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Abstract. Reduction of long-term degradation effects represents a long-time challenge in 

photovoltaic (PV) manufacturing industry. Modelling of long-term degradation types and 

their impact on maximum power of PV systems have been analysed in this article. Brief 

guidelines for PV cell-based modelling of PV systems have been illustrated. Special study 

case, PV string consisting of 12 PV modules, has been modelled in order to determine 

degradation and mismatch power losses. Modified methodology for prediction of annual 

energy production from PV string, based on horizontal irradiation and ambient temperature 

experimental measurements at the location of Belgrade, has been developed. Coefficient 

named “degradation factor” has been introduced to include and validate degradation power 

losses. Economic considerations have indicated evident money income reduction, as a 

consequence of lower annual energy production related to long-term degradation.   
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mismatch losses 

1. INTRODUCTION 

Precise determination of annual energy production from PV systems is very difficult to 

achieve, mostly due to variable operating conditions (irradiation and ambient temperature) 

[1]. Electricity production is closely related to conversion efficiency, which represents one 

of the most important parameters when discussing PV systems [2]. The new materials are 

being constantly developed with purpose of increasing conversion efficiency and mitigating 

degradation effects. According to research, presented in [3], organic materials with PV 

properties have proved to be one of the most promising solutions. Meanwhile, conventional 

silicon materials remain the most widely used in field applications. 
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Conventional methods for prediction of energy production from PV systems usually use 

hourly-averaged horizontal irradiation and ambient temperature measurements for specific 

locations [4-6]. One of their main shortcomings is neglecting of long-term degradations 

related to encapsulating material, e.g. delamination, discoloration and corrosion. According 

to various research results [7-12], it has been found that long-term degradation effects can 

often reduce PV system’s power up to 15-20% during lifetime exploitation period. 

This article is organized as follows. The second chapter covers basic facts related to 

most common types of long-term degradation. In the third chapter, modelling guidelines 

for PV systems and degradation types are presented. PV module degradation effects, 

under variable irradiation and temperature condition, have been analysed with results 

presented in the fourth chapter. The fifth chapter presents study case dedicated to PV string 

power reduction due to long-term degradation. Modified methodology for prediction of 

annual energy production from PV string and financial income, based on introduction of 

degradation factor, has been investigated in sixth chapter. Valuable conclusions are pointed 

out in final chapter. 

2. LONG-TERM DEGRADATION OF PV SYSTEMS 

Degradation represents a gradual deterioration of PV system components caused by real 

operating conditions in the field. Affected PV modules can continue to generate electricity, 

although produced energy can be significantly reduced. According to manufacturers, it is 

common practise to identify PV module as degraded when its maximum power reduces below 

80% of the initial value.  

Long-term degradation of PV systems is related to encapsulation material deterioration 

and its effects could be observed on the surfaces of PV cells during exploitation period. 

Ethylene vinyl acetate (EVA) is recognized, over the decades, as one of the best encapsulation 

materials for PV cells. As a consequence, nearly 80% of PV modules, produced around the 

world, are encapsulated by EVA [7]. Typical long-term degradation types of PV cells, related 

to EVA, are: delamination, discoloration and corrosion. Characteristic field examples of PV 

cells affected by long-term degradation types are shown in Fig.1 [8]. 

 

 (a) (b) (c) 

Fig. 1 Typical long-term degradations of PV cells [8]:  

(a) Delamination; (b) Discoloration; (c) Corrosion 
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2.1. Delamination  

Glass, EVA and PV material are tightly affixed (laminated) in normal PV cells. If some 
of the mentioned layers is damaged it could lead to delamination development. 
Delamination represents separation between the different layers within the PV cells and it is 
usually followed by the penetration of moisture and corrosion. The most common PV cell’s 
surface area affected is located around busbars, as can be seen in Fig.1.a. This type of 
degradation is observed in more than 50% of installed PV modules according to research 
[9]. 

