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THZ TECHNOLOGY FOR VISION SYSTEMS
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Abstract. The THz radiation brings new technology challenges and new opportunities 

to overcome some of the current application obstacles. In the paper a portable THz 

system is presented operating at room temperature. The presented solution is robust 

and inexpensive, convenient for many applications. The THz sensor fabricated at the 

Faculty of Electrical Engineering in the Laboratory for Microelectronics is currently 

one of the best sensors in its frequency operating range. It reaches sensitivity up to 

1000V/W and NEP down to 5pW/√Hz in vacuum. With the proposed system solution 

variety of application can be covered. Some imaging results captured with the proposed 

system at different stand-off distances are shown in the paper. 
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1. THZ TECHNOLOGY 

Nowadays many kinds of material inspection systems that are used, for example in 

the semiconductor industry, paper industry, medical and security applications, or many 

other see-through systems are based on X-ray techniques. As X-rays are ionizing and thus 

extremely harmful for biological tissue, their usage is area and time limited. Therefore, 

new technologies and non-destructive methods emerging especially for biological tissues 

are used.  

THz technology promises suitable substitution, as it is nonionizing and comprises 

some other new properties which are available only in the THz frequency region of the 

electromagnetic spectrum. THz waves propagate through different non-metal materials 

such as plastics, clothes, paper, ceramics, some thermal insulation materials, and also dry 

wood. Furthermore, very good reflection can be obtained by flat surfaces, and especially 

from metals. The main obstacle is humidity, which brings very high attenuation in the 

THz spectral range. Air humidity absorbs THz radiation and makes THz waves improper 

for use at long stand-off distances. It was also shown that when THz waves propagate 

through or reflect from different materials, especially drugs and explosives, a specific 

fingerprint of each material can be recognized. All of these facts open a lot of new 
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possibilities of THz waves usage in e.g. material quality control, the pharmaceutical 

industry, medical imaging, and security – which is one of the most emerging fields. 

Generally, there are two approaches of generation and detection of THz waves. First 

is the electro-optical approach, which is based on an ultra-short laser pulse, where the 

pulse width is in the femtosecond range. Such a pulse illuminates a special crystal or 

semiconductor material and an electromagnetic wave in the THz region is emitted. The 

same material can also be used for detection. The TDS principle is mostly used for 

spectroscopy, but imaging can also be done. Imaging is very time consuming, as systems 

consist of one source and only one detector. With such setups, frequencies from hundreds 

of GHz to up to 8 THz and above can be achieved in the power range of microwatts.  

The second is the microwave approach, where signals are generated at frequencies as 

low as 10 GHz with discrete RF components. With these techniques continuous wave 

signals with frequencies up to 1.2 THz can be generated. The typical power at 300 GHz 

can reach up to 20 milliwatts. Commonly used detectors are Schotkey diodes and 

bolometers with an antenna, where an incident wave causes a temperature change of the 

detector. Such detectors are small enough and can be merged into arrays, and can be 

integrated into systems used for imaging. It should be noted that spectroscopy is also 

emerging as a future application. 

1.1. Time domain THz spectroscopy system 

An optical approach of THz generation and detection is used in many different types 

of Time domain spectroscopy (TDS) THz systems. The common base of all is to split a 

femtosecond laser beam into two signals. One is used for THz wave generation and the 

second, also named a probing signal, is used for THz pulse reconstruction on the detector.  

For generation and detection of THz waves various methods are used, such as 

photoconductive generation and optical rectification. To reconstruct the whole THz pulse, 

the probing signal has to be time shifted over the whole THz pulse. This is done by a 

probing signal delay with a motorized optical delay line. When using photoconductive 

generation and detection, signals have to coincide directly on the detector itself. In the 

case when the optical rectification detection method is used, both signals have to coincide 

on the crystal, where the probing signal is polarized according to the incident THz pulse 

intensity. The difference in polarization gives THz signal strength information.  

