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Abstract. In an overview of Horizontal Current Bipolar Transistor (HCBT) 
technology, the state-of-the-art integrated silicon bipolar transistors are described 
which exhibit fT and fmax of 51 GHz and 61 GHz and fTBVCEO product of 173 GHzV that 
are among the highest-performance implanted-base, silicon bipolar transistors. HBCT 
is integrated with CMOS in a considerably lower-cost fabrication sequence as 
compared to standard vertical-current bipolar transistors with only 2 or 3 additional 
masks and fewer process steps. Due to its specific structure, the charge sharing effect 
can be employed to increase BVCEO without sacrificing fT and fmax. Moreover, the 
electric field can be engineered just by manipulating the lithography masks achieving 
the high-voltage HCBTs with breakdowns up to 36 V integrated in the same process 
flow with high-speed devices, i.e. at zero additional costs. Double-balanced active 
mixer circuit is designed and fabricated in HCBT technology. The maximum IIP3 of 
17.7 dBm at mixer current of 9.2 mA and conversion gain of -5 dB are achieved. 

Key words: BiCMOS technology, Bipolar transistors, Horizontal Current Bipolar 
Transistor, Radio frequency integrated circuits, Mixer, High-voltage 
bipolar transistors. 

1. INTRODUCTION 

In the highly competitive wireless communication markets, the RF circuits and 
systems are fabricated in the technologies that are very cost-sensitive. In order to 
minimize the fabrication costs, the sub-10 GHz applications can be processed by using the 
high-volume silicon technologies. It has been identified that the optimum solution might 
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Abstract. A case study related to the design the the analog lowpass filter using a set of or-
thogonal Jacobi polynomials, having four parameters to vary, is considered. The Jacobi 
polynomial has been modified in order to be used as a filter approximating function. The 
obtained magnitude response is more general than the response of the classical ultra-
spherical filter, due to one additional parameter available in orthogonal Jacobi polyno-
mials. This additional parameter may be used to obtain a magnitude response having ei-
ther smaller passband ripple, smaller group delay variation or sharper cutoff slope. Two 
methods for transfer function approximation are investigated: the first method is based on
the known shifted Jacobi polynomial, and the second method is based on the proposed 
modification of Jacobi polynomials. The shifted Jacobi polynomials are suitable only for 
odd degree transfer function. However, the proposed modified Jacobi polynomial filter 
function is more general but not orthogonal. It is transformed into orthogonal polynomial 
when orders are equal and then includes the Chebyshev filter of the first kind, the Cheby-
shev filter of the second kind, the Legendre filter, Gegenbauer (ultraspherical) filter and 
many other filters, as its special cases.
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Abstract: A case study related to the design the the analog lowpass filter using a set of orthogonal
Jacobi polynomials, having four parameters to vary, is considered. The Jacobi polynomial has been
modified in order to be used as a filter approximating function. The obtained magnitude response is
more general than the response of the classical ultraspherical filter, due to one additional parameter
available in orthogonal Jacobi polynomials. This additional parameter may be used to obtain a mag-
nitude response having either smaller passband ripple, smaller group delay variation or sharper cutoff
slope. Two methods for transfer function approximation are investigated: the first method is based on
the known shifted Jacobi polynomial, and the second method is based on the proposed modification of
Jacobi polynomials. The shifted Jacobi polynomials are suitable only for odd degree transfer function.
However, the proposed modified Jacobi polynomial filter function is more general but not orthogonal. It
is transformed into orthogonal polynomial when orders are equal and then includes the Chebyshev filter
of the first kind, the Chebyshev filter of the second kind, the Legendre filter, Gegenbauer (ultraspherical)
filter and many other filters, as its special cases.

Keywords: Filters; analog circuits; approximation; filter characteristic function; Jacobi polynomial;
orthogonal polynomials.