2.2. Discoloration  

Ultra-violet radiation, followed by high degree of humidity and environment temperature, 
is recognized as the main cause of discoloration. Discoloration is the most common type of 
long-term degradation represented by electro-chemical process in which PV material 
changes colour, usually from light yellow to brown (Fig. 1.b). According to research papers 
[10] and [11], discoloration can reduce PV cell’s short-circuit current up to 15%. 

2.3. Corrosion  

The main reason for corrosion occurrence in PV cells is moisture penetration. Corrosion 
damages metal parts and contacts of PV cells (Fig.1.c), which leads to PV cell’s series 
resistance increase. Based on the results of accelerated corrosion tests, it has been found that 
probability of corrosion occurrence is related to oxygen presence in silicon layers of PV cell 
[12].  

3. PV SYSTEM MODELLING 

In order to precisely determine degradation and mismatch power losses in PV systems, 
it is essential to use PV cell-based modelling [1]. For proper calculation of degradation 
effects on PV systems it is necessary to model functionality between generated power and 
specific ambient conditions. It is a common practice to model I-V curve with irradiation and 
temperature as controllable primary input variables.  One-diode MATLAB-based model of 
PV cell has been created by using recommendations from [13]. Corresponding PV module 
and cell models are used throughout previous research and series of related publications 
[14-16]. Future PV modelling research will include the cooling effect of wind on PV cell 
temperature [17]. Regarding mismatch effect due to long-term degradation it can be 
assumed that wind conditions are uniform at the relatively small surface of PV string. 

Low irradiation effects have been included in modelling process by threatening of PV 
cell’s series resistance, parallel resistance and diode ideality factor, as functions of 
irradiation and operating temperature, with corresponding analytical expressions 
recommended in literature [18-20]. 

PV module modelling has been realized by using MATLAB/Simulink software [21]. The 
chosen PV module ZDNY -250P60 250Wp [22] consists of 60 polycrystalline Suntellite 
156M PV cells with electrical data for Standard Test Conditions (STC) presented in Table 1.  

PV string model consists of 12 PV modules with maximum installed power of 2.995 kW. 

Similar types of PV systems are often used on the roofs of households in urban environments. 

PV system modelling procedure is presented in Fig.2. PV modules within PV string are 

enumerated with numbers 1-12.  
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Table 1 STC electrical data of Suntellite 156M PV cell and PV module 

Suntellite PV PV cell PV module 

Efficiency [%] 17.00-17.19 17.00 

PMPP [W] 4.16  249.61 

VMPP [V] 0.531 31.84 

IMPP [A] 7.834 7.84 

VOC [V] 0.63 37.78 

ISC [A] 8.35 8.35 

FF [%] 79.08 79.12 

 

Fig. 2 PV system modelling procedure: (a) One-diode PV cell model;  

(b) 60-cell PV module model; (c) 12-module PV string model 

3.1. Long-term degradation modelling 

In order to analyse long-term degradation effects on reduction of PV string power, it 
is mandatory to establish relation between degradation mechanisms and PV cell’s 
parameters. As delamination, discoloration and corrosion are impossible to predict 
precisely, their modelling is limited on approximate relations resulting from field 
observations and statistical analysis of experimentally obtained data.  

According to experimental research results [8], delamination reduces PV module’s 
short-circuit current ISC, while its effects on open-circuit voltage VOC can be neglected. 
Based on experimentally obtained data for characteristic PV module, several modelling 
cases are defined: 

1. Case 0 - Del 0 - no delamination - ISC = ISC-(STC). 
2. Case 1 - Del 1 - limited area around PV cells’ busbars affected - ISC = 0.95 × ISC-(STC)  

(5% decrease). 
3. Case 2 - Del 2 - limited area around small cracks in PV module’s surface - ISC = 

0.92 × ISC-(STC) (8% decrease). 
Based on statistical analyses and experimental field data obtained in temperate 

climate zone [23], it has been found that discoloration also can be modelled as reduction 
of ISC, the following cases are defined: 

1. Case 0 - Dis 0 - no discoloration - ISC = ISC-(STC). 
2. Case 1 - Dis 1 - bright colours present on less than 50% of PV module’s surface - 

