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Abstract. Stream cipher designs are difficult to implement since they are prone to 

weaknesses based on usage, with properties being similar to one-time pad besides 

keystream is subjected to very strict requirements. Contemporary stream cipher designs 

are highly vulnerable to algebraic cryptanalysis based on linear algebra, in which the 

inputs and outputs are formulated as multivariate polynomial equations. Solving a 

nonlinear system of multivariate equations will reduce the complexity, which in turn yields 

the targeted secret information. Recently, Addition Modulo    has been suggested over 

logic XOR as a mixing operator to guard against such attacks. However, it has been 

observed that the complexity of Modulo Addition can be drastically decreased with the 

appropriate formulation of polynomial equations and probabilistic conditions. A new 

design for Addition Modulo is proposed. The framework for the new design is 

characterized by user-defined expandable security for stronger encryption and does not 

impose changes in existing layout for any stream cipher such as SNOW 2.0, 

SOSEMANUK, CryptMT, Grain Family, etc. The structure of the proposed design is 

highly scalable, which boosts the algebraic degree and thwarts the probabilistic 

conditions by maintaining the original hardware complexity without changing the 

integrity of the Addition Modulo  . 

Key words: Algebraic Attack, Modulo Addition, Algebraic Degree, Scalability, SNOW 

2.0, TRIVIUM, S-Box, LFSR, NFSR, SAT solver, Stream Cipher. 

1. INTRODUCTION  

In 1949, Shannon mentioned [1] the possibility of decrypting a good cryptosystem by 

solving a system of simultaneous equations, which describes the cryptosystem, and the 

equations have a large number of unknowns. One of the interpretations of this proposition 

[2] is to describe a cryptosystem as a system of multivariate polynomial equations and to 

solve this system. This has built the foundations of the cryptanalysis method commonly 

known as Algebraic Attack nowadays. Applications of this idea were first introduced in 
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[3] and [4] to break public key scheme. Later, the attack was generalized and applied on 

stream ciphers and block ciphers [5][6][7]. 

Algebraic Attack focuses on formulating multivariate polynomial equations between the 

inputs and outputs with low algebraic degree. In the higher echelons of security framework 

some methods tend to deploy a family of protocols which is designed specifically to be 

secure against algebraic attacks [8]. The significance of the attack is that the formulae exist 

with probability 1 or close to 1, unlike traditional probabilistic attacks such as differential 

cryptanalysis [9] and linear cryptanalysis [10]. As a result, solving such equations successfully 

will always yield the desire value of the targeted variable. The procedure to setup the attack 

typically starts with the attacker finding a set of equations that can describe the relationship 

between the input and the output. Each equation in the set contains an algebraic degree. 

Higher degree results in higher difficulty to solve the equations. At the same time, it is 

very common that the number of multivariate equations is less than the number of 

variables. Therefore, an attacker would try to uncover ways that will lower the algebraic 

degree of the existing equations or new independent equations that will help describe the 

relationship between input and output. Moreover, it is often possible that the degree can 

be lowered or that new equations can be formed based on some probabilistic condition. 

Finally, solving the set of equations can be done through techniques such as Gaussian 

reduction or methods described in [11], [12], and [13]. 

Addition Modulo 2
n
 has been widely used as an elementary cryptographic module in 

both stream ciphers, such as CAST [14], TWOFISH [15], and MARS [16], and block 

ciphers, such as SOBER-t32 [17], SNOW 2.0 [18], and ZUC [19]. Typically, it is used for 

mixing, which combines two data sources to provide security. While the logic XOR 

operation is also often used for mixing, Modulo Addition offers better security against 

Algebraic Attack [20] because it is partly non-linear in GF(2). A linear operation in GF(2), 

such as XOR, can be described by an equation of algebraic degree 1. Modulo Addition is 

linear only at its least significant bit (LSB); therefore, it is harder for an attacker to solve 

using Algebraic Attack. It has been discovered that the algebraic degree of the formulae 

describing Modulo Addition can be reduced to quadratic [11]. At the same time, conditional 

properties of the Modulo Addition are also discovered to lower the algebraic degree and 

create new independent equations. These techniques help reduce the complexity of solving 

Modulo Addition tremendously. As a result, this paper aims to devise a new structure that 

will increase the algebraic degree when compared to the traditional Modulo Addition and 

increase the difficulty of using the conditional properties. At the same time, the size of the 

structure is user-defined and flexible, providing the users a scalable security against 

Algebraic Attack specifically when security is considered as a key requirement during the 

early stages of systems development [21][22][23][24]. 

