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Abstract. Electric characteristics of devices in advanced CMOS technologies change over 

the time because of the impact of the ionizing radiation effects. Device aging is caused by 

cumulative contribution of generation of defects in the gate oxide and/or at the interface 

silicon-oxide. The concentration of these defects is time and bias-dependent values. Existing 

models include these effects through constant shift of voltage threshold. A method for 

including ionizing radiation effects in Spice models of MOS transistor and FinFET, based on 

an auxiliary diode circuit using for derivation of values of surface potential, that also 

calculates the correction time-dependent voltage due to concentration of trapped charges, is 

shown in this paper. 
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1. INTRODUCTION 

With aggressive scaling of device dimensions in CMOS technologies, which includes 

the decrease of oxide thickness and the increase of doping concentration in the channel, 

the susceptibility of the most CMOS technologies has been reduced. Scaling of the oxide 

thickness caused the decrease of concentration of fixed charge in the oxide, because the 

value of the concentration is directly proportional to the oxide thickness. On the other 

side, the increase of doping concentration in the channel decreased the oxide trapped 

charge effect on the surface potential of the channel, which also caused robustness of the 

components on ionizing radiation [1]. However, recent studies showed that the negative 

bias temperature instability damage and hot carrier injection damage were attributed to 

the charges trapped in the oxide (with areal density Nox) and/or at the interface of the 

silicon and oxide layers (with energy density distribution Dit) [2-4]. Therefore, trapped 

charges still represent a potential radiation threat and have measurable impact on the 

integrated circuits performances [2,5]. 
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A harmful effect of ionizing radiation on CMOS devices can be diminished by using 

well-known techniques, such as radiation-hardening-by-process (RHBP) and radiation-

hardening-by-design (RHBD) techniques [6,7]. However, even with significant efforts in 

RHBP and RHBD techniques, the capability of estimating the influence of ionizing 

radiation on electric characteristics of devices in advanced technologies are still improper 

[8]. Analysing of test IC circuits on ionizing radiation is quite expensive [7], so the 

incorporation of ionizing radiation effects in devices compact models used in standard 

electric circuits simulators is put upon as an alternative. The incorporation of these effects 

needs the knowledge of physical processes which contribute to emerging of the defects 

due to ionizing radiation and the impacts which these effects have on the electric 

characteristics of components in advanced CMOS technologies [8,9]. Numerous existing 

techniques for modelling these effects in circuit simulators are based on the fixed change 

of threshold voltage (threshold voltage shift), not considering the special impact which 

these defects have on the electric characteristics of the transistors [2,10-12]. 

Previously derived surface-potential based non-quasi static MOS model (NQS MOS 

model) and non-quasi static SOI model (NQS SOI model) can be modified as to include 

these effects of oxide trapped charges and interface trapped charges is described in this 

paper [13,14].  

2. IONIZING RADIATION EFFECTS IN CMOS DEVICES 

The main cause of the damage that occurs in CMOS devices after ionizing radiation is 

the generation of the electron-hole pairs in the oxide (or another dielectric) as a material 

that is the most sensitive to ionizing radiation in CMOS devices. After the generation of 

the electron-hole pairs, some of the pairs are immediately recombined. Since the electron 

mobility in the oxide is considerably bigger that the hole mobility [15,9], the electrons 

will be soon swept out of the oxide or the dielectrics, while the holes will move slowly 

through the oxide to the interface SiO2-Si, causing long-term effects of the ionizing 

radiation. Fig. 1 shows the processes after the ionizing radiation. 

 

 

Fig. 1 Processes in the oxide after the ionizing radiation [16] 
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Vacancies in the oxide or the dielectrics can trap the generic holes. A total amount of 

trapped charge in the oxide is Nox. The trapped charge changes the threshold voltage thV  

of CMOS devices for the threshold voltage shift [17]: 

 ,
2

ox

oxox
th

Ntq
V


  (1) 

where q is the electron charge, tox is the oxide thickness and ox is the oxide permittivity. 

The threshold voltage shift Vth is negative, which means that in the case of the NMOS 

transistor the off current increases, while in the case of the PMOS transistor the total 

value of threshold voltage Vth increases, as shown in Fig. 2(a). It can be concluded from 

(1) that Vth depends on the square of the oxide thickness; with the decrease of the oxide 

thickness in nanometer CMOS technologies and due to the change of the threshold 

voltage the oxide trapped charge will be smaller. 