ISC = 0.9473 × ISC-(STC) (5.27% decrease). 
3. Case 2 - Dis 2 - bright colours present on more than 50% of PV module’s surface - 

ISC = 0.9137 × ISC-(STC) (8.63% decrease).  
4. Case 3 - Dis 3 - dark colours present on less than 50% of PV module’s surface -  

ISC = 0.9088 × ISC-(STC) (9.12% decrease). 
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Regarding corrosion modelling of PV modules, according to same experimental 

results, as in the case of discoloration [23], PV module’s series resistance RS has been 

identified as key parameter. Corrosion manifests as increase of RS.  The following 

modelling cases are defined: 

1. Case 0 - Cor 0 - no corrosion. 

2. Case 1- Cor 1 - bright colour corrosion on metal parts of PV module - RS = 1.65 × 

RS-(STC) (65% increase).  
3. Case 2 - Cor 2 - bright colour corrosion on metal parts and terminals of PV module 

- RS = 2.2 × RS-(STC) (120% increase).  
4. Case 3 - Cor 3 - dark colour corrosion on metal parts and terminals of PV module - 

RS = 4.3 × RS-(STC) (330% increase).  

4. PV MODULE DEGRADATION EFFECTS UNDER VARIABLE IRRADIATION 

AND TEMPERATURE CONDITION 

In real-time field conditions PV systems are operating under hourly-based irradiation and 

temperature variations. It is of mandatory importance to determine long-term degradation 

effects under variable irradiation and temperature conditions. By using earlier defined long-

term degradation modelling cases, PV module maximum power is observed for ambient 

temperature and irradiation ranges: -5°C - 35°C; 200 W/m
2
 - 1000 W/m

2
, respectively. 

Ambient temperature values have been varied with constant irradiation condition 800 W/m
2
. 

Similarly, irradiation values have been varied with constant ambient temperature condition -

8.75°C (PV cells’ operating temperature 25°C). Corresponding results are presented in Fig.3. 

By analysing graphs from Fig.3, the several observations can be made: 
 Delamination and discoloration preserve approximate linear correlation between 

PV module’s maximum power (Pm) and both ambient temperature (T) and 
irradiation (I), while corrosion inserts slightly nonlinear components. 

 In the case of T variations, Pm curve slopes remain approximately constant in 
delamination and discoloration analysis. As a consequence, differences between 
Pm for all modelling cases (del0, del1, del2 and dis0, dis1, dis2, dis3) remain 
approximately constant. 

 In the case of I variations, Pm curve slopes slightly change in delamination and 
discoloration analysis, which leads to important conclusion: for higher irradiation 
values, differences between Pm for all considered modelling cases (del0, del1, del2 
and dis0, dis1, dis2, dis3) are also higher. 

 Regarding the corrosion effects, it can be seen from Fig.3.c that modelling case cor3 
significantly differ from other cases in terms of Pm curve slope for variable T 
condition. For variable I condition, Pm value differences between different modelling 
cases of corrosion are lower than the corresponding cases of delamination and 
discoloration. 

 Degradation losses related to delamination and discoloration maintain approximately 
equal values in whole analysed T and I ranges, while corrosion losses nonlinearly 
increase with T and I values increasing (Fig.3.d). It can be concluded that delamination 
and discoloration losses are approximately unaffected by variation of T and I.  
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Fig. 3 PV module maximum power and degradation losses under variable temperature 

and irradiation condition: (a) delamination; (b) discoloration; (c) corrosion; 

(d) power losses due to long-term degradation 
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5. PV STRING POWER REDUCTION DUE TO LONG-TERM DEGRADATION - STUDY CASE 

 Determination of PV string power losses due to degradation is a complex task, because 

of the mismatch condition occurrence. The term “mismatch condition” refers to differences 

in current-voltage (I-V) curves of individual PV modules in PV string due to different 

degradation rates. In the field conditions, during long exploitation periods, it is very 

common that PV modules degrade differently. In order to investigate PV string’s 

degradation and degradation mismatch power losses, the special study case, consisting of 

adopted PV module’s degradation modelling cases, is defined in Table 2. 