The paper is structured as the following: Section 2 discusses the complexity of Algebraic 

Attack and describes in detail Modulo Addition under the lens of Algebraic Attack. Section 3 

presents the details of the proposed design. Section 4 provides the analysis of the design and 

compares the design with traditional Modulo Addition. Section 5 demonstrates the application 

of the new design in a contemporary stream cipher example and gives the analysis of its 

application. Finally, Section 6 summarizes the proposed design briefly. 
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2. PRELIMINARIES AND TERMINOLOGY 

2.1. Algebraic attack and its complexity  

The steps taken typically in an Algebraic Attack can be summarized as the following: 

 Formulate multivariate polynomials equations describing input-output relations 

with probability 1 

 Explore additional independent equations supplementing the existing system of 

equations with probability 1 or close to 1 

 Explore conditions that can lower the algebraic degree of the system of equations 

 Solve the system of equations with the appropriate techniques. 

Algebraic Immunity is a metric that has been developed [25] to provide a fast evaluation 

of the security against Algebraic Attack for a given cryptographic function. It is defined as 

the minimum algebraic degree in the system of equations. Moreover, the Algebraic 

Immunity has been deemed to be insufficient and the Describing Degree, which is the 

minimum algebraic degree such that an S-Box can be entirely defined by equations of that 

minimum degree, has been developed to provide a more thorough evaluation of security 

against Algebraic Attack [20]. These metrics all focus on measuring the algebraic degree of 

the set of equations that describes the targeted function because the degree has direct 

relationship to the complexity of solving the set of equations. These metrics do not attempt 

to address fault attacks employ that inject faults at any random location and random point of 

time for a stream cipher [26]. 

The complexity of solving Algebraic Attack has been explored in [5] and [7]. Though the 

complexity can vary depending on the specific method used, it can be generalized by using 

the estimation of the complexity of a Gaussian Elimination. When applying Algebraic Attack 

on a generic stream cipher, the complexity can be estimated with the following steps: 

 Define R as the number of multivariate equations formed between the output bit 

and the states in the stream cipher 

 Define N as the number of variables in the stream cipher or the number of states 

equivalently 

 Define D as the Describing Degree of the multivariate equations 

 Define T as the number of monomials of degree ≤ D and T can be calculated as: 

  

(1)

 

The estimated complexity can be calculated by multiplying T with the number of 

operations and the cycle time required for each operation. Since these parameters can be 

algorithm and platform dependent, T itself can be used to provide estimation. At the same 

time, if conditional properties are used to reduce the algebraic degree of the set of equations, 

the complexity increases by attaching the probability of the conditional properties happening 

to T. 

The complexity of Algebraic Attack on a generic block cipher is slightly different. 

The complexity is contributed mainly from the non-linear component in a block cipher, 

which is typically an S-Box. A typical S-Box transforms its n-bit input variables to m-bit 

output variables, using a vectorial Boolean function. Using the definitions above, the 

number of monomials, T, can be calculated as: 
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(2)

 
The number of equations, R, is determined by forming a matrix M of size 2

n
   T. This R 

is calculated as a difference given by: 

  

(3)

  
Thereby the complexity of solving this system of equations can be estimated by: 

  

(4)

 
From (4), the complexity increases when the number of monomials increases. The 

number of monomials increases when the algebraic degree of the set of equations 

increases in (1) and (2). 

2.2. Addition Modulo     

When viewing Modulo Addition in the eyes of Algebraic Attack, a set of equations 

describing the relationship between the input and output needs to be formed. This is 

outlined in [12] for the n-bit Modulo Addition of Z=X Y, and shown in (5).  

