respect to the variations in Fig. 13. 

 

Fig. 14 Equivalent NCT circuit of the OR-Fredkin variation of Fig. 13 

Another variation is possible, with both bottom dots white, as shown in Fig. 15. 

 

Fig. 15 Another OR- Fredkin variation 

The functionality of the building block of Fig. 15 is given by: 

𝑐3
′ = 𝑐3  ⊕ 𝑐1 ∨ (𝑐2 ⊕ 𝑐3̅) =  𝑐3  ⊕ 𝑐1 ⊕ (𝑐2 ⊕ 𝑐3̅)  ⊕ 𝑐1(𝑐2 ⊕ 𝑐3̅) = 

              = 1 ⊕ 𝑐1 ⊕ 𝑐2 ⊕ 𝑐1𝑐2  ⊕ 𝑐1𝑐3̅ = 𝑐1̅𝑐2  ⊕ 𝑐1𝑐3  ⊕ 1 =  𝑐1̅𝑐2̅   ⊕ 𝑐1𝑐3̅ ,   (9) 

𝑐2
′ =  (𝑐2 ⊕ 𝑐3̅)  ⊕ 𝑐3

′   ⊕ 1 =  𝑐2 ⊕ 𝑐3̅  ⊕ 𝑐1̅𝑐2  ⊕ 𝑐1𝑐3 =  
= 𝑐1𝑐2  ⊕ 𝑐1̅𝑐3 ⊕ 1 = 𝑐1𝑐2̅  ⊕  = 𝑐1̅𝑐3̅ , 

                                                                𝑐1
′ = 𝑐1  .                                                       

      

Equations (9) may be summarized as follows: 

 c1 = 0 c1 = 1 

c2’ 𝑐3̅ 𝑐2̅ 

c3’ 𝑐2̅ 𝑐3̅ 

In words: If c1 = 0 then 𝑐2 and 𝑐3 will be complemented and swapped, whereas if 𝑐1 = 

1, 𝑐2 and 𝑐3  will be just complemented. 

Equivalent circuits not using OR-Fredkin variations are shown in Fig. 16. It is easy to 

see that these equivalent NCT circuits are more complex than the OR-Fredkin variation. 
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Fig. 16 Equivalent NCT circuits for the OR-Fredkin variation of Fig. 15 

Another variation is shown in Fig. 17, where in analogy to the white dot, a white 

triangle is introduced, meaning that the corresponding control signal will be complemented 

before calculating the disjunction. 

 

Fig. 17 A mixed-polarity OR-Fredkin variation 

The functionality of the building block of Fig. 17 is given by: 

𝑐3
′ = 𝑐3  ⊕ (𝑐1 ∨ (𝑐3  ⊕ 𝑐2  ⊕ 1)) =  𝑐3  ⊕ 𝑐1 ⊕ 𝑐3 ⊕ 𝑐2̅  ⊕ 𝑐1(𝑐3̅ ⊕ 𝑐2) =  

                                          𝑐1(𝑐3̅  ⊕ 𝑐2̅) ⊕ 𝑐2̅ =  𝑐1𝑐3̅ ⊕ 𝑐1̅𝑐2̅ , (10) 

𝑐2
′ = 𝑐2 ⊕ 𝑐3 ⊕ 𝑐3

′ = 𝑐2 ⊕ 𝑐3 ⊕ 𝑐1𝑐3̅ ⊕ 𝑐1̅𝑐2̅ = 𝑐1̅𝑐3̅ ⊕ 𝑐1𝑐2̅ , 

                                                               𝑐1
′  = 𝑐1 .                                                         

Equations (10) may be summarized as follows: 

 c1 = 0 c1 = 1 

c2’ 𝑐3̅ 𝑐2̅ 

c3’ 𝑐2̅ 𝑐3̅ 

It becomes apparent that equations (9) and (10) are equal. This means that the 

corresponding OR-Fredkin variations are equivalent. Moreover, it may be noticed that the 

distribution of “white elements” in these variations is the same as the distribution of white 

dots shown in Fig. 4 for variations of the classical Fredkin gate. 

An additional OR-Fredkin variation is shown in Fig. 18. 