1 Introduction

The very classical orthogonal polynomials Jacobi, Laguerre and Hermite [1] and their special cases
i.e Gegenbauer, Chebyshev and Legendre are widely used in communication theory and particu-
larly in the synthesis transfer function of electric filters. the coefficients of the Bessel-thomson
filters, which provide maximally flatness of the group delay response in the passband without any
ripple, are related to the Bessel polynomials [2]. However, the Bessel type polynomials are not
orthogonal on an interval of the x-axis, but in certain cases are orthogonal on a unit circle.
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Apart from Chebyshev polynomials, which are of utmost importance in the synthesis of filters
exhibiting a sharp increase in attenuation as the frequency increases above corner frequency, other
classes of above mentioned orthogonal polynomials have found many useful applications in the
synthesis of electrical filters. in particular, the approximation problem in the synthesis of electrical
filters consists of finding a physical realizable function of frequency that shall meet a prescribed
set of specifications with regard to its magnitude and/or group delay characteristics.

it is known that, for a given filter degree, there is always a trade-off between the magnitude
and group delay characteristics. By considering the whole frequency band, the better group delay
characteristic is generally associated with the better time domain characteristic [3]. The better time
domain characteristic leads to smaller time delay or smaller values of the overshoot in the step
response.

There are approximations that have a very good magnitude characteristic in detriment of their
group delay characteristic, as for example, Butterworth [4], Chebyshev [5], [6], Bernstein [7],
Legendre [8] [9] [10] and their derivatives by Ku and Drubin [11]. Converse case occurs with
other approximations, as for example, Bessel [12], Gauss [13], Hermite [11] and least-squares
monotonic [14] [15], all those filters present optimized characteristics in specific points.

transitional filters are alternative filter solutions that perform a trade-off between the magnitude
and group delay characteristics. transitional Butterworth-Chebyshev [16] filters are considered
with magnitude characteristics that vary gradually from those of the Butterworth filter to those
of the Chebyshev filter as a number of pass-band ripples (or the degree of flatness at the origin)
is varied. Three degrees of freedom are available for transitional Butterworth-Chebyshev filters:
the degree n, the ripple factor ε and the degree of flatness at the origin. the smooth transition is
accomplished using the method proposed of Peless and Murakami [17] by finding each pole of
the transitional Butterworth-thompson filter as an interpolation between a pole of the Butterworth
filter and a corresponding pole of the thompson filter.

a special class of filter functions of odd order providing monotonic magnitude characteristic of
the resulting filter has first been investigated by Papoulis [18] by means of Legendre polynomials.
Subsequently these results have been extended so as to include filters of even degree [19], [20], and
also some other functions leading to the same class of filtering networks whose magnitude response
is bounded to be monotonic have been derived using a different approach based on the applications
of Jacobi polynomials [21].

In this paper, the concept of magnitude response synthesis techniques is extended for orthogo-
nal jacoby lowpass filters. Simple modification of orthogonal Jacobi polynomial, suitable for the
continuous-time lowpass filter design, is proposed in this paper. if the degree of the filter is given,
both indexes (order) of the Jacobi polynomial can be used for smoothly adjusting the filter perfor-
mance. The magnitude response obtained is more general than the continuous-time response of the
Chebyshev filter because of two additional parameters available with the modified jacobi polyno-
mials. It should be noted, the proposed Jacobi approximation covers many of the above-mentioned
all-pole filter functions.
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2 Filter magnitude function

in lowpass filter design, assuming all the zeros of the system function are at infinity, the squared
magnitude function (insertion loss) can be written as

|Hn( jω)|2 =
1

1+ ε2φ2
n (ω)

(1)

where ω is frequency variable, ε is a parameter that controls the passband attenuation tolerance, n
denotes the degree of the filter and the polynomial φn(ω) is the characteristic (or approximating)
function of the filter which is to be selected to give desired magnitude characteristic. The character-
istic function is normalized to unity at the pass-band edge frequency ωp, which is also normalized
to ωp = 1, then can be written as φn(1) = 1.

this conventional procedure for filter design using the insertion loss method includes the de-
sign of a lumped element LC ladder lowpass filter known as the lowpass prototype. A more modern
procedure uses this network synthesis technique to design filters with a completely specified fre-
quency response. the design is simplified by beginning with low-pass filter prototypes that are
normalized in terms of impedance and frequency. Transformations are then applied to convert the
prototype designs to the desired frequency range and impedance level.

in filter design, the characteristic frequency use for frequency normalization is the cutoff fre-
quency known as the filter passband corner frequency, and therefore normalized cutoff frequency
is equal to 1. For this application, the function φ2

n (x) is required to be an even polynomial
ψn(ω2) = φ2

n (x). If φn(x) is even or odd, then φ2
n (x) is always even, as is required. Polynomi-

als φn(x), which are neither even nor odd, may be also be used in magnitude functions if φn(x)
is replaced by φn(x2). Therefore it is necessary that no terms of the form x2k+1 appear in the
characteristic function.