  

(5)

 

The variable C is used to denote the carries. The + sign in the equations denotes addition 

in GF(2), or simply the logic XOR operation. Each carry variable can be described by the 

set of equations given in (6). It can be seen from combining (5) and (6) that the Modulo 

Addition is partly non-linear because the LSB of the output is linear. The algebraic 

degree is dominated by the carry terms. 

  

(6)
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From (6), the degree increases linearly with the carry terms. This is because the more 

significantly positioned carry terms not only depend on their corresponding input variables, 

which have a degree 1, but also the previous carry terms. As C0 is generated by X0 and Y0, 

the degree of Z1 becomes 2. Similarly, C1 is generated by X1 and Y1, and the degree of Z2 

becomes 3. In fact, for an n-bit output, the algebraic degree for each output bit   is: 

  (7) 

As mentioned before, the complexity of solving the equations increases with the 

increment of algebraic degree. In [11], the author has devised a set of equations that 

describes Modulo Addition but limits the algebraic degree to 2. This is shown in (8).  

  

(8)

 

Moreover, the author is able to create in total    –    independent equations, instead of 

the original n equations. This effectively reduces the complexity of Algebraic Attack on 

Modulo Addition even before the deployment of conditional properties.  

2.3 Conditional Properties of Modulo Addition 

Conditional properties have been studied in [25] and the idea can be applied to Modulo 

Addition in a similar fashion. The conditional properties of Modulo Addition are first 

explored in [26] and then expanded in [20]. The goal of using conditional equations in 

Modulo Addition is to lower the algebraic degree of the equations or to create more 

independent equations with lower degree. In general, the occurrence of these conditions is 

based on the manipulation of input bits and carries bits. As mentioned before, the cost of 

these conditions is the probability. For input bits, the probability is assumed to be uniform, 

or ½. For the carry bits, the probability can be generalized above in (9). The probability of a 

carry being 1 nears toward ½ as the number of bits increase. 

  

(9)

 

2.3.1. Modulo Addition with no Carries  

A Modulo Addition that generates no carries will have a completely linearized equation. 

In other words, the algebraic degree of (5) will be reduced to 1 when all carries are 0. The 

probability of this condition can be calculated using (9) and can be approximated to        . 
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2.3.2. Modulo Addition Output Characteristic  

An output characteristic that can help linearize the equations is when the output bits 

of the addition are all 1’s, or that the output is       . Given that the carry-in is 0, the 

output bits can be all 1’s only when the input bits are of opposite polarity. In other words, 

for each pair of input bits, the two bits are either       or      . This is also referred to as 

Propagate [6], and the probability of this occurring is    . The algebraic degree of the 

equations is lowered to 1 in this case. 

2.3.3. Modulo Addition Input Characteristics 

Two input characteristics can be utilized to linearize the equations. First, no carry is 

generated when one of the input is simply 0. Second, there can be no carries generated 

when one of the inputs is the Two’s Complement of the other input. The output bits of this 

input pairing are always 0 in Modulo Addition. The distribution of the carry bits is as 

follows: There will be no carries generated from the input pairs until the first       pair. 

Then, the subsequent input pairs will always generate a carry. This provides a controlled 

distribution to the carry bits. In fact, if one of the inputs is a power of 2 and the other input 

is the Two’s Complement, then no carry will be generated. Although these conditions can 

reduce the algebraic degree, the probability attached to these conditions is    . The 

proposed design will not only increase the algebraic degree of the equations describing the 

relationship between the input and output, but also increases the difficulty of utilizing the 

conditional properties. 

3. THE NEW MODULO ADDITION 

The proposed design is a new type of cryptographic module that provides user-

defined scalable security against Algebraic Attack. The components in the new Modulo 

Addition includes: Input Expansion, Modulo Addition, and Output Compaction. A block 

diagram is shown in Figure 1 to contrast the new design and traditional Modulo Addition.  

