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Abstract. Design space exploration is an indispensable segment of High Level 

Synthesis (HLS) design of hardware accelerators. This paper presents a novel 

technique for Area-Execution time tradeoff using residual load decoding heuristics in 

genetic algorithms (GA) for integrated design space exploration (DSE) of scheduling 

and allocation. This approach is also able to resolve issues encountered during DSE of 

data paths for hardware accelerators, such as accuracy of the solution found, as well 

as the total exploration time during the process. The integrated solution found by the 

proposed approach satisfies the user specified constraints of hardware area and total 

execution time (not just latency), while at the same time offers a twofold unified 

solution of chaining based schedule and allocation. The cost function proposed in the 

genetic algorithm approach takes into account the functional units, multiplexers and 

demultiplexers needed during implementation. The proposed exploration system 

(ExpSys) was tested on a large number of benchmarks drawn from the literature for 

assessment of its efficiency. Results indicate an average improvement in Quality of 

Results (QoR) greater than 26 % when compared to a recent well known GA based 

exploration method.  
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1. INTRODUCTION 

As the complexity of Very Large Scale Integration (VLSI) designs increases, the 
design of Application Specific Integrated Circuits (ASIC) should be addressed at higher 
levels of abstraction in order to meet the growing challenges. Of late there has been a 
major shift among all well-known Electronic Design Automation (EDA) vendors from 
traditional Register Transfer Level (RTL) designs to high level synthesis. However, for 
comprehensive high level system designs, efficient design space exploration techniques 
are required during HLS that can concurrently meet the user specified constraints of 
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hardware area and execution time. Furthermore, design space exploration should also be 
able to concurrently resolve the orthogonal issues encountered during DSE, such as 
minimizing the time of the exploration process and maximizing the precision required.  
Hence, the tremendous advancement of highly complex digital VLSI circuits in the 
current generation of portable devices and other electronic products has mainly become 
possible owing to the efficient design techniques developed so far [1]. 

The process of HLS can be broadly classified into three phases. The first phase 
involves the conversion of the algorithm into Data Flow Graph (DFG). The second phase 
includes scheduling, which assigns operations into the appropriate control steps. 
Allocation, the third phase in high level synthesis, is the data-path synthesis that allocates 
hardware resources such as registers and busses, and binds the operations of DFG to 
functional units [1].  

The HLS phase consists of interdependent tasks such as scheduling and allocation. 
Scheduling is the process of assigning the operations in specific control step while 
resource allocation refers to the assignment of the functional units to perform the 
operations, multiplexers and demultiplexers to switch between different inputs and 
output. However, the problem of solving the integrated scheduling and allocation by 
exhaustive analysis is strictly prohibited [1]. 