Table 2 PV string under long-term degradation study case 

Period of  

PV string 

exploitation 

10 years 15 years 20 years 25 years 

Type of  

long-term 

degradation 

Del. Disc. Corr. Del. Disc. Corr. Del. Disc. Corr. Del. Disc. Corr. 

PV1 del 0 dis 1 cor 1 del 1 dis 2 cor 2 del 2 dis 2 cor 2 del 2 dis 2 cor 3 

PV2 del 0 dis 0 cor 1 del 1 dis 0 cor 2 del 1 dis 1 cor 2 del 2 dis 1 cor 3 

PV3 del 0 dis 1 cor 0 del 0 dis 3 cor 1 del 1 dis 3 cor 2 del 2 dis 3 cor 2 

PV4 del 0 dis 0 cor 0 del 0 dis 1 cor 1 del 1 dis 2 cor 2 del 1 dis 2 cor 2 

PV5 del 0 dis 0 cor 0 del 0 dis 1 cor 1 del 0 dis 2 cor 2 del 1 dis 2 cor 2 

PV6 del 0 dis 0 cor 0 del 0 dis 0 cor 1 del 0 dis 1 cor 2 del 1 dis 2 cor 2 

PV7 del 0 dis 0 cor 0 del 0 dis 1 cor 0 del 0 dis 3 cor 1 del 1 dis 3 cor 2 

PV8 del 0 dis 0 cor 0 del 0 dis 1 cor 0 del 0 dis 3 cor 1 del 1 dis 3 cor 2 

PV9 del 0 dis 0 cor 0 del 0 dis 0 cor 0 del 0 dis 1 cor 1 del 0 dis 3 cor 2 

PV10 del 0 dis 0 cor 0 del 0 dis 0 cor 0 del 0 dis 1 cor 1 del 0 dis 1 cor 2 

PV11 del 0 dis 0 cor 0 del 0 dis 0 cor 0 del 0 dis 1 cor 0 del 0 dis 1 cor 1 

PV12 del 0 dis 0 cor 0 del 0 dis 0 cor 0 del 0 dis 0 cor 0 del 0 dis 1 cor 1 

According to data in Table 2 it can be observed that several key time points are 

defined during 25 years long exploitation period of PV string. Long-term degradation 

modelling cases are assumed to take place after 10, 15, 20 and 25 years of exploitation 

period. The highest combined degradation rate is set for PV modules with starting 

indexes (1, 2, 3 …). It is assumed that degradation rate is negligible in the first 10 years 

of exploitation. 

In order to determine PV string degradation losses and mismatch losses separately, it 

is necessary to identify total maximum power of individual PV modules (12 PV modules 

operate separately), beside the maximum power of the entire PV string (12 PV modules 

operate in series connection). For defined study case (Table 2), under constant ambient 

temperature T = 20°C and irradiation I = 600 W/m
2
 conditions, maximum power points 

of individual PV modules PMPP-IM and PV string PMPP-String have been determined and 

presented in Table 3. 
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Table 3 Maximum power points of individual PV modules and PV string for study case 

defined in Tab.5.1 under constant ambient temperature and irradiation values  

(T = 20°C and I = 600 W/m
2
) 

Maximum power point 

PV modules / string (PMPP-IM / PMPP-String)  