 

 

Fig. 1 Block Diagram of the New Design 
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3.1. Input Expansion 

The Input Expansion function, FIN(), is a function that expands each single input bit 

into a   -bit string based on an n m-bit control string KI. We specify a user-defined 

parameter m that can be determined depending on the security requirement. The input 

control string KI typically can be generated within a cipher. The actual expansion 

function can be flexible; meaning, the user can substitute other expanding functions 

instead of the proposed one. For example, the expanding function can be an algebraic 

function or it can be an S-Box.  

The proposed expansion function is an arithmetic relationship that is easily scalable. Also, 

each of its output bit is 0-1 balanced. We can define the Input Expansion function as follows: 

Let X = x    …  x  x  be an n-bit input and KI = KI    
 …  KI  

 KI  
be its input control 

string KI  
∈ {   } . Furthermore, let KI  

=KI      
 KI      

,   …  KI    
 KI    

such 

that KI    
∈ {   },  ≤ i ≤ n −   and  ≤ j ≤ m −  . Then, let X′ be the expanded input 

such that X = x′    …  x′  x′  and x′ ∈ {   } , where w =   . KI  
 is treated as a 

decimal number in (10). 

  

(10)

 
Using (10), it is recommended to define the user-defined parameter m ≥ 2 to avoid 

repeating values.  

3.2. Addition Modulo     

The second component of the design takes the expanded inputs and performs Modulo 

Addition. Nevertheless, the number of additions now has increased from    to     

where w =   , as the inputs have been expanded. Let X =  x    …  x  x  be an n-bit 

input and   =  y    …  y  y  be another n-bit input. Let X = x 
    …  x 

  x
 
 = (x′(n-

1)(w-1), …,x′(n-1)1, x′(n-1)0, …,x′1(w-1), …, x′11, x′10, x′0(w-1), …, x′01, x′00) be the expanded input 

and Y′ = y′n-1, …, y′1, y′0 = (y′(n-1)(w-1), …, y′(n-1)1, y′(n-1)0, …, y′1(w-1), …, y′11, y′10, y′0(w-1), 

…, y′01, y′00) be the other expanded input. Then, let Z′ = z′n-1, …, z′1, z′0 = (z′(n-1)(w-1), …, 

z′(n-1)1, z′(n-1)0, …, z′1(w-1), …, z′11, z′10, z′0(w-1), …, z′01, z′00) be the sum of the Modulo 

Addition. Equations (8) or (5) and (6) both can be used to describe the Modulo Addition. 

In (11), the equations are derived from (8). 

   

(11)
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3.3. Output Compaction 

The final component of the new design is a function that compresses Z′ to Z, i.e. 

from {   }   {   } , based on n  m-bit output control string KO. The function      is 

flexible as long as the function chosen is capable of constricting the sum. In this design, 

the proposed function is a      MUX function. Let K  =  K     …  K   K   and 

K   = K        …  K    K    where K   {   }
 . We have,  =      …       =

     z
 
    K      …       z

 
  K          z

 
  K    . The expression for      can be 

generalized in (12). 

  

(12)

 
Here, (-1) refers to the complement of K   , summation refers to logic XOR, and 

multiplication refers to logic AND.  
An example is given below for m = 3, p and q are index variables. 

 

4. ANALYSIS OF THE NEW DESIGN 

In this section, the proposed design is analyzed with respect to Algebraic Attack.  

4.1. Probability of Carry 

The probability of carry in the traditional Modulo Addition can be estimated using 
(9). As mentioned before, each bit of the expanded input is 0-1 balanced. The Input 
Expansion function can be viewed as a collection of Boolean functions such that each 

output bit is a {   }    {   } function. Each Boolean function, in this case, is 0-1 
balanced because the output of the function has an equal chance of producing a 0 or 1. 
With this assumption, the probability of carry for the new design can be derived as 
below. The result shows that the formula is very similar to (9). 

Let   =     
  …    

    
  =       

  …         
 ,        

  …    
 …     

     
     

  …     
     

  

be the carry bits generated from summing the two expanded inputs. Also, the limits 

are  ≤ i ≤ n −    ≤ j ≤   , and w =   . 
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  (13) 

4.2. New Design with No Carries 

As a result of (13), the probability of carry has decreased from         to          

for the same n-bit input pair. This helps increase the difficulty of an attacker to create a 

scenario without any carry, as discussed in Section 2. 