 

Fig. 2 Illustration of the threshold voltage shift Vth due to the oxide trapped charges (a) 

and increase in subthershold swing due to interface trapped charges (b) [17] 

After the ionizing radiation, the generation of interface traps occurs, which 

concentration is Nit. The generation holes react with hydrogen atoms in the oxide, making 

in such a way H
+
 ions [18]. These ions move by drifting to SiO2-Si interface, and create 
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dangling bonds (i.e. Pb centres) [2]. Interface trapped charges are often linked with the 

permanent effects of components aging [2,10].  

Fig. 2(b) shows the impact of the generation of trapped charges at the SiO2-Si 

interface on the transfer characteristic of the transistors. It can be noted that these charges 

increase the swing in the device subthreshold region. For NMOS and PMOS transistors, 

the generation of interface trapped charges decreases the transistor off current.  

3. NQS MOS AND NQS SOI TRANSISTOR MODELS 

Static and dynamical characteristics of transistors can be described by set of basic 

equations, which are comprised of Poason's equation, drift-diffusion and continuity 

equations [19]. Since MOS transistor modelling is three dimensional problem, solving 

these sets of equations is complex and memory demanding. However, for numerous 

practical applications of MOS transistors, changes in the third direction can be neglected 

and problem can be reduced to two dimensional problem (to x and y direction).  

3.1. NQS MOS transistor model  

In [13] a physically based NQS MOS transistor model is described, which belongs to 

a group of models based on surface potential. Fig. 3 shows equivalent model scheme, 

which as a subcircuit can be embedded into electric circuit simulators. External elements 

of transistor model (resistors and capacitors) can be modelled in a similar way as in other 

stationary or non-stationary models.  

Unlike some known models [20-22], in the NQS MOS model there are no analytical 

expressions for node currents, but they are obtained after the solution of equivalent circuit 

shown on Fig. 3(a). This subcircuit has two parts, as shown on Fig. 3(b):  

 Internal part is connected to transistor gate terminal. This part of the model is, in 

fact, equivalent line that models drift-diffusion transport of electrons in transistor 

channel; 

 External part is connected to source, drain and gate terminals, and it contains 

current-controlled current sources iS1 and iSN. This part of the circuit is defined by 

the potential of source, drain and substrate that is obtained by mirroring the 

currents which flow through voltage sources S1 and SN. 

Voltage generators S1 and SN copy values of boundary surface potentials to 

subcircuit in the source end and the drain end of channel.  

Voltage generator VB serves to copy bulk polarisation to equivalent subcircuit. 

Capacitance Coxk represents gate-oxide capacitance (Coxk = Cox / N). The other model 

elements Rk and Ck, non-linear channel resistance and depletion region capacitance, are 

respectively defined by the equations:  
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where the constants A1  A7 are physically based, Nch is doping concentration in the 

channel and Si is the silicon permittivity. Surface potential of every cell is denoted with 

Sk. The derivations for (2) and (3) and the expressions for A1  A7 are given in [13].  

 

 

(a) 

 

(b) 

Fig. 3 NQS MOS model (a) and the equivalent subcircuit (b) 

In a surface charge-sheet model, which describes MOS transistor operation [23], the 

boundary channel potentials S1 and SN at the source and drain side are functions of 

biasing voltage of transistor terminals through the following recurrent relations [24]: 
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In the previous equations  is the body factor, VT is the thermal voltage, f is the 

channel potential (=VT  ln(Nch/ni))) and Vfb is the flatband voltage. Since the equations (4) 

and (5) are implicit relations, to determine surface potentials S1 and SN there are several 

iterative methods proposed in the literature [25]. In the NQS MOS model, relations (4) 

and (5) are determined by diode circuits. For any point y in the channel is: 
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By comparing the equation (6) with the diode current expression: 

 0 (exp( / ) 1)d Sy T ssI I V I    (7) 

the conclusion is that:  
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When determining the boundary surface source potential S1, in the equation (8) Sy and 

fy should be replaced with Sy = S1 and fy = 2f + VSB, consecutively, while for 

determining boundary surface potential on the drain side SN instead Sy and fy should be 

used SN and 2f + VSB + VDS, respectively. Owning to this type of analysis, it is possible 

to construct a circuit for solving equations (7) and (8), which is comprised of a diode 

(with unit current I0 = 1) and voltage-controlled current source, where the current is 

calculated by the equation (8). Figure 4 shows this type of auxiliary diode circuit.  

For determining both boundary surface potentials, 1S  and SN , there are used two 

identical diode subcircuits and the described method is used to solve the equations (4) and 

(5). The values of the boundary surface potentials determined in this way are copied with 

voltage generators S1 and SN (shown in Fig. 3(b)) on the input and output of equivalent 

circuit to solve the transport of the electrons in the channel. Knowing the boundary 

surface potentials allows us to calculate the values of nonlinear resistors and capacitors Rk 

and Ck, namely to determine the transistor currents. 