 

Fig. 18 OR-Fredkin variation 

The functionality of the circuit is: 

𝑐3
′ = 𝑐3  ⊕ (𝑐1  ∨ (𝑐2 ⊕ 𝑐3̅)) =  𝑐3  ⊕ 𝑐1 ⊕ 𝑐2 ⊕ 𝑐3̅ ⊕ 𝑐1(𝑐2 ⊕ 𝑐3̅) = 

                                = 1 ⊕ 𝑐1 ⊕ 𝑐2 ⊕ 𝑐1𝑐2 ⊕ 𝑐1𝑐3̅ = 𝑐1𝑐3 ⊕ 𝑐1̅𝑐2 ⊕ 1 , (11) 

𝑐2
′ = 𝑐2 ⊕ 𝑐3 ⊕ 𝑐3

′ ⊕ 1 = 𝑐2 ⊕ 𝑐3  ⊕ 𝑐1𝑐3 ⊕ 𝑐1̅𝑐2 = 𝑐1𝑐2 ⊕ 𝑐1̅𝑐3 , 
                                                                  𝑐1

′ = 𝑐1 .                                                     
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Equations (11) may be summarized as follows: 

 c1 = 0 c1 = 1 

c2’ 𝑐3 𝑐2 

c3’ 𝑐2̅ 𝑐3̅ 

It may be seen, that Eqs. (7) and (11) are equal. Therefore, the corresponding Fredkin 

variations are equivalent. They have the same distribution of white elements as the 

variations shown in Fig. 8. The comparison is shown in Fig. 19. 

 

Fig. 19 Pairs of equivalent Fredkin variations 

3. THE QUANTUM DOMAIN 

In the domain of circuits for quantum computing, the Fredkin gate is not known under 

this name, but as “controlled SWAP”, possibly because in the case of quantum circuits 

there is a very simple symbol for the swap of two “qubits” (= quantum bits). (See Fig. 19). 

Without knowing whether in some “quantum technology” the controlled SWAP is also 

realized as in the reversible domain, i.e. CNOT-Toffoli-CNOT, no variations as presented 

in the former section will be discussed. However, some changes in the surroundings of the 

controlled SWAP may be considered. 

A relevant example of an effective use of the controlled SWAP was introduced in [3] 

to efficiently determine whether two qubits are equal or have an inner product with absolute 

value ≥  a threshold in [0, 1].  (See Fig. 20).  A detailed analysis follows. In the Dirac 

notation [16], let |0〉 and |1〉 be the basis states of the working Hilbert space [16]. Let 

|〉 denote the state of a control  qubit and let H  denote the Hadamard gate 
𝟏

√𝟐
[
𝟏    𝟏
𝟏 −𝟏

].  

     If |〉 = |0〉 = [ 1 0 ]T (in the vector notation), then : 

                                      𝑯|0〉 =   
𝟏

√𝟐
[1    1
1 −1

].[
1
0
] =  

𝟏

√𝟐
[
 1
1
] =  

𝟏

√𝟐
(|0⟩ + |1⟩).   (12)             

     This represents a superposition of states and a quantum circuit will work in both states 

simultaneously, which is one of the main characteristics of circuits for quantum computing. 

 

Fig. 20 Circuit to compare two qubits, in the dotted box, the symbol for the controlled SWAP 
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At the output side the circuit of Fig. 20, produces 

                         (H ⊗ I4)(C SWAP)(H ⊗ I4) |0〉|〉〉 ,                       (13) 

where I4 represents the 4⨯4 Identity matrix. 

 

Lemma 1: The output of the circuit of Fig. 20 is given by:                               

                              (1/2)[ |0〉(|〉〉 + 〉|〉) + |1〉(|〉〉 – 〉|〉) ].                              (14) 

Proof:  

Considering the most general case, let |〉 = (0〉 + |1〉), with ||2 + ||2 = 1 and 

〉 = (0〉 + |1〉), with |2 + |2 = 1. 

 

Recall that SWAP = [

1 0
0 0

0 0
1 0

0 1
0 0

0 0
0 1

]  and let Q = (H ⊗ I4)(C SWAP)(H ⊗ I4). 