The Jacobi polynomials P(α ,β)
n (x) have n distinct zeros for α �= β but they are neither even

nor odd. Such type of polynomials are not suitable to be a filter characteristic function. However,
Jacobi orthogonal polynomials can be adapted for use in the low-pass filter magnitude functions,
as will be shown in the next section.

3 Jacobi polynomial

The Jacobi polynomials [22], denoted by P(α ,β)
n (x) of the degree n, are orthogonal on the interval

[−1,1] with respect to the Jacobi weight function w(α ,β) = (1− x)α (1+ x)β when α ,β ≥ −1. We
shall refer to α and β as the orders of the Jacobi polynomial. Namely,

∫ 1

−1
P(α ,β)

m (x)P(α ,β)
n (x)w(α ,β)(x)dx = h(α ,β)

n δn.m, (2)4 N. Stojanović and N. Stamenković:

where

h(α ,β)
n =

2α+β+1

2n+α +β +1
Γ(n+α +1)Γ(n+β +1)
Γ(n+1)Γ(n+α +β +1)

, (3)

δn.m is Kronecker delta symbol and Γ(·) is well known Gamma function.
The Jacobi polynomials are generated by the three-term recurrence relation:

P(α ,β)
0 (x) = 1,

P(α ,β)
1 (x) =

1
2
(α +β +2)x+

1
2
(α −β ),

P(α ,β)
n+1 (x) = (a(α ,β)

n x−b(α ,β)
n )P(α ,β)

n (x)− c(α ,β)
n P(α ,β)

n−1 (x), n ≥ 1

(4)

where
a(α ,β)

n =
(2n+α +β +1)(2n+α +β +2)

2(n+1)(n+α +β +1)

b(α ,β)
n =

(β 2 −α2)(2n+α +β +1)
2(n+1)(n+α +β +1)1)(2n+α +β )

c(α ,β)
n =

(n+α)(n+β )(2n+α +β +2)
(n+1)(n+α +β +1)1)(2n+α +β )

Matlab is an inexpensive an easi-to-use software package and widely available comercial prod-
uct that is in widespread in both academia and industry [23]. A Matlab script for evaluating Jacobi
polynomials using the above procedure is given in JacobiPoly.m. In addition to Jacobi poly-
nomial, proposed Matlab program also evaluates Gegenbauer and Legendre polynomials.

JacobyPoly.m

function P=JacobiPoly(n,a,b)
% Coefficients P of the Jacobi polynomial
% They are stored in decending order of powers
if nargin == 1,

a=0; b=0;
elseif nargin == 2,

b=a;
end
p0 = 1;
p1 = [(a+b)/2+1,(a-b)/2];
if n == 0,

P=p0;
elseif n == 1,

P=p1;
else

for k=2:n,
d=2*k*(k+a+b)*(2*k-2+a+b);
A=(2*k+a+b-1)*(2*k+a+b-2)*(2*k+a+b)/d;
B=(2*k+a+b-1)*(aˆ2-bˆ2)/d;
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where
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C=2*(k-1+a)*(k-1+b)*(2*k+a+b)/d;
P=conv([A B],p1)-C*[0,0,p0];
p0 = p1;
p1 = P;

end
end
end

Some properties of the Jacobi polynomials, which are needed here, are as follows

P(α ,β)
n (1) =

Γ(n+α +1)
Γ(n+1)Γ(α +1)

(5)

and
P(α ,β)

n (−1) =
(−1)nΓ(n+β +1)
Γ(n+1)Γ(β +1)

(6)

Jacobi polynomials have symmetry

P(α ,β)
n (x) = (−1)nP(β ,α)

n (x) (7)

The following important derivative relation is

d
dx

P(α ,β)
n (x) =

1
2
(n+α +β +1)P(α+1,β+1)

n−1 (x) (8)

3.1 Shifted Jacobi polynomials

In order to use Jacobi polynomials on the interval x ∈ [0,1] we define the so-called shifted jacobi
polynomials by introducing the change of variable x �→ 2x−1. Let the shifted Jacobi polynomials
P(α ,β)

n (2x−1) be denoted by J
(α ,β)
n (x). The shifted Jacobi polynomials are orthogonal with respect

to the weight function w(α ,β)
s = (1− x)α xβ in the interval [0,1] with the orthogonality property:

∫ 1

0
w(α ,β)

s J
(α ,β)

m (x)J (α ,β)
n (x)dx =

1
2n+α +β +1

Γ(n+α +1)Γ(n+β +1)
Γ(n+1)Γ(n+α +β +1)

δn,m (9)

The shifted Jacobi polynomials are generated from the three-term recurrence relations [24]:

J
(α ,β)
0 (x) = 1,

J
(α ,β)
1 (x) = (α +β +2)y− (β +1),

J
(α ,β)
n+1 (x) = (a(α ,β)

n x−b(α ,β)
n )J

(α ,β)
n (x)− c(α ,β)

n J
(α ,β)
n−1 (x), n ≥ 1

(10)
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6 N. Stojanović and N. Stamenković:

where the recursion coefficients are

a(α ,β)
n =

(2n+α +β +1)(2n+α +β +2)
(n+1)(n+α +β +1)

b(α ,β)
n =

(2n+α +β +1)(2n2 +(1+β )(α +β )+2n(α +β +1))
(n+1)(n+α +β +1)(2n+α +β )

c(α ,β)
n =

(2n+α +β +2)(n+α)(n+β )
(n+1)(n+α +β +1)(2n+α +β )

(11)

The shifted Jacobi polynomial J (α ,β)
n (x) can be obtained in the polynomial standard form as

J
(α ,β)

n (x) =
n

∑
i=0

(−1)n−i Γ(n+α +β + i+1)
Γ(i+1)Γ(n+α +β +1)

Γ(n+β +1)
Γ(n− i+1)Γ(β + i+1)

xi (12)

Suppose the Jacobi polynomials should be normalized soo’ that φn(1) = 1. According to the
polynomial (12), the normalization constant is k(α ,β)

n = ∑n
i=0 a(n)i , where a(n)i are corresponding

polynomial coefficients.
As an example, Fig. 1 shows the characteristic functions based on the shifted Jacobi polyno-

mials for n = 1,2, . . . ,5 in the form φn(x) = xνJ
(α ,β)
m (x2)/k(α ,β)

n , where n = ⌊m/2⌋+ ν , the floor
function ⌊m/2⌋ rounds the value of m/2 to the nearest integers towards zero, ν = 0 and ν = 1 for
n even and odd, respectively.
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0
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3

4

5 J4
(α,β)

J3
(α,β)

J2
(α,β)

J5
(α,β)

J1
(α,β)

Characteristic function shifted Jacobi

α=−0.5, β=0.5

x

φ n(x
)=

xν  J
m(α

,β
) (x

2 )/k
n(α

,β
)

Fig. 1. The normalized shifted Jacobi polynomials φn(x) = xνJ
(α ,β )
m (x2) for ν = 0 and ν = 1 for n even and odd,

respectively, used in place characteristic function, α =−0.5 and β = 0.5, n = 2m+ν , m = 0,1 and 2.
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As shown in Fig. 1, the hump at x = 0 occurs when the filter degree is even. Using (6) size of
the hump can be obtained as

φ (α ,β)
m (0) =

1
k(α ,β)

n
P(α ,β)

m (−1) =
1

k(α ,β)
n

(−1)mΓ(m+β +1)
Γ(m+1)Γ(β +1)

(13)

because J
(α ,β)
n (0) = P(α ,β)

n (−1). One can easily show that the size of the hump increases when
the degree of the filter increases. For example, for n = 4, (m = 2 and ν = 0) from (13) follow
P(−0.5,0.5)

2 (−1) = 1.875 and from (12) is k(−0.5,0.5)
2 = 0.3750 then value for hump is φ2(0) = 5. For

n = 6 (m = 3 and ν = 0) follow P(−0.5,0.5)
3 (−1) = −2.1875, k(−0.5,0.5)

3 = 0.3125 then φ3(0) = −7.
Thus, the even degree of the shifted Jacobi polynomial is not suitable as the filter characteristic
function.

other definitions of the monic shifted jacobi polynomials are given in [22, Chapter 22], Gn(p,q,x),
which are also orthogonal in the interval [0,1] with respect to weight function w(x)= (1−x)p−qxq−1

(with q > 0 and p > q− 1), are used for the construction magnitude of the filter’s transfer func-
tion [25] [26] [27]. Shifted Jacobi polynomials [22] are related to the Jacobi Polynomials P(α ,β)

n (x)
as [28]

Gn(p,q,x) =
Γ(n+1)Γ(n+ p)

Γ(2n+ p)
P(p−q,q−1)

n (2x−1) (14)

It can be concluded, the shifted Jacobi polynomials J (α ,β)
n (x) have n distinct positive real zeros

in the interval (0,1) but they are neither even nor odd then it can not be used as a characteristic
function in the equation (1). However, [xJ (α ,β)

n (x2)]2 or [xG(p,q,x2)]2 could be used in (1) in place
of squared characteristic function φ2

n (ω).