 

Fig. 4 Diode subcircuit for solving surface potentials 
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A physical base of the NQS MOS model in an easy way allows including significant 

effects shown in aggressive scaling of transistor dimensions, like, for example, short 

channel effects and quantum-mechanics effects. 

3.2. NQS SOI transistor model  

A compact model for n-channel fully depleted SOI MOS transistor with double gate 

(FD SOI transistor) is developed based on the NQS MOS model, and it is applicable for 

asymmetrical and symmetrical planar structures [14]. In non-stationary model of FD SOI 

MOS transistor (NQ SOI model), a transistor is represented by parallel connection of two 

SOI transistors with one gate, as shown in Fig. 5, to model current in a front and back 

channel [14].  

 

 

Fig. 5 Schematic presentation of FD SOI transistor (a) and its electric equivalent (b) 

By comparison with the NQS MOS model, recurrent expressions for calculating 

boundary surface potentials in the NQ SOI model also contains the influence of biasing of 

both gates. So the boundary surface potentials in channel S1 and SN in the FD SOI 

transistor are connected with biasing of front (VGF) and back (VGB) gate, and biasing 

between drain and source VDS with new recurrent relations [26,27]: 
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where, in the case of fully depleted silicon layer, boundary potentials of back channel can 

be expressed as:  

 ,and
22
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   (11) 

while for a fully symmetrical transistor applies toxF = toxB. In the equations (9)-(11) the 

index F relates to the front gate, and the index B relates to the back gate. Recurrent 
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relations (9) and (10) are calculated with the assumption that the difference of Fermi’s 

potentials between the source and the drain is equal to the voltage VDS. Electric potential 

distribution in the channel through depth, i.e. in the line of axis x, is obtained by solving 

these recurrent relations (Fig. 6).  

 

Fig. 6 Electric potential distribution in the channel through depth of FD SOI transistor 

For applications in the NQ SOI model for a symmetrical FD SOI MOS transistor, 

recurrent equations for calculating boundary surface potentials can be written with basic 

algebraic transformations [14] in the following form: 
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where on the source side Sx = S1 and fx = 2f , while on the drain side the changes have to be 

made Sx = Sn and fx = 2f + VDS. In the previous expressions, tSi is the silicon film (body) 

thickness. Auxiliary diode circuits, similar to the NQS MOS model for solving recurrent 

relations, are used in this way for calculating boundary values of surface potentials in the NQ 

SOI model. Fig. 7 shows equivalent diode circuit for solving the equation (12) [14]. 

 

Fig. 7 Diode subcircuit for solving surface potentials in NQS SOI model 
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4. INCLUSION OF NOX AND DIT IN NQS MOS AND NQS SOI MODELS 

A physical foundation of previously described models allows easily inclusion of 

effects important for transistor operation. Modelling of the effects of generation interface 

trapped charge with energy density distribution Dit and oxide trapped charge with areal 

density Nox is possible in NQS MOS and NQS SOI model by changing the surface 

potential equations. It is possible to model the impact of these effects onward on the 

characteristics of transistor in two ways: 

1. Auxiliary diode circuits, with the included effects of Nox and Dit, are used for 

determining surface potentials for use in NQS MOS and NQS SOI models or 

2. Auxiliary diode circuits, with the included effects of Nox and Dit, are used for 

determining surface potentials, and then to connect consecutively to gate of some 

standard models (for example, BSIM 4 for MOS transistor or BSIM.CMG for FinFET). 

A total amount of electric charge caught in oxide is: 

 ,oxox qNQ   (16) 

while a total amount of interface charge [19]: 
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where Eg / 2 is the midgap energy level at the interface and Ef is the energy of Fermi level. 

If we add and subtract the factor Egb / 2, where Egb is the bulk midgap energy level, to the 

factors in the equation parenthesis (17) we have: 
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As stated in the Section 2, charges Qox and Qit have impact on the change of the transistor 

voltage threshold. This change can be expressed by correction potential nt [6]: 
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In the NQS MOS model, the equations (4)-(6) are modified in a way to include 

correction potential nt. Eqn. (6) in a modified form with included correction potential is: 
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For determining surface potential Sy, two identical diode circuits are used, as shown 

in Fig. 3(b).  