4.3. Modulo Addition Output Characteristics in the New Design 

In a traditional Modulo Addition, the output bits can be used directly to derive potential 

carries and input pairings. In the new design, the Output Compaction function is lossy; thus, 

the attacker can only obtain n bits out of 2
nw

 bits even if the output control string KO is 

known. Therefore, these n bits cannot provide enough information to derive the potential 

carries and input pairings. However, it is still possible to have all 1’s in the sum of the Modulo 

Addition component in the new design. This requires specific combinations of the two m-bit 

input control strings KI  
and  KIyi

  In particular, the two input control strings need to be the 

same while the corresponding inputs need to be a propagate pair. 

As mentioned before, the probability of output being all 1’s in a traditional Modulo 

Addition is    . The probability of this condition occurring in the new design is 

decreased to (   )(     ). 

4.4. Modulo Addition Input Characteristics in the New Design 

Similar approach is applied to evaluate the use of input characteristics of the Modulo 

Addition component in the new design. First, the expanded inputs will never be all 0’s 

when using the Input Expansion function given in (10). Therefore, this characteristic 

becomes invalid. Nevertheless, it is possible for the expanded inputs to be the Two’s 

Complement of one another. By observing (10) carefully, it is discovered that there are 

only 3 such cases given any m and m    . Thus, the probability is derived to 

be        ⁄   , which is significantly less than    .  
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4.5. Complexity of Solving the New Design 

To evaluate the complexity of solving the new design under Algebraic Attack, the 

algebraic degree needs to be understood. The algebraic degree can be obtained by expressing 

the new design in its algebraic normal form (ANF), which describes a Boolean function using 

logic XOR gates [25]. The algebraic degree of each component is first studied and then 

the degree of the whole design is considered. 

4.5.1. Algebraic Degree of Input Expansion 

The algebraic degree is the monomial with the largest degree in the algebraic normal 

form. For the Input Expansion function, each expanded variable can be expressed in the 

ANF by considering itself as a Boolean function. Intuitively, the value of the expanded 

variable is a manipulation of the original input value based on the value of the user-

defined parameter m. From the two examples given in the Table 1, it can be observed that 

the algebraic degree directly relates to the value of user-defined parameter m.  

The Table 1 also provides a comparison summary of the algebraic degree of the input 

variables going into a traditional Modulo Addition and the Modulo Addition component 

in the new design. 

Table 1 ANF of Input Expansion Function when m = 2 

Xi ANF 
Algebraic 

Degree 
x′i0 KIx1   KIx0   KIx1KIx0   xi 2 

x′i1 1   KIx0   KIx1KIx0   xi 2 

x′i2 1   KIx1   KIx1KIx0   xi 2 

x′i3 1   KIx1KIx0   xi 2 

ANF of Input Expansion function when m = 3 

Xi ANF 
Algebraic 

Degree 
x′i0 KIx0   KIx1   KIx1KIx0   KIx2   KIx2KIx0   KIx2KIx1   KIx2KIx1KIx0   xi 3 

x′i1 1   KIx0   KIx1KIx0   KIx2KIx0  KIx2KIx1KIx0   xi 3 

x′i2 1   KIx1   KIx1KIx0   KIx2KIx1   KIx2KIx1KIx0   xi 3 

x′i3 1   KIx1KIx0   KIx2KIx1KIx0   xi 3 

x′i4 1   KIx2   KIx2KIx0   KIx2KIx1   KIx2KIx1KIx0   xi 3 

x′i5 1   KIx2KIx0   KIx2KIx1KIx0   xi 3 

x′i6 1   KIx2KIx1   KIx2KIx1KIx0   xi 3 

x′i7 1   KIx2KIx1KIx0   xi 3 

Comparison of Input Algebraic Degrees 

 
Input to traditional  
Modulo Addition 

Input to Modulo Addition  
in the new design 

Algebraic Degree 1 m 
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4.5.2. Algebraic Degree of Modulo Addition 