Let S stand for SWAP. Then 

              Q = 
1

√2
 [
I4     I4
I4 −I4

] ⋅ [
I4 04

04 S
] ⋅  

1

√2
[
I4     I4
I4 −I4

] =  
1

2
 [
I4    S
I4 −S

] ⋅ [
I4     I4
I4 −I4

] =      

                   = 
1

2
 [
I4 + S I4 − S
I4 − S I4 + S

].                                                                               (15) 

Moreover, 

                           |〉〉 = [  ]T ⊗ [ ]T = [                      () 

                           〉|〉 = [ ]T ⊗ [ ]T = [                     () 

Therefore, 

    |〉〉 + 〉|〉 =  

               = [(  + )  (  +  )  (  +  )   (  +  )          (18) 

    |〉〉 – 〉|〉 =  

               = [(  – )   (  –  )   (  –  )    (  –  )         (19) 

Since  and  are possibly complex values, the products   and  are commutative. 

Therefore, the first and last components of the vector in (18) equal 2 and 
2 respectively, and the first and last components of the vector in (19) equal 0. Therefore, 

            |〉〉 + 〉|〉 = [(2  )  (  +  )  (  +  )  ()         (20) 

            |〉〉 –  〉|〉 = [       0         (  – )   (  –  )                        (21) 

To calculate Q |0〉|〉〉 the explicit expression for (15) will be needed, where “T” will 

be used to represent –1 and preserve the format of the matrix. 
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      Q |0〉|〉〉 = 
1

2

[
 
 
 
 
 
 
2 0

0 1

0 0

1 0
0 1

0 0

1 0

0 2

0 0

0 1

0 0

𝐓 0
0 𝐓

0 0

1 0

0 0
0 0

0 1

0 0

𝐓 0
0 𝐓

0 0

1 0

0 0

2 0

0 1

0 0

1 0
0 1

0 0

1 0

0 2]
 
 
 
 
 
 

⋅

[
 
 
 
 
 
 
 
𝛼1𝛼2

𝛼1𝛽2

𝛽
1
𝛼2

𝛽
1
𝛽

2

0

0
0

0 ]
 
 
 
 
 
 
 

 = 
1

2
 

[
 
 
 
 
 
 
 

2𝛼1𝛼2

𝛼1𝛽2 + 𝛽1𝛼2 
𝛼1𝛽2 + 𝛽1𝛼2

2𝛽1𝛽2

0
𝛼1𝛽2 − 𝛽1𝛼2

−𝛼1𝛽2 + 𝛽1𝛼2

0 ]
 
 
 
 
 
 
 

  .           (22) 

The resulting vector in (22) may be additively divided into two vectors as follows:  

                      
1

2
 

[
 
 
 
 
 
 
 

2𝛼1𝛼2

𝛼1𝛽2 + 𝛽1𝛼2 
𝛼1𝛽2 + 𝛽1𝛼2

2𝛽1𝛽2

0
𝛼1𝛽2 − 𝛽1𝛼2

−𝛼1𝛽2 + 𝛽1𝛼2

0 ]
 
 
 
 
 
 
 

      = 
1

2

(

 
 
 
 
 

[
 
 
 
 
 
 
 

2𝛼1𝛼2

𝛼1𝛽2
+ 𝛽

1
𝛼2 

𝛼1𝛽2
+ 𝛽

1
𝛼2

2𝛽
1
𝛽

2

0

0
0

0 ]
 
 
 
 
 
 
 

+ 

[
 
 
 
 
 
 
 

0

 0 
0

0
0

𝛼1𝛽2
− 𝛽

1
𝛼2

−𝛼1𝛽2
+ 𝛽

1
𝛼2

0 ]
 
 
 
 
 
 
 

)

 
 
 
 
 

 .            (23) 

From Eq. (21), with (18.b) and (19.b) follows that the first vector of (21) equals  

(1/2)|0〉( |〉〉 + 〉|〉 ) 

and the second vector of (21) equals 

n(1/2)|1〉( |〉〉 – 〉|〉 ). 

This ends the proof that 

Q |0〉|〉〉 =   (1/2)[ |0〉(|〉〉 + 〉|〉) + |1〉(|〉〉 – 〉|〉) ] .              