In the NQS SOI model, for a symmetrical FD DG SOI transistor, the equation for 

surface potential is modified in a way to include nt in the following way: 
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The parameter b, which appears in the equation (21), can have the value b = 0 for the 

source end of the channel and b = 1 for the drain end of the channel (in accordance with 

the equations (9) and (10)). However, the main problem in modelling of trapped charges 

with (21) is the fact that the distribution of surface potential in the channel depends not 

only on gate voltage, but also on drain voltage VDS due to split of quasi Fermi levels [19]. 

It means that the concentration Qit will change along the channel, even for the constant Nit. 

The impact of the changeable charge Qit along the channel can be modelled with a modified 

value of the parameter b  (0,1). In the equation (21) it is calculated with in advance known 

value, and it is possible with the fine tuning [28] to accomplish better match of the model 

results with the results of 2D TCAD numeric simulator Silvaco Atlas [29]. 

The equation (21) can also be solved with auxiliary diode circuits (Fig. 7) with: 
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The surface potential S from the diode circuit in Fig. 7 represents the equation solution 

(21) for any combination of voltage variables VDS and VGS. 

5. SIMULATION RESULTS AND DISCUSSION 

The ionizing radiation has the effects on the changes of the electric characteristics of 

the transistor. In the paper, the approaches described in the Section 3 are used for the 

simulation of electric characteristics of the transistor and the results are compared with 

numerical results.  
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5.1. Modeling of Nox and Dit effects in MOS transistor 

Including of the effects Nox and Dit in the NQS MOS transistor model is made by 

incorporation of the correctional potential nt in the surface potential equation (eqn. 20). 

As already stated, with diode circuits as in Fig. 4, by using mathematical apparatus 

available in the Spice, the boundary surface potentials are acquired, and based on them 

the equivalent line is solved (Fig. 3). In this paper, the equivalent line is divided on 10 

equal segments. Fig. 8 shows the acquired surface potentials that show the impact of Nox 

(Fig. 8(a)) and the impact of the interface trapped charges through Dit on the surface 

potential value. The results acquired with diode circuits are shown with solid line, while 

the numerical results are shown with open circles. A solid compliance of the results 

confirms the efficiency of the diode circuit as a new method for solving iterative relations 

(21). As it can be seen on the figure, the surface potential is changed for constant negative 

voltage shift with the increase of Nox, while Dit = 0. In the case of the increase of Dit while 

Nox = 0, the voltage shift of the surface potential will depend on its value due to the 

dynamic charge contribution on SiO2-Si interface. Namely, the interface charges have the 

energy inside forbidden zone. Interface trapped charges with energies above intrinsic 

energy level Ei behave as acceptor-like charges, while all interface trapped charges with 

energies below intrinsic energy level behave as donor-like charges, which is experimentally 

verified [2,30,31].  

 

Fig. 8 Surface potential versus gate voltage dependence for different values of Nox  

at Dit = 0 (a) and for different values of Dit at Nox = 0 (b) obtained from  

Spice simalation of proposed model (solid line) and TCAD numerical results  

(open circles) for MOS transistor with tox = 5 nm and Nch = 410
17

 cm
3

  

Fig. 9 shows the transfer characteristics of MOS obtained from the Spice and 

compared with TCAD numerical results, which shows solid compliance of the results of 

the applied method in NQS MOS model with the TCAD numerical results.  

It is important to state that in [2] is used the same expression for correctional potential 

due to the effects of ionizing radiation, by using voltage-controlled voltage source 

(VCVS) with voltage: 

 )(),,,( SitoxSBGBDF fDNVVfV   (25) 
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and which is series connected to transistor gate, for which some of standard models are 

used (for example, BSIM model). For determining VDF = nT, respectively solving (19) the 

authors used the non-iterative algorithm inside the Verilog-A model [2], while in our 

method the iterative equation for determining the surface potential was solved in a 

physical way, with diode subcircuits.  

 

Fig. 9 Transfer characteristics ID(VGS) for different values of Nox at Dit = 0 (a) and for 

different values of Dit at Nox = 0 (b) obtained from Spice simalation of proposed 

model (solid line) and TCAD numerical results (open circles) 

5.2. Modeling of Nox and Dit effects in FinFET 

With the scaling of the device dimensions, conventional transistors reached its limits, so 

new technological structures for future generations of integrated circuits are emerging. Such 

structure is fully-depleted floating-body (fin) multi-gate FET (FinFET) [32]. However, recently 

it has been shown that FinFET technology has rapid rate of aging, so that the degradation on 

FinFET exceeds the degradation of the planar technology node by higher stress voltage and 

longer time [33]. Therefore, the modelling of ionizing radiation effects in these structures is 

important. In the standard BSIM.CMG model [34] for FinFET, however, there is only fitting 

parameter CIT (interface trap capacitance parameter) in sub-threshold region [35], while it does 

not have a possibility for user-defined input of oxide trapped charges.  