The algebraic degree of the Modulo Addition component can be evaluated using (8) 

or (5) and (6). Equation (8) limits the algebraic degree to quadratic in the original Modulo 

Addition by utilizing the output variables. This is under the assumption that the output is 

observable. In the new design, the output variables of the Modulo Addition component 

may not be observable; however, it is possible to define them as additional variables so 

that the algebraic degree of the expression can be reduced. The drawback of this method 

is that the number of variables used to solve the set of equations has increased. Assuming 

that additional variables are used, the algebraic degree of the Modulo Addition 

component is at most 2m. This is because each input variable now has a degree of m and 

the largest degree is quadratic using (8). At this point, it can be observed that the 

algebraic degree has already increased by the user-defined parameter m.  

In addition, it is possible to express the Modulo Addition using (5) and (6), and its 

algebraic degree is outlined by (7). As mentioned before, each input variable now has a 

degree of m. The LSB of the addition then has a degree of m and the rest of the output 

bits have a degree of  i  w   j     m. Note that  ≤ i ≤ n −    ≤ j ≤   −  , and 

w = 2
m
. The derivation approach is similar to what is outlined in the previous section. The 

degree of the carry terms increases linearly according to their bit positions; however, the 

degree increases in multiples of m because the expanded input variables have a degree of 

m. As a result, the degree of z′01 is generated by the multiplication of two degree-m 

variables x′00 and y′00. The degree of z′02 can be generated by the multiplication of x′01, 

x′00, and y′00, or the combination of y′01, x′00, and y′00. The degrees are 2m and 3m. 

Therefore, each output variable of the Modulo Addition, z′ij, has a degree of  i  w  
 j     m. A comparison summary of algebraic degree is given in Table 2. 

At this point, the effective increase of algebraic is m when compared to the original 

Modulo Addition. 

4.5.3. Algebraic Degree of Output Compaction 

Finally, the algebraic degree of the Output Compaction function needs to be determined. 

As mentioned before, the function is a 2
m
: 1 logic Multiplexer (MUX) function defined by 

(12). This equation is itself in the algebraic normal form. Therefore, the degree can be 

determined simply by observing (12). The degree is m + 1 because the output of the MUX 

function depends on the values of all the select lines and the input. Note that the 1 comes 

from the assumption that the degree of the input to the MUX is 1. It needs to be substituted 

when the degree changes. 

4.5.4. Algebraic Degree of the New Design 

The algebraic degree of the new design can be determined by combining the degrees 

of all the components. The Table 2 provides the summary of the algebraic degree of the 

new design and a comparison to the traditional Modulo Addition. Note that the algebraic 

degree of the traditional Modulo Addition is calculated using (8). 
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Table 2 Comparison of Modulo Addition Algebraic Degrees 

 
Sum of traditional 
Modulo Addition 

Sum of Modulo Addition in  
the new design 

Algebraic Degree using (8)     m   m 

Algebraic Degree using (5) and (6)   i    m   i  w   j     m 

Table 3 Algebraic Degree of the New Design 

 
Traditional Modulo 

Addition 
New Modulo  

Addition 
Algebraic Degree of Input 1 m 

Algebraic Degree of Addition 2 
m    

 i  w   j     m 

Algebraic Degree of Output - m + 1 

Total 1  2 
 m   

m    
 i  w   j     m 

Algebraic Immunity and Describing Degree 

 
Traditional Modulo 

Addition 
New Modulo  

Addition 

Algebraic Immunity 1 2m 

Describing Degree 2 
m    

( n –            –       )m 

Table 4 Complexity Comparison of the Corner Case 

 
Traditional Modulo 
Addition using (8) 

New Modulo Addition  
Corner Case 

Number of Input Variables 2n 3mn + 2n 

Number of Output Variables n n 

Number of Extra Variables 0 0 

Number of Equations R = 6n – 3 R = n 

Algebraic Degree 2 n + 1 

Condition Cost 0 23mn 

Number of Monomials  = ∑(
  n

i
)

 

   

  = ∑(
 n   m 

i
)

   

   

 

Complexity  =    n⁄  ⌈
 