Period of PV string exploitation 

10 years 15 years 20 years 25 years 

PPV1-MPP [W] 126.773 115.478 111.637 109.500 

PPV2-MPP [W] 133.563 126.533 119.793 113.653 

PPV3-MPP [W] 127.631 121.935 114.847 111.005 

PPV4-MPP [W] 134.518 126.918 115.478 115.478 

PPV5-MPP [W] 134.518 126.918 121.895 115.478 

PPV6-MPP [W] 134.518 133.702 126.189 115.478 

PPV7-MPP [W] 134.518 127.773 121.935 114.847 

PPV8-MPP [W] 134.518 127.773 121.935 114.847 

PPV9-MPP [W] 134.518 134.518 126.914 121.268 

PPV10-MPP [W] 134.518 134.518 126.914 126.189 

PPV11-MPP [W] 134.518 134.518 127.773 126.194 

PPV12-MPP [W] 134.518 134.518 134.518 126.194 

PMPP-IM = ΣPPVi-MPP (i=1…12)  1598.6 W 1561.1 W 1475.2 W 1418.5 W 

PMPP-String  1591.7 W 1511 W 1440.4 W 1392.7 W 

Power losses due to long-term degradation  

PMPP-New string* - PMPP-String 

22.52 W 

1.4 % 

103.2 W 

6.4 % 

173.82 W 

10.8 % 

221.52 W 

13.7 % 

Mismatch losses due to long-term degradation  

PMPP-IM - PMPP-String 

6.9 W 

0.43 % 

50.1 W 

3.1 % 

34.8 W 

2.16 % 

25.8 W 

1.6 % 

*New PV string maximum power - 1614.22 W 

According to results presented in Table 3 it can be concluded that power losses due to 

long-term degradation are increasing from 1.4% to 13.7% over the 25 years exploitation 

period. On the other hand, mismatch losses have the highest value after just 15 years of 

exploitation (3.1%), because the degradation rates of individual PV modules differ the 

most in that time period. It is important to notice that mismatch losses are very difficult to 

predict and they certainly depend on particular study cases. Their values could reach up 

to 50% of power losses due to long-term degradation itself.  

6. PV STRING ANNUAL ENERGY PRODUCTION 

Statistical prediction of energy production from PV string is based on horizontal 

irradiation and ambient temperature measurements. Acquisition system provided 

measurements of horizontal irradiation and ambient temperature for every 10 minutes 

between July 15
th
, 2013 and July 15

th
, 2014, at location of Belgrade, Serbia, with WGS 

coordinates: 44.8
0
; 20.47

0
; 120 m. The obtained irradiation and ambient temperature values 

have been averaged for every three hours and in the next step monthly-averaged. 

Based on the procedure given in [24], horizontal irradiation can be divided into direct 

and diffuse component. In addition, reflected component can be determined by using 

corresponding reflection coefficient. 
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In order to determine irradiation components on PV string surface, position angles 

need to be defined. Corresponding assumed tilt and azimuth angles are Σ=30
0
 and S=0

0
, 

respectively. In the process of determining ambient reflection coefficient, it is assumed 

that household with PV string on its roof is located on a grassy surface. The adopted 

reflection coefficient value is ρ=0.15. Total irradiation on the surface of PV string has 

been calculated by usage of following relation: 

 ,PV Dir Dif RefI I I I     (1) 

where: IDir, IDif and IRef are direct, diffused and reflected irradiation components, 

respectively. 

By using calculated irradiation and measured ambient temperature data, it is possible 

to determine operating temperature of PV string, according to following relation: 

 20
( ) ,

0.8
PV amb PV

NOCT
T T I


     (2) 

where: TPV is operating temperature of PV string; Tamb is ambient temperature; NOCT is 

nominal operating temperature of PV cell (47 °C for considered PV cells); IPV is 

irradiation value on the surface of PV string. 

Based on the calculated and averaged IPV and TPV values, PV string DC power values 

are obtained (PDC). Conventional relation for calculation of PV systems’ DC power in the 

field conditions, expanded with insertion of degradation factor, is defined as follows: 

 
(field) ( , ) (1 ) (1 ) (1 ),DC DC PV PV N Z DP P I T           (3) 

where: μN is efficiency reduction factor due to resulting unequal I-V curves in the 

manufacturing process of PV modules; μZ is efficiency reduction factor resulting from 

soiling of PV modules in the field; μD (DF) is newly defined efficiency reduction factor 

as a consequence of long-term degradation (degradation factor). 

Assumed values of efficiency reduction factors in the analysed study case are μN = 

0.03 (3%) and μZ = 0.04 (4%). Degradation factor has been calculated on the hour basis 

according to relation (4) and initially averaged for every three hours, and in the next step 

also monthly-averaged.  