At first, THz time domain spectroscopy setups were mostly built on optical tables, 

where various optical components such as beam splitters and focusing parabolic mirrors 

could be easily adjusted. Such systems are very sensitive to mechanical stress and also 

the samples have to be small enough to fit into the measurement place in the system. 

They operated mostly in the transmission mode. To change to reflection mode usually big 

part of the setup had to be changed. To obtain a visual THz image, a sample had to be 

moved with implemented translation stages. Therefore, new systems were built using 

fiber optics to improve the flexibility of measurements. Now both main and probing laser 

signals can be transferred to a remote distance of few meters using fiber optics, and THz 

pulses are generated at the remote location. This allows THz response measurements of 

larger objects. Also, the reconstructing of a visual THz image can be easily done with 

transmitting and receiving THz heads mounted on to the translation stages. 
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1.2. Continuous wave THz systems 

The main THz core of a continuous wave (CW) THz source is a few GHz voltage 

controlled oscillator with a precise PLL loop to achieve low phase noise and enough 

output power. Normally the chosen basic frequency is 12.5GHz, which can be easily 

multiplied to several hundreds of GHz. During multiplication, which means higher 

harmonics filtration and amplification, the main issue is to keep low phase noise and to 

achieve high output power. The power on the output horn antenna is usually up to 100 

milliwatts and is highly dependent on number of multiplications. With electronics sources 

a frequency of up to 1THz can be reached, which is highly suitable for 2D and 3D 

imaging. For a detector, many sensors can be used, as the power is higher and the THz 

beam illuminates a larger area. Primary selection is the bolometer type sensor array, 

Schotkey diode array, pyro sensor array, etc. [1]. 

2. LMFE THZ SENSOR AND SYSTEM 

The THz system in the Laboratory for Microelectronics (LMFE) is a CW THz-based 

system with scanning mechanic, THz lenses and a micro bolometer detection array [2], [3]. 
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Fig. 1 Block diagram of a LMFE THz Imaging system 

The THz source is a 12.5GHz source, multiplied by x4, x2, and x3- totally x24, which 
gives an output frequency of 300GHz with a peak power of 5mW. The THz beam is split 
in a ratio 40:60 with a silicon beam splitter.  The larger part of the beam continues to the 
observed object. There it reflects and it is redirected to a sensor array by a pivoting 
mirror. The pivoting mirror scans through the vertical dimension of the object. The on 
sensor array, which gives the horizontal dimension, and both THz beams are merged to 
achieve a heterodyne detection. The core of the system is a 2x16 THz sensor array, 
fabricated and assembled in LMFE. 

2.1. THz sensor and sensor array 

Sensors used in a THz array [4]-[6] are designed and fabricated in LMFE. LMFE 
owns the CMOS technology, which is able to produce a sensor and systems on silicon 
down to 500nm. The technological procedure of the THz sensor fabrication was 
described in patent [7]. Materials for the sensor were evaluated with the equation  
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where Se is sensitivity, TC is the temperature coefficient of the material, Rho is sheet 

resistance, and G is thermal conduction [8]. From the several appropriate materials, Titanium 

was chosen.  

The main goal of the design was to achieve the highest sensitivity (Se), low noise 

equivalent power (NEP), and to match sensor and antenna impedances. 

 

Fig. 2 LMFE THz sensor 

As the detection principle is based on a Titanium thermistor, a double dipole antenna is 

attached to it to receive and transfer THz energy to the bolometer which is therefore heated, 

and consequently its resistance changes according to the energy received. On Figure 2, the 

realization of such sensor is shown. The sensors are fabricated from a Silicon wafer, which is 

partly etched on the thermistor-antenna area to achieve better parameters regarding thermal 

dissipation. Doubled contact pads allow connection from both sides. The antenna and 

connections material is Aluminum. Equation (2) describes power conditions on the bolometer: 
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As it can be seen from equation (2), three basic power components are present on 

thermistor – biasing power (Ub
2
/R), noise power (Un

2
/R), and signal power (Us

2
/R) [9]. 