2. RELATED WORK 

The problem of design space exploration was addressed in [2], where the authors have 
proposed the use of a genetic algorithm in the binding and allocation phase in high level 
synthesis. This method involves crossover dependence on the force directed data path 
binding completion algorithm. One of the problems with [2] is that the method accepts a 
scheduled data flow graph as an input. This clearly signifies the inability of their approach to 
resolve the scheduling problem. Authors in [3] have also proposed a genetic algorithm for 
time constrained scheduling. The chromosome is encoded with the permutation of 
operations, which is decoded by a list decoder, to decode the chromosome into a valid 
schedule. However, the approach does not handle chaining and execution time optimization. 
In addition, authors in [4] have proposed a problem space genetic algorithm for design space 
exploration of data paths. The authors have used the concept of heuristic/problem pair to 
convert a data flow graph into a valid schedule. The chromosome is encoded based on the 
„work remaining‟ value of each node. One of the problems with approach [4] is that the 
second special parent chromosome built in correspondence with the minimum functional 
units (i.e. serial implementation) does not differ in the work remaining field of the first 
special chromosome. This may not always properly lead to reaching the optimal solution. 
Further, the cost function considers only latency and not total execution time. The problem 
of design space exploration was also addressed in [5] by suggesting order of efficiency, 
which assists in deciding preferences amongst the different Pareto optimal points. Research 
in [6] suggested that identification of a few superior design points from the Pareto set 
suffices for an excellent design process. Evolutionary algorithms in [7], such as the Genetic 
Algorithm (GA), have been suggested to yield better results for the design space exploration 
process. The use of GA has also been suggested as a framework for DSE of data paths in 
high level synthesis in [8]. Authors in this approach have proposed a priority order based 
chromosome for the data schedules and an independent chromosome for the functional units. 
Their work uses the robust search capabilities of the genetic algorithm for scheduling and 
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allocation of datapath with the aim to find a solution for both the module selection and 
scheduling. One of the drawbacks of [8] is that the approach does not consider resource 
binding. Thus, the cost function proposed does not reflect the multiplexer and 
demultiplexers‟ resources. Furthermore, like other GA design space exploration approaches, 
[8] only considers optimization of latency and area. Another approach introduced by 
researchers in [1] was also based on Pareto optimal analysis. According to their work, the 
design space was arranged in the form of an architecture vector design space for architecture 
variant analysis and optimization of performance parameters. Though the results proved 
promising the approach was unable to handle chaining based scheduling. Furthermore in [9] 
and [10], authors described another approach to DSE in high level systems based on binary 
encoding of the chromosomes. Work shown in [11] for DSE suggests that authors used an 
evolutionary algorithm for successful evaluation of the design for an application specific 
SoC. Approaches [9]-[11] only considered traditional latency and not the execution time 
constraint for data pipelining. The work shown in [12] discusses the optimization of area, 
delay and power in behavioral synthesis, but does not focus on the high level design space 
exploration using multi chromosomal genetic algorithm nor does it consider execution time 
during data pipelining. Furthermore, authors in [13] introduce a tool called 
SystemCoDesigner that offers rapid design space exploration with rapid prototyping of 
behavioral systemC models. Automated integration was developed by integrating behavioral 
synthesis into their design flow, while authors in [14] describe current state-of-the-art high-
level synthesis techniques for dynamically reconfigurable systems.  Additionally, authors in 
[15]-[17] also used genetic algorithms for scheduling and resource allocation for data path 
synthesis. Another class of scheduling methods employed previously was probabilistic in 
nature. For example the simulated annealing (SA) and simulated evolution (SE) based 
scheduling techniques have been used for the high level synthesis problem. Authors in [18], 
[19] have proposed simulated annealing scheduling method called „SALSA‟ which uses 
many probabilistic search operators to enhance the performance of SA-based technique for 
high level synthesis problem. Moreover, authors have also proposed an extended binding 
model for handling the scheduling problem in high level synthesis. Furthermore, authors in 
[20] also used SA for scheduling problem with simultaneous minimization of registers and 
function units. SE has been proposed by authors in [21] for solving the combined problem of 
scheduling and resource allocation in high level synthesis. All aforementioned approaches 
[15]-[21], however, do not consider execution time, chaining and data pipelining. In contrast 
to the proposed approach, [15]-[17] do not incorporate a special seeding process based on 
serial and parallel implementation in order to efficiently guide the GA to optimal/near-
optimal solution. Other previously proposed approaches [22], [23] are based on integer linear 
programming (ILP). Here, the computational complexity is massive and although able to 
provide good results, consume enormous time. Furthermore, the concept of data pipelining 
based on execution time was not shown during system trade-off. Constructive approaches 
[24]- [27] are very straightforward to implement but suffer from the major drawback of 
leading to poor quality of solutions owing to their greedy nature.  

3. THE PROPOSED APPROACH FOR GENETIC ALGORITHM BASED EXPLORATION SYSTEM 

(EXPSYS) 

The approach proposed in this paper for finding the optimal integrated scheduling, 

allocation, binding and module selection, employs a special multi chromosomal compound 
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chromosome structure that has the efficient ability to search the design space. It provides an 

integrated solution to the problem of scheduling, allocation and binding by yielding a set of 

hardware resources that contains the details of functional units (e.g. number and kind). 

Further, this solution reduces the cost function based on constraints provided for hardware 

area (consisting of function units, multiplexers, demultiplexers) and execution time 

(considering latency, cycle time and number of sets of data to be executed). In order to 

reduce the final cost, the module selection indicates the optimal number of resources needed 

of each kind, as well as the right version of a specific resource needed from the module 

library during implementation The ExpSys has been developed by a new chromosome 

encoding technique that consists of separate chromosome structures for each of the 

resources, rather than the traditional method consisting of a single chromosome structure to 

represent all the resources. Moreover the proposed approach also includes an independent 

chromosome representation of the module allocations fields.  