3.2 Modified Jacobi polynomials

We propose the following modified jacobi polynomials, based on the summation of two Jacobi
orthogonal polynomials which have the same degree n, as

J
(α ,β)
n (x) = P(α ,β)

n (x)+P(β ,α)
n (x) (15)

where P(α ,β)
n (x) is above mentioned classical Jacoby orthogonal polynomial in x. One can easily

show that modified jacobi polynomial (15) is not orthogonal polynomial except in the case when
α = β is. Since Jacobi polynomials P(β ,α)

n (x) = (−1)nP(α ,β)
n (−x) are not orthogonal polynomials

with the respect to the weight function w(α ,β)(x) over the interval [−1,1], then the modified orthog-
onal Jacobi polynomials (15) are not orthogonal polynomials as the shifted Jacobi polynomials are.
However, the resulting degree of modified jacobi polynomial is n, which is pure odd or pure even
polynomial in x, and hence the realization of the lowpass filter is possible for all specifications if
they are used as characteristic function.
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Many of the aforementioned polynomials are special cases of modified jacobi polynomials.
For α = β , one can obtain the ultraspherical polynomials (symmetric Jacobi polynomials) [29].
For α = β = ∓1/2, the Chebyshev polynomials of first and second kinds. For α = β = 0, one
can obtain the Legendre polynomials. For the two important special cases α = −β ± 1/2, the
Chebyshev polynomials of third and fourth kinds are also obtained.

Finally, the constants C(α ,β)
n = J

(α ,β)
n (1) have to be chosen in such a way that normalization

criterion φn(1) = 1 is satisfied, i.e.

φn(ω) =
J
(α ,β)
n (ω)

C(α ,β)
n

, (16)

where
C(α ,β)

n =
1

Γ(n+1)

[Γ(n+α +1)
Γ(α +1)

+
Γ(n+β +1)

Γ(β +1)

]

. (17)

modified jacobi polynomials are symmetrical in relation to the orders α and β , i.e. J
(α ,β)
n (ω) =

J
(β ,α)
n (ω). table 1 contains the modified jacobi polynomials for α = −0.5 and β = 0.5 up to the

ninth degree.

table 1. the modified orthogonal jacobi polynomials J(α ,β )
n (x), α =−0.5, β = 0.5, and n = 0,1, . . . ,10.

n J
(−0.5,0.5)
n (x)

1 2x

2 3x2 −
3
4

3 5x3 −
5
2

x

4
35
4

x4 −
105
16

x2 +
35
64

5
63
4

x5 −
63
4

x3 +
189
64

x

6
231

8
x6 −

1155
32

x4 +
693
64

x2 −
231
512

7
429

8
x7 −

1287
16

x5 +
2145
64

x3 −
429
128

x

8
6435

64
x8 −

45045
256

x6 +
96525
1024

x4 −
32175
2048

x2 +
6435
16384

9
12155

64
x9 −

12155
32

x7 +
255255

1024
x5 −

60775
1024

x3 +
60775
16384

x

10
46189

128
x10 −

415701
512

x8 +
323323

512
x6 −

1616615
8192

x4 +
692835
32768

x2 −
46189

131072

it is important to know where the roots of the modified jacobi polynomials are located. The
fastest way to calculate the zeros of the modified jacobi polynomials is by using mathematical
programs such as Matlab, Mathematica and Maple. It can be concluded that the modified jacobi
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polynomials, J(α ,β)
n (x), have n simple real zeros in the closed interval [−1,1]. For example, the

zeros of the modified jacobi polynomial of degree 8 with α =−0.5 and β = 0.5 are:

{−0.9396926,−0.7660444,−0.5000000,−0.1736482,0.1736482, 0.5000000, 0.7660444, 0.9396926}.

The zeros of J(α ,β)
n (x) are located symmetrically about x = 0 in the interval −1 < x < 1.