□ 

Notice that if (|〉 = 〉) then (|〉〉 = 〉|〉) and (|〉〉 – 〉|〉) = 0. This means 
that in this case, |1〉 would be measured with probability 0, whereas |0〉 would be measured 

with a non-zero probability. The equality of two state vectors may be obtained in one step, 

whereas a classical algorithm would require two comparisons. 

A possible “variation” may consider |〉 = |1〉 = [ 0  1 ]T (in the vector notation), then  

                                      𝑯|1〉 =   
𝟏

√𝟐
[1    1
1 −1

].[
0
1
] =  

𝟏

√𝟐
[
   1
−1

] =  
𝟏

√𝟐
(|0⟩ − |1⟩).                       (24) 

Lemma 2: If in the circuit of Fig.  20  |〉 is set to  |1〉, then  

Q|1〉|〉〉 = (1/2)[(|0〉(|〉〉 – 〉|〉) + |1〉(|〉〉 + 〉|〉)]. 

Proof: At the output side the circuit with |〉 = |1〉 now gives 

(H ⊗ I4)(C SWAP)(H ⊗ I4) |1〉|〉〉 = Q|1〉|〉〉 = 

= Q([ 0  1]T  ⊗ [            ) = 
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                        = 
1

2

[
 
 
 
 
 
 
2 0

0 1

0 0

1 0
0 1

0 0

1 0

0 2

0 0

0 1

0 0

T 0
0 T

0 0

1 0

0 0
0 0

0 1

0 0

T 0
0 T

0 0

1 0

0 0

2 0

0 1

0 0

1 0
0 1

0 0

1 0

0 2]
 
 
 
 
 
 

⋅

[
 
 
 
 
 
 
 

0

0
0

0
𝛼1𝛼2

𝛼1𝛽2

𝛽
1
𝛼2

𝛽
1
𝛽

2]
 
 
 
 
 
 
 

 = 
1

2
 

[
 
 
 
 
 
 
 

0
𝛼1𝛽2 − 𝛽1𝛼2

−𝛼1𝛽2 + 𝛽1𝛼2

0
2𝛼1𝛼2

𝛼1𝛽2 + 𝛽1𝛼2

𝛼1𝛽2 + 𝛽1𝛼2

2𝛽1𝛽2 ]
 
 
 
 
 
 
 

  .              (25) 

As in the former case, (recall Eq. (23)), the final vector of Eq. (25) may be split into 

two components associated to |0〉 and |1〉 respectively, leading to: 

                      Q|1〉|〉〉 = (1/2)[(|0〉(|〉〉 – 〉|〉) + |1〉(|〉〉 + 〉|〉)] .               (26) 

In this case, if |〉 = 〉, |0〉 would be measured with probability 0. 

A (pseudo) variation may be introduced if a signal, not the Controlled SWAP, is 

modified. Recall that the Pauli X matrix [18] equals [
0 1
1 0

]  and behaves as a quantum inverter. 

It is fairly obvious that if Pauli X gates are included, as shown in Fig. (21), then the 

complement of |〉 will be compared with 〉, which is equivalent to compare |〉 with the 

complement of 〉. 

 

Fig. 21. Modified swap test circuit to compare one state with the complement of 

another. 

The modified swap test may be expressed as: 

                                        (H ⊗ X ⊗ I2)(C SWAP)(H ⊗ X ⊗ I2) |0〉|〉〉. (27) 

The proof of effectiveness, i.e. measuring 〉 with probability 0, follows the same steps 

as in the former first case. 

4. CONCLUSIONS 

Variations on the Fredkin gate, based on mixed polarity, have been analyzed in the 

reversible domain. The OR-Fredkin gate is introduced and in all shown variation cases 

their circuits showed a lower complexity (quantum cost [22], [27], i.e. number of 

elementary gates on two qubits in the quantum model, and depth) than equivalent classical 

NCT circuits. A wide range of functionalities of the Fredkin gate under mixed polarity were 

shown, thus adding flexibility to the design of reversible circuits.  Some equivalent 

variations were found and associated patterns of distribution of the white elements could 

be detected. In the quantum domain an application of the Controlled SWAP to efficiently 

test whether two states are equivalent was given a step by step calculation of behaviour and 

one possible extension of the test circuit was shown.  

• 
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