THz sensors fabricated at LMFE have a 300GHz central frequency, a sensitivity of up 

to 1000V/W, and NEP of up to 5pW/√Hz when in a vacuum and at room temperature. The 

sensors are fabricated as quadruples for easier handling and a simple array assembly. The 

sensors are biased with an I0/4 current, where I0 is a physical limitation of the electrical 

damage.  

 

Fig. 3 THz sensor array 
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On Figure 3 THz sensor array (2 x 16 sensors) is presented. The opening under the 

sensor can be clearly seen – a 3um Silicon Nitride membrane is practically invisible – 

cavity under the sensors is λ/4 deep and acts as a resonator which gains the THz signal. 

2.2. LMFE THz system 

THz system was partly described in the block diagram on Figure 1. The real setup is 

shown on Figure 4. 

 

Fig. 4 THz sensor system 

The image on Figure 4 presents a portable THz system which consists of four main 

blocks, as presented in the block diagram in Figure 1. Some other system parts can be 

seen in Figure 4, as the THz receiving lens and illumination focus lens. The system also 

needs additional low noise amplifiers, which are below the sensor array, the supply for 

each block and A/D converter for its operation. Digitalization is made with a 16-bit 

National Instruments A/D card with 32 channels, and a 2MHz total sampling frequency. 

Data collected and transformed is transferred to a PC and processed to produce the THz 

image of the hidden object. 

3. IMAGING RESULTS 

The THz system is capable of scanning through different materials which are invisible, 

but transparent for THz radiation as paper cardboard, plastics, paper, and packaging 

material. It covers approximately 0.1m x 0.1m area at a 1m distance with basic lenses and 

basic optical adjustments. With special stand-off lenses, a maximal area of 0.2m x 0.2m 

at 5m was achieved. The test setup of the system is presented in Figure 5 where the lenses, 

THz source, and THz detector array box are separated due to different tests, different 

observation distances, and different operation modes (reflection and transmission mode). 

THz receiving lens 

Illumination focus lens 

THz pivoting mirror 

THz beam splitter 

THz scanning array 
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THz lenses are made of polystyrene and they have different diameter according to the 

distance of the observed object. In many cases, a lens can included in the THz source 

block and/or in the receiving block. Design of the lens is important as it can significantly 

influence image quality and the system resolution. For larger diameter of the lens a 

Fresnel principle is used and for the smaller diameters continuous lenses are choosen. For 

images three different objects were chosen to prove all operational modes and the stand-

off operation. 

 

Fig. 5 Test THz system 

In transmission mode Figure 6 was captured. The observed objects were plant leaves, 

where water vessels can be clearly seen in the THz image. The visual image is added for 

better understanding. 

 

Fig. 6 Visual and THz image in transmission mode 

The main vessel in the center is almost opaque due to high water content (THz waves 

are totally absorbed), meanwhile other parts of the leaf are semi-transparent according to 

the water content level. The next mode is the reflection mode, where two different objects 

at two different distances are presented. The first in Figure 7, the paper clip at a distance 

of 0.36m was scanned. 
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Fig. 7 Visual and THz image of a paper clip 

The upper two images in Figure 7 presents a THz and visual image of a paper clip 

without a barrier cover material, and the images below present the same clip with an 

additional two layers of textile cover, to prove the THz waves penetration.  

Figure 8 presents the imaging result of the THz system of a small carpenter knife 

taken at a 5m stand-off distance.  

 

 

Fig. 8 Visual and THz image of a carpenter knife 

The upper image couple in Figure 8 presents the uncovered object, and the bottom 

couple show the object covered with two layers of textile. The knife is clamped in 

expanded polystyrene, which is transparent for THz radiation.  

4. CONCLUSIONS 

In the paper the THz vision system developed in the University of Ljubljana Laboratory 

for Microelectronics is described. Both transmitted and reflected images are shown giving 

excellent resolution at up to a 5m stand-off distance. The core of the system is the THz 
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thermistor sensor, which is fabricated in LMFE, and achieves one of the best reported 

results in sensitivity (Se=1000V/W) and noise equivalent power (NEP=5pW/√Hz) at 

room temperature.  
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