Note that modified jacobi polynomials are the only non orthogonal polynomials which are
suitable for the synthesis of the filter function given in a closed form.

The characteristic functions φn(x) based on the modified jacobi polynomials Jα ,β)
n (x) are illus-

trated in Figure 1 for x in [−1,1] and n = 1,2, . . . ,5. They satisfy the following relationships: for
|x|< 1, the characteristic polynomial oscillates around zero and they ripples are bounded by ±1 for
α ,β ≥−0.5, φn(0) �= 0 for n even and φn(0) = 0 for n odd. For |x|> 1, the polynomials magnitude
increase (decrease) monotonically.
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Fig. 2. the normalized modified orthogonal jacobi polynomials J(α ,β )
n (ω)/C(α ,β )

n used in place characteristic function
φn(x), α =−0.5 and β = 0.5, n = 1, . . . ,5.

An example is given in Figure 3, which shows the ninth-order modified jacobi lowpass filter
and its three partial filters with their individual orders α and β . As mentioned earlier, Jacobi
orthogonal polynomial corresponds to the Chebyshev polynomial if α = β = −0.5 which have
3dB ripples in the pass-band. in general, passband ripples are being undesirable, but a value less
than 0.5 dB is acceptable in many applications. if α = −0.5 and order β increases, the ripples in
the passband decrease smoothly to be unequal and smaller in magnitude. For β > 1.5 the passband
response is nearly flat, but the cutoff slope is much steeper than a Butterworth filter cutoff slope.
On the other hand, for −1 < β < −0.5 the passband ripples are unequal, but in magnitude are
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Many of the aforementioned polynomials are special cases of modified jacobi polynomials.
For α = β , one can obtain the ultraspherical polynomials (symmetric Jacobi polynomials) [29].
For α = β = ∓1/2, the Chebyshev polynomials of first and second kinds. For α = β = 0, one
can obtain the Legendre polynomials. For the two important special cases α = −β ± 1/2, the
Chebyshev polynomials of third and fourth kinds are also obtained.
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fastest way to calculate the zeros of the modified jacobi polynomials is by using mathematical
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An example is given in Figure 3, which shows the ninth-order modified jacobi lowpass filter
and its three partial filters with their individual orders α and β . As mentioned earlier, Jacobi
orthogonal polynomial corresponds to the Chebyshev polynomial if α = β = −0.5 which have
3dB ripples in the pass-band. in general, passband ripples are being undesirable, but a value less
than 0.5 dB is acceptable in many applications. if α = −0.5 and order β increases, the ripples in
the passband decrease smoothly to be unequal and smaller in magnitude. For β > 1.5 the passband
response is nearly flat, but the cutoff slope is much steeper than a Butterworth filter cutoff slope.
On the other hand, for −1 < β < −0.5 the passband ripples are unequal, but in magnitude are

10 N. Stojanović and N. Stamenković:

larger than 1, but these values of β (also for α) have no practical significance. it is shown that
the passband ripple can be adjusted to improve the linearity of the group delay response near the
ω = 0.
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Fig. 3. the frequency responses of the 9th degree modified jacobi filters.

Generally, for microwave applications modified orthogonal jacobi as filter function may be also
used. the most widely used filters in microwave applications are a band-pass filters [30]. Using
lowpass to bandpass frequency transformation of lumped element lowpass filter, the series inductor
converts to the series resonator and parallel capacitor converts to the parallel resonator. Richards
transformation can be used to emulate the inductive and capacitive behaviour of the lumped circuit
elements into distributive element consist the transmission line sections, and Kuroda’s identities
can be used to facilitate the conversion between the various transmission line realizations.

in the application where approximation of the filter magnitude function based on the Christofel-
Darboux formula for classical orthonormal Jacobi polynomials gives excellent results [31] [32], this
method cannot be applied to the modified jacobi filters, because it is non orthogonal. In this case, it
should either generate the sum of the product modified jacobi polynomial, or Christoffel-Darboux
formula be applied separately to the both orthonormal Jacobi polynomials as:

A2n(ω2) =[p(α ,β)
0 (ω)]2 +[p(α ,β)

1 (ω)]2 + · · ·+[p(α ,β)
n (ω)]2

+[p(β ,α)
0 (ω)]2 +[p(β ,α)

1 (ω)]2 + · · ·+[p(β ,α)
n (ω)]2

(18)

where p(α ,β)
i (ω), i = 1,2, . . . ,n are orthonormal Jacobi polynomials with respect to the weight

function w(α ,β)(ω) = (1−ω)α(1+ω)β and p(β ,α)
i (ω), i = 1,2, . . . ,n are also orthonormal Jacobi

polynomials but with respect to the other weight function w(β ,α)(ω) = (1−ω)β (1+ω)α . The
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larger than 1, but these values of β (also for α) have no practical significance. it is shown that
the passband ripple can be adjusted to improve the linearity of the group delay response near the
ω = 0.
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Fig. 3. the frequency responses of the 9th degree modified jacobi filters.