Fig. 10 shows a schematic presentation of n-type FinFET analysed in this paper (with 

the following parameters L = 0.9 m, tox = 5 nm, tSi = 20 nm, Nch = 2.410
18

 cm
3

 and 

ND = 10
20

 cm
3

).  

 

Fig. 10 Schematic representation of n-type FinFET 
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Fig. 11 shows the output characteristics of transistor obtained by using TCAD numerical 

results, BSIM.CMG model which parameters are acquired by fitting, and modified NQS SOI 

model. In order to simplify the tuning of the parameters of BSIM.CMG model, a simulate 

structure has a long channel and the thickness of oxide gate and silicon fin, so the effects of a 

short channel can be neglected, and the silicon fin is fully depleted [28,36]. The same 

parameter set is used for p-type FinFET, with the fact that the fin film has the opposite 

doping (n-type fin film). In the absence of the ionizing radiation effects, the compliance of 

results of different models is shown [28]. 

 

Fig. 11 The output characteristics of n and p-type FinFETs simulated for Nox = 0 and 

Dit = 0 with Spice using BSIM.CMG model (solid line), NQS SOI model  

(dashed line) and TCAD simulator Silvaco Atlas (open circles) 

Modeling of Nox and Dit effects by using auxiliary diode subcircuits (ADS) for solving 

surface potential equations (21) is possible in two ways: by using NQS SOI model (time 

consuming), or as shown in [2,6], for determining surface potential as control voltage of 

VCVS for producing VDF = nt = f (VGB, VSB, Nox, Dit). This VCVS is connected in series 

with gate node of BSIM.CMG model, as shown in Fig. 12. 

Second approach of modelling the ionizing radiation effects in FinFET is at time more 

comfortable, because the simulation execution time is shorter and there are no problems 

due to convergence, but due to a physical dependency the NQS SOI model is more 

convenient, because other effects important for the operation of FINFET can be easily 

included (for example, quantum-mechanic effects). The second approach, BSIM.CMG 

model with ADS, was used in this paper for modelling the ionizing radiation effects. 
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Fig. 12 Schematic of diode subcircuit shown together with the BSIM.CMG FinFET 

model as implemented in Spice simulations to include the effects of Nox and Dit 

Fig. 13 shows transfer characteristics of n and p-type FinFETs for different values of 

Dit while Nox = 0. Fig. 14 shows transfer characteristics for different values of Nox while 

Dit = 0, and Fig. 15 shows characteristics for combinations of different values of Nox and 

Dit. In Figs. 14 and 15 there are no results obtained by BSIM.CMG model because oxide 

trapped charge effect is not included in this model. All characteristics are generated for 

VDS = 1.2V. In the BSIM.CMG model, a parameter CIT is determined for given Dit. 

Parameter b, which appears in the equation (21), was used with value b = 0.05, for the 

reason previously explained in Section 4. All stated characteristics show good match of 

suggested approaches with TCAD numerical results [28,37]. 

 

Fig. 13 Transfer characteristics ID(VGS) for different values of Dit at Nox = 0 
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Fig. 14 Transfer characteristics ID(VGS) for different values of Nox at Dit = 0 

 

Fig. 15 Transfer characteristics ID(VGS) for combined influence  

of Nox and Dit  for n-type FinFET 

Fig. 16 shows changes of threshold voltages for n and p-type FinFETs after ionizing 

radiation, obtained from TCAD and proposed method. The constant current method is 

used for threshold voltage extraction [28,38], with I'D = 100 nA/m. The impact of this 

ionizing radiation effect is also experimentally confirmed [39]. 
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Fig. 16 Theshold voltages Vth for p and n-type FinFET as function of Nox and Dit.  

6. CONCLUSION 

The modelling of ionizing radiation effects for CMOS devices is presented in this 

paper. It is shown how surface potential equations can be modified with correctional 

potential, which is a result of existence of oxide charges and interface trapped charges. 

Auxiliary diode circuits were used for determining modified surface potentials, while for 

obtaining electric characteristics of devices, two approaches were used, previously 

developed non-stationary models for CMOS devices and, second approach, VCVS (with 

controlled voltage obtained by diode circuits) in series with gate node of standard models. 

In comparison with TCAD numerical simulations, the efficiency of suggested approaches 

for prediction of impacts of dynamic effects of both oxide and interface trapped charges 

on electrical characteristics of devices is shown. 
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