 _ _ _string

_

.
new string long term d

D

new string

P P
DF

P



    (4) 

Monthly averaged PV string maximum power and degradation factor have been 

presented in Fig.4 for analysed exploitation period of one year and considered study case. 

Daily time intervals with irradiation values below 30 W/m
2
 have been neglected in the 

analysis. 
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Fig. 4 Monthly averaged PV string maximum power and degradation factor during the 
considered year of exploitation in different hourly-based time intervals: 

(a) 8:30h - 11:30h; (b) 11:30h - 14:30h; (c) 14:30h - 17:30h 

According to results from Fig.4, the following observations can be obtained: 
 Degradation factor has higher values in the summer time (up to 14%), with the 

exception of January in time interval 11:30h - 14:30h. 
 The highest values of degradation factor are present in the period with maximum 

irradiation (11:30h - 14:30h). 
 Degradation factor monthly-based differences are most expressed after 25 years of 

PV string exploitation. 

Prediction of annual energy production exhibits PV string AC power calculation by 
using the following relation: 

(field) (field) ,AC DC IP P       (5)  

where μI is inverter efficiency. 

After determination of PAC-(field) values, annual energy production can be easily 
calculated. Purchase price of electricity produced from small capacity PV systems, installed 

on the households in Serbia, can be calculated by using relation (6). 

  0.01 (20.941 –  9.383 ) / ,P EUR kWh    (6) 

where P is installed power of PV system in MW units. 
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With assumed inverter efficiency of μI = 97%, PV string annual energy production 

has been predicted, together with annual money income and losses due to long-term 

degradation. Corresponding results are presented in Table 4. 

Table 4 PV string annual energy production, money income  

and losses due to long-term degradation 

PV string annual energy  

production and income 

Period of PV string exploitation 

New string 10 years 15 years 20 years 25 years 

Annual energy production [kWh] 3422 3374 3204 3058 2962 

Annual money income [EUR]  715.6 705.6 670.1 639.5 619.4 

Loss of money due to degradation [EUR] 0 10 45.5 76.1 96.2 

 

With assumption that loss of money due to long-term degradation is approximately 

equal in consecutive time periods of 5 years (e.g. loss of money in time period 7.5 - 12.5 

years is equal to 5 × loss of money in the 10th year of exploitation) it is possible to 

roughly estimate total loss of money in time period 0 - 27.5 years (very close to lifetime 

of PV string): 5 × (10 + 45.5 + 76.1 + 96.2) = 1139 EUR. It can be concluded that predicted 

amount of money loss due to long-term degradation is enough to buy several new PV 

modules during considered exploitation period. Even rough estimation of degradation 

factor could be of significant interest for economic predictions, especially for larger 

installed PV capacities (> 20 kW) where money income could be reduced for more than 

10 000 EUR in lifetime exploitation period due to long-term degradation. 

7. CONCLUSIONS 

Modelling of PV system degradation in terms of statistical prediction of annual 

energy production proved to be a very complex task, mainly because of many uncertainties 

related to long exploitation period and field conditions. Several useful guidelines and study 

case results have been presented in this article. The most common long-term degradation 

types have been modelled by using approximate relations, adopted on the basis of 

experimental observations. It has been shown that power losses of individual PV modules 

due to delamination and discoloration remain approximately constant under wide range 

of irradiation and ambient temperature values, while power losses due to corrosion proved 

to be temperature-dependent. Mismatch power losses, caused by different degradation rates of 

individual PV modules in PV string, have been identified as potentially significant part of total 

degradation losses. Methodology for prediction of annual energy production from PV 

string, based on horizontal irradiation and ambient temperature field measurements, has 

been modified in order to include long-term degradation effects. Degradation factor has 

been introduced as useful tool for validating power losses due to long-term degradation. 

Analysis of PV string consisting of 12 PV modules, located in Belgrade, study case, 

showed that money losses during lifetime exploitation period, caused by long-term 

degradation could overcome price of several new PV modules. 
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