Generally, for microwave applications modified orthogonal jacobi as filter function may be also
used. the most widely used filters in microwave applications are a band-pass filters [30]. Using
lowpass to bandpass frequency transformation of lumped element lowpass filter, the series inductor
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transformation can be used to emulate the inductive and capacitive behaviour of the lumped circuit
elements into distributive element consist the transmission line sections, and Kuroda’s identities
can be used to facilitate the conversion between the various transmission line realizations.
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polynomials but with respect to the other weight function w(β ,α)(ω) = (1−ω)β (1+ω)α . The
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orthonormal Jacobi plynomials are:

p(α ,β)
n (ω) =

√

2n+α +β +1
2α+β+1

Γ(n+1)Γ(n+α +β +1)
Γ(n+α +1)Γ(n+β +1)

P(α ,β)
n (ω) (19)

and

p(β ,α)
n (ω) =

√

2n+α +β +1
2α+β+1

Γ(n+1)Γ(n+α +β +1)
Γ(n+α +1)Γ(n+β +1)

P(β ,α)
n (ω) (20)

where P(β ,α)
n (ω) and P(β ,α)

n (ω) are the orthogonal Jacobi polynomials which can be evaluated by
the proposed Matlab program.

By using Christoffel-Darboux formula equation (18) is reduced to:

A2n(ω2) =
k(α ,β)

n

k(α ,β)
n+1

[dp(α ,β)
n+1
dω

p(α ,β)
n −

dp(α ,β)
n

dω
p(α ,β)

n+1

]

+
k(β ,α)

n

k(β ,α)
n+1

[dp(β ,α)
n+1

dω
p(β ,α)

n −
dp(β ,α)

n

dω
p(β ,α)

n+1

]

(21)

where k(α ,β)
n and k(β ,α)

n are leading coefficients of the orthonormal jacobi polynomials p(α ,β)
n (ω)

and p(β ,α)
n (ω), respectively.

the following filter approximating function for n = 5, α = −0.5 and β = 0.5 is given as an
example:

A10(ω2) = 325.9493ω10 −488.9240ω8 +244.4620ω6 −40.7437ω4 +3.8197ω2 +2.5

according to the definition, the characteristic function should be normalized so that is unit, A10(1)=
1, at the cutoff frequency, ωp = 1.

4 Conclusion

In this paper, we intended to illuminate the usage of Jacobi orthogonal polynomials in the design of
time-continuous low-pass filter transfer function. Since jacobi polynomial cannot be directly used
as filter characteristic function, we suggested shifted jacobi polynomials and proposed a simple
modification of jacobi polynomials to use as a filter characteristic function.

the modified jacobi polynomials are not orthogonal, but they are suitable for the filter transfer
function approximation. Filter degree, maximum passband attenuation and two indexes of Jacobi
polynomials are four parameters that adjust the performance of the filter. the new modified jacobi
polynomials are implemented to approximate the lowpass filter transfer function in such a way
that they are used directly as filter characteristic function (as standard orthogonal polynomials:
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12 N. Stojanović and N. Stamenković:

Chebyshev or Legendre). These methods of approximation can be used to provide filters with
adjustment of the passband ripple, group delay deviation or cutoff slope.
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Chebyshev or Legendre). These methods of approximation can be used to provide filters with
adjustment of the passband ripple, group delay deviation or cutoff slope.

Acknowledgment

This work is supported by Serbian Ministry of Education, Science and Technological Development,
Project No. 32009TR.

References

[1] W. V. Assche and E. Coussement, “Some classical multiple orthogonal polynomials,” Journal
of Computational and Applied Mathematics, vol. 127, no. 12, pp. 317 – 347, Jan. 2001, nu-
merical Analysis 2000. Vol. V: Quadrature and Orthogonal Polynomials. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0377042700005033

[2] L. Storch, “Synthesis of constant-time-delay ladder networks using Bessel polynomials,” Proceedings
of the IRE, vol. 42, no. 11, pp. 1666–1675, Nov. 1954.