3.1 The ExpSys overview 

The input to the GA framework is the behavioral description of the dataflow graph 

(DFG), or the high level description of the algorithm in C language, that describes the 

behavior of the application.  

In addition to the behavioral description of the application input to the GA framework 

also includes the set of user specified design constraints for hardware area and execution 

time (with the user specified weight factors for hardware area-execution time tradeoff), 

control parameters for the genetic algorithm, and the module library that contains 

specifically three different information viz. maximum resources available, clock cycles 

and area. The proposed framework is comprised of two basic units. The first unit is the 

proposed heuristic that acts as an input to the skeleton for the genetic algorithm. The 

second unit processes the information provided by the first unit to produce a final 

integrated scheduling, allocation and module selection solution. The proposed skeleton 

(algorithm) for the genetic algorithm is shown is Fig.1. It uses a new heuristic based on 

residual load criterion that assigns a specific priority for each operation in the 

chromosome structure. The first parent (P1) chromosome of the nodal string (this string is 

defined later in Section 4.2) is encoded based on the residual load (α) of each resource 

from the ASAP scheduling graph. On the contrary, each operation of the second parent 

(P2) nodal string is encoded based on the difference of the latency obtained by using 

ASAP scheduling with maximum resource (L
ASAP

) and the residual load (α) for each 

operation (oi) obtained for P1 chromosome. Hence, the encoded value of each operation 

(oi) of the second parent chromosome is calculated using Equation (1).  

 
ASAP

iL (o )    (1) 

The rest of the parents of the population in the nodal string encoded with the residual 

load values are obtained by random perturbation. The other parent chromosomes 

(P3…..Pn) of the population obtained by the perturbation function should be individuals 

lying between the Parent P1 derived from the schedule based on maximum resource and 

Parent P2 derived based on minimum resource. This is more logical because the optimal 

solution to the integrated problem lies somewhere between the maximum and the 

minimum resource. The developed perturbation function, which yields the residual load 

values, is given in Equation (2) 
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where „µ‟ is a random value between „α‟ and „β‟.  The additional random value „µ‟ is 

added to the perturbation function because, in order to have more diversity in the initial 

population, the residual load value for the rest of the parents (P3…..Pn) should be 

different (Note: This residual load value determines the priority among nodes during the 

decoding process. Thus, it is necessary to have different residual load values by adding 

the random value to the perturbation function). Moreover, having greater diversity results 

in searching all the corners of the design space, thereby assisting in finding the 

optimal/near-optimal solution. Ignoring „µ‟ in the above function would encode the nodal 

string part for the rest of the parents (P3…..Pn) with the same residual load values, 

thereby reducing the diversity of the initial population. The function in Equation (2) is 

used when encoding the values of the nodal string for the rest of the parents. On the other 

hand, the perturbation of the resource allocation string (this string is defined later in 

Section 3.2) for the other parents is obtained by applying the algorithm shown below: 

Algorithm 

  1) Schedule the DFG using ASAP algorithm and calculate the latency (L).  

  2) Generation G =1.  

  3) Creation of the initial population by chromosome encoding with priority list of nodes based on 

„residual load‟ which is done as follows: 

a) Encode the first parent (P1) of the nodal string using the residual load (α) based on the 

ASAP schedule. Encode the first parent (P1) of resource allocation string with maximum 

resources. 

b) Encode the second parent (P2) of the nodal string using residual load (β) calculated as: 

L
ASAP

 – α (oi) based on minimum resources. Encode the second parent (P1) of the resource 

allocation string with minimum resources. 

c) Create the rest of the parent (P3…Pn) of the nodal string with residual load based on the 

perturbation function = (α + β)/2 ± µ; where „µ‟ is a random value between „α‟ and „β‟. 

  4) Perform crossover with very high probability (Pcross) among parents to create off-springs. 

  5) Decode the chromosomes using the proposed „Residual load Heuristic‟ to find scheduling 

solutions by binding DFG operations to FU, allocating MUX‟s and DEMUX‟s.        

  6) Get information about the functional units (FU) such as versions, area occupied, clock cycle 

etc. from the module library. 

  7) Calculate the global cost function and determine the fitness of each individual. Global cost 

function considers A) Total Area which is a combination of: i) Area of FU ii) Area of MUX iii) 

Area of DEMUX. B) Total execution time which is a combination of, i) Latency ii) Cycle time 

and iii) Number of sets of data. 

  8) Perform mutation on the least fit nodal string chromosome and the resource allocation string 

chromosome with probability, Pm = 0.25. Mutation is performed once every generation 

  9) Decode the mutated chromosomes using the proposed „Residual load Heuristic‟ to find 

scheduling solutions and then calculate the cost of the mutated chromosome again. 

10) Select the best population from the set of off-springs and parents from this generation and take 

it forward to the next generation. Increment G, (G=G+1) until G< Generation Max 

11) End GA Run. 

Fig. 1 The proposed skeleton for the ExpSys  
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Perturbation rule for the resource allocation chromosome for rest of the parents  

1. Randomly pick any two nodes (v1, v2) from the chromosome that represents the 

resource allocation. 

2. Randomly select any integer value (i) ranging between or equal to „α‟ and „β‟ for that 

specific operation (node). Hence, α <=i<= β 

Once the parents for the initial population are formed direct crossover is applied. 

Crossover results in creation of off-spring in that generation. For every mating between 

two parents, two off-springs can be created. If, for example, size of the parents in the 

population is 8, then 16 off-spring will be produced. Therefore, the total population of the 

first generation is 24. The next task is to decode the generated individuals of the first 

generation by applying a new „residual load heuristic‟ that always results in a valid 

schedule. During the process of formation of the schedule solution, the data dependency 

is strictly followed before any operation is selected for scheduling. The global cost 

function is then determined in order to judge the fitness of each individual solution. The 

least fit individual is mutated in order to hope for a better solution. After mutation, the 

mutated chromosome is again decoded and its fitness is adjudged. The best fit individuals 

from this first generation are then forwarded to the next generation. This process 

continues until the maximum generation G(Max) specified in reached. 

3.2 Chromosome representation 

Suitable encoding of the problem dictates the capability of the genetic algorithm to 

find optimal or near–optimal solutions. The proposed approach uses a multi chromosome 

structure consisting of independent strings to separately represent the priority of the 

nodes of the DFG for each FU type and the resource allocation information. The 

approach is called multi chromosomal because each FU (resource) is represented as an 

independent substring in the nodal string structure. It has two independent strings to 

separately represent the nodes of the DFG (called „nodal string‟) and the resource 

allocation (called „resource allocation string‟). The „nodal string‟ contains the residual 

load values of each node which will determine the priority of the nodes during 

scheduling. The „residual load heuristic‟ is used when decoding the nodal string in order 

to obtain a valid scheduling solution. The „resource allocation string‟ contains a list of 

integers, which indicate the maximum number of resources allowed during scheduling. 

The resource allocation string contains a substring with integers to represent the 

maximum number of functional units of each type available for scheduling in every time 

step of the schedule. This encoding scheme for both the resource allocation string and 

nodal string assures that the genetic algorithm always produces a valid schedule as well 

as reaching all the corners of the design space to explore the integrated solution of 

scheduling, allocation and binding. The encoding scheme for the „nodal string‟ and the 

„resource allocation string‟ is shown with an example of a benchmark „Differential 

Equation Solver‟. Small values of delay in cc are used during demonstration. For clarity, 

during experimentation real values have been used. The schedule of the DFG of the 

differential equation solver using ASAP is shown in Fig.2. The latency (L) obtained is 

12cc (Note: Assumes multipliers and adders/subtractors take 4cc and 2cc respectively). 

The corresponding chromosome encoding for the first parent (P1) of the nodal string is 

shown in Fig. 3(a). The total residual load of each operation (node) is obtained by 

summation of the residual load of the successor operations following that node. E.g. for 
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node 1, the residual load is (4+4+2+2) cc = 12cc.  The second parent (P2) chromosome is 

encoded based on the residual load values obtained using Equation (1). The second parent 

(P2) chromosome encoding is shown in Fig. 3(b). The rest of the parents of the initial 

population is obtained using Equation (2) which is a perturbation function used to encode 

the residual load values. The residual load values for rest of the parents always lie 

between the values from the first parent and second parent. This scheme has been 

developed because the optimal solution to the problem should always lie between the 

serial and maximally parallel implementation [4].  On the other hand, the first parent (P1) 

shown in Fig. 3(a) and second parent (P2) of the resource allocation string shown in Fig. 

3(b) are based on the user specified maximum and minimum resources respectively. For 

example, the first parent (P1) of the resource allocation string shown in Fig. 3(a) consists 

of three multipliers, three adders, two subtractors and one comparator.  Additionally, 

second parent (P2) of the resource allocation string shown in Fig. 3(b) consists of one 

multiplier, one adder, one subtractor, and one comparator. The rest of the parents 

(P3…P8) of the „resource allocation string‟ are obtained using the algorithm in Fig 3. The 

„resource allocation string‟ for the rest of the parents of the initial population is also 

encoded with multiplier, adder, subtractor, and comparator option (Note: „M‟, „A‟, „S‟, 

„C‟ refers to multipliers, adders, subtractor, and comparators respectively in the resource 

allocation string). Thus, the final solution found by the proposed ExpSys is able to 

indicate the final combination of multipliers, adders, subtractor, and comparators needed 

to implement the problem based on the user specified hardware area and execution time 

constraints. The nodal string and the resource allocation string for the rest of the parents 

are shown in Fig.4(a) and Fig.4(b) respectively. For example, in case of Fig 4(a), the 

encoding of the third parent for the resource allocation string is obtained by first picking 

up randomly any two nodes M (multiplier) & A (adder) and then randomly selecting any 

integer value between „3‟ and „1‟ for M and between „3‟ and „1‟ for A. The randomly 

selected value for both M & A is „2‟. Similarly, the rest of the parent chromosomes can 

be built by perturbation. This type of perturbation for the „resource allocation string‟ and 

the perturbation function for the „nodal string‟ described before aids in searching all the 

possible combinations of the design space so that the GA can reach an optimal or near-

optimal solution. 

 

Fig. 2 Scheduling of Differential equation solver using ASAP 
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Fig. 3 Chromosome encoding for the first parent (a) and second parents (b) 

 
Fig. 4 Chromosome encoding for the third parent (a) and fourth parent (b) 

 
Fig. 5 Crossover between P1 and P2 
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3.3 Crossover technique 

Crossover is a technique for producing off-spring when two parents mate. The parents 

are selected by a binary tournament selection method [28]. In this work, we propose the 

independent direct crossover of the two independent strings viz. nodal string and resource 

allocation string to produce separate off-spring for each with a very high crossover 

probability (Pcross = 1.0). Furthermore, the direct crossover is applied to each sub structure 

of the nodal string structure. For example, direct crossover is independently applied to 

adder substring, multiplier substring, subtractor substring, etc. of each nodal string as well 

as resource allocation string.  Since the nodal string encodes the residual load of each 

operation for a particular FU, the crossover results in crossing only the residual load values. 

Hence the precedence relationship among the operators is not disobeyed. 

3.3.1 Multi-point crossover of the nodal string 

Before the crossover scheme can be applied to the nodal strings, the two parents are 
randomly divided into two halves at point n. The crossover point selected during crossing 
is absolutely random. This is because the nodal string is encoded with residual load 
values of the nodes and crossover operation only crosses the residual load values, hence 
choosing a random cut point for crossover does not disturb the precedence relationship 
among the nodes. Only random cut point has been used in the proposed work as this 
technique has been widely used by other approaches and provided efficient results. The 
proposed crossover is called multi-point because each substring of the nodal string 
representing independent FUs is divided at a different point. For example, applying the 
direct crossover operator to the nodal string between the first parent (Fig. 3(a)) and 
second parent (Fig.3(b)) at point 2 for multiplier and point 1 for adder and subtractor, 
yields offspring 1 and offspring 2 respectively. Offspring 1 inherits all the properties of 
the first half from the first parent, while the second half of the offspring is inherited from 
the second parent. The properties that are inherited from the parents are the residual load 
values and its corresponding node numbers (operations).  The offspring 1 obtained after 
crossover between P1 and P2 is shown in Fig 5(a), while offspring 2 obtained after 
crossover between P2 and P1 is shown in Fig. 5(b). Similarly the other offspring are 
obtained by crossing between the rest of the parents. For the sake of brevity, the rest of 
the offspring obtained have been omitted in this paper. 

3.3.2 Crossover of the resource allocation string 

The resource allocation string is responsible for encoding the number of hardware 
functional units of each type available for scheduling operations in each time step. Since 
the number of allocated functional units of each type is totally independent of each other, 
the 1-point crossover can be easily applied. For instance, in the case of the DFG for 
differential equation solver benchmark, the two parents (P1 and P2) for the resource 
allocation string are shown in Fig. 3(a) and 3(b) respectively.  P1 represents a solution 
with three multipliers, three adders, two subtractors and one comparator while P2 
represents a solution with one multiplier, one adder, one subtractor and one comparator.  
Application of the direct crossover at a random cut point between P1 and P2 yields 
offspring 1 while crossing between P2 and P1 yields offspring2 as shown in Fig 5(b). 
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3.4 Mutation operation 

3.4.1 Mutation operator of the nodal string 

The mutation algorithm for resource allocation string is adopted from [8] based on 
random increment or decrement while mutation for nodal string is shown below: 

Algorithm 
1. Randomly pick any two nodes (vi, vj) from the nodal string [k]. 
2. Swap the residual load values of the two selected nodes.  

If, vi = Li and vj = Lj, then, 
  vi = Lj and vj = Li. 

According to the algorithm, any two nodes (vi, vj) in the string (k) are randomly selected 
for mutation. Next, the residual load values of the two selected nodes are swapped. For 
example, let the residual load value for the two nodes (vi) and node (v2) selected be „L1‟ 
and „L2‟ respectively. Therefore, after mutation the new residual load values for node (vi) 
is „L2‟ and node (vj) is „L1‟. This mutation technique drastically alters the residual load 
values, which act as the priority to select the operations for scheduling. As a result of this 
drastic alteration, the new operation to be scheduled can vastly affect the scheduling cost. 

3.5 Decoding process (determination of a valid schedule) 

The decoding of chromosomes always results in a valid scheduling solution, which 
strictly obeys the data dependency present between the operations. For the decoding 
process, a „residual load heuristic‟ is proposed. The residual load heuristic is shown in 
Fig. 6. For example, in the case of offspring 1, the resource allocation string and the 
nodal string are shown in Fig.5(a) and Fig.5(b) respectively. The resource allocation 
string of offspring1 represents an allocation solution containing three multipliers, three 
adders, one subtractor, and one comparator. On the other hand, the priority of each 
operation for a particular type of FU is indicated by the residual load values in the nodal 
string (Fig.5(b)). Therefore, for the dataflow graph shown in Fig.3, the scheduling 
solution of offspring 1 is shown in Fig. 7. The resulting solution is a valid schedule, 
allocation and binding obtained for offspring 1. The solution provides an integrated 
solution to the concurrent problem of scheduling, allocation and binding.  

3.6 Global cost function and fitness evaluation methodology  

The proposed approach objective is to simultaneously reduce the execution time 

required for a specific set of data as well as the total hardware area occupied. Most of the 

previous approaches [2], [4], [7], [8] have only considered latency as a design constraint 

and not total execution time, which considers the latency, cycle time and also the number 

of sets of data to be executed. In the presented approach, a comprehensive cost function 

has been developed that considers the total execution delay, taking data pipelining as well 

as the total hardware area into account. The decoding process strictly follows the 

„residual load heuristic‟ and hence always results in a feasible solution. The cost function 

(CG) developed considers total execution time and area is shown in Eq. (3). 
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Fig. 6 Flow chart for residual load heuristic 

 
Fig. 7 Chaining schedule and allocation to offspring 1 (Decoded) 
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 EXE CONS FU MUX DEMUX CONS
G

MAX MAX

T T [A (A A )] A
C W1 W2

T A

   
      (3) 

TEXE = Total execution time taken for execution of the given sets of data; where TEXE is 

calculated using the function from [1] given in equation (4): 

 
EXE CT {L (N 1) T }     (4) 

L= Latency of the scheduling solution. TC = Cycle time of the scheduling solution. (Note: 

The cycle time is the difference in clock cycles between any consecutive outputs of 

pipelined data instances. The cycle time information is therefore not extracted from the 

module library since it is not readily available, i.e. the cycle time calculation for the 

integrated solution (Fig. 7). The output for first set of data is arriving after 14cc while the 

output for second instance of data is arriving after 26cc. Thus, due to pipelining there is a 

cycle time difference of 12 cc resulting from considering the initiation interval. Therefore 

the option of cycle time during pipelining which is the resulting effect of considering 

initiation interval during data pipelining has been also taken into account during the 

exploration process.  

AT= Total area calculated using Eq. 5. 

 T FU MUX DEMUXA  = A +(A +A )  (5) 

N = Number of sets of data to be executed. 

CG = Global Cost of the integrated solution 

TCONS = Execution time specified by the user. 

TMAX = Max execution time taken by a solution during the specific generation (G). 

AFU = Total area of the functional units. 

AMUX = Total area of the multiplexer used during implementation. 

ADEMUX = Total area of the demultiplexers used during implementation. 

ACONS = Area constraint specified by the user. 

AMAX = Max hardware area of a solution during the specific generation (G). 

W1 and W2 = User specified preference of the constraints.  

The cost function requires input from various sources to evaluate the fitness of each 

solution found. For the calculation of the execution time, the sources consist of: a) 

module library information, b) data extracted for the hardware implementation, c) data 

flow graph and d) scheduling solution found after decoding the chromosome (latency), 

number of sets of data, cycle time together. 

3.7 Termination criterion for the genetic algorithm 

The maximum generation has been kept constant for each benchmark run. Although 

making the number of generations proportional to the problem size is more logical, 

settling on an average number of maximum generations for both small and large size 

benchmarks is a good compromise. Therefore, experiments dictated that retaining the 

maximum generation G(Max) at 100 is an optimal compromise.  
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4. EXPERIMENTAL RESULTS 

Various DSP benchmarks [29], [30] such as digital filter, Auto Regressive Filter 

(ARF), Discrete Wavelet Transformation (DWT), Digital Butterworth filter, Band Pass 

Filter (BPF) and Elliptic Wave Filter (EWF), MPEG Motion Vectors, MESA: Matrix 

Multiplication and JPEG: Down sample were tested and verified. The proposed approach 

has been implemented in Java and run on Intel core i5-2450M processor, 2.5 GHz with 

3MB L3 cache memory and 4GB DDR3 RAM. ExpSys finds optimal/near-optimal 

results for all the benchmark applications. Moreover, the proposed ExpSys was also 

compared to [8] with respect to the mentioned benchmarks under the same constraints to 

make a qualitative assessment and strength of the proposed approach.  The proposed 

achieved better quality of result (determined by Eq.6) as shown in Table I. Furthermore, 

ExpSysalso considers cycle time resulting from initiation interval and latency to create a 

genuinely pipelined functional data-path during performance calculation. [8], on the other 

hand, is not able to optimize the execution time considerably due to its inability to create 

a genuinely pipelined functional data-path. Thus, for determining of execution time in 

[8], “N” set of processing data is multiplied directly with the latency as per: 
[8]

EXET N*L.  Where the QoR is determined as: 

 
max max

1

2

T EXEA T
QoR

A T

 
  

 
 (6) 

With respect to achieved QoR, ExpSys produces better solutions compared to [8] for all 

the benchmarks as evident in Table 1. For example, in the case of ARF benchmark, the 

optimal resource configuration found 3 (*) and 1(+), the area of solution is 10934au, the 

execution time is 54281µs and the QoR is 0.35. On the other hand [8], based on same 

constraints, yields an optimal resource configuration which is 4(*), 1(+) with 13776au 

area, 45630 µs execution time and 0.36 QoR. ExpSys achieves an average improvement 

in QoR greater than 26% (Table 1).   

5. CONCLUSION 

This paper proposed a novel technique for Area-Execution time tradeoff using 

residual load decoding heuristics in genetic algorithm (GA) for integrated design space 

exploration (DSE). To the best of the authors‟ knowledge, this approach is the first 

GAbased DSE method for Area-Execution time tradeoff in HLS. Based on the results 

obtained from the experiment, the proposed ExpSys is able to provide not only 

competitive but also superior results for almost all tested DSP benchmarks. 
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