[3] B. D. Rakovich and v. S. Stojanovich, “on the design of equal ripple delay filters with Chebyshev
stopband attenuation,” Radio and Electronic Engineer, vol. 43, no. 4, pp. 257–265, Apr. 1973.

[4] S. Butterworth, “on the theory filter amplifier,” Experimental Wireless and the Radio Engineer, vol. 7,
pp. 536–541, Oct. 1930.

[5] H. G. Dimopoulos, “Optimal use of some classical approximations in filter design,” IEEE Transactions
on Circuits and Systems II: Express Briefs, vol. 54, no. 9, pp. 780–784, Sep. 2007.

[6] S. C. D. Roy, “modified chebyshev lowpass filters,” International Journal of Circuit Theory and Ap-
plications, vol. 38, no. 5, pp. 543–549, 2010.[Online]. Available: http://dx.doi.org/10.1002/cta.585

[7] R. Ramiz and H. Sedef, “General method for designing and simulating of resistively terminated LC
ladder filters,” FACTA UNIVERSITATIS, Series: Electronics and Energetics, vol. 12, no. 3, pp. 79–94,
1999.

[8] S. Prasad, L. G. Stolarczyk, J. R. Jackson, and E. W. Kang, “Filter synthesis using Legendre polyno-
mials,” Proceedings of the IEE, vol. 114, no. 8, pp. 1063–1064, Aug. 1967.

[9] M. T. Chryssomallis and J. N. Sahalos, “Filter synthesis using products of Legendre polynomials,”
Electrical Engineering, vol. 81, no. 6, pp. 419–424, 1999.
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Chebyshev or Legendre). These methods of approximation can be used to provide filters with
adjustment of the passband ripple, group delay deviation or cutoff slope.

Acknowledgment

This work is supported by Serbian Ministry of Education, Science and Technological Development,
Project No. 32009TR.

References

[1] W. V. Assche and E. Coussement, “Some classical multiple orthogonal polynomials,” Journal
of Computational and Applied Mathematics, vol. 127, no. 12, pp. 317 – 347, Jan. 2001, nu-
merical Analysis 2000. Vol. V: Quadrature and Orthogonal Polynomials. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0377042700005033

[2] L. Storch, “Synthesis of constant-time-delay ladder networks using Bessel polynomials,” Proceedings
of the IRE, vol. 42, no. 11, pp. 1666–1675, Nov. 1954.

[3] B. D. Rakovich and v. S. Stojanovich, “on the design of equal ripple delay filters with Chebyshev
stopband attenuation,” Radio and Electronic Engineer, vol. 43, no. 4, pp. 257–265, Apr. 1973.

[4] S. Butterworth, “on the theory filter amplifier,” Experimental Wireless and the Radio Engineer, vol. 7,
pp. 536–541, Oct. 1930.

[5] H. G. Dimopoulos, “Optimal use of some classical approximations in filter design,” IEEE Transactions
on Circuits and Systems II: Express Briefs, vol. 54, no. 9, pp. 780–784, Sep. 2007.

[6] S. C. D. Roy, “modified chebyshev lowpass filters,” International Journal of Circuit Theory and Ap-
plications, vol. 38, no. 5, pp. 543–549, 2010.[Online]. Available: http://dx.doi.org/10.1002/cta.585

[7] R. Ramiz and H. Sedef, “General method for designing and simulating of resistively terminated LC
ladder filters,” FACTA UNIVERSITATIS, Series: Electronics and Energetics, vol. 12, no. 3, pp. 79–94,
1999.

[8] S. Prasad, L. G. Stolarczyk, J. R. Jackson, and E. W. Kang, “Filter synthesis using Legendre polyno-
mials,” Proceedings of the IEE, vol. 114, no. 8, pp. 1063–1064, Aug. 1967.

[9] M. T. Chryssomallis and J. N. Sahalos, “Filter synthesis using products of Legendre polynomials,”
Electrical Engineering, vol. 81, no. 6, pp. 419–424, 1999.
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Chebyshev or Legendre). These methods of approximation can be used to provide filters with
adjustment of the passband ripple, group delay deviation or cutoff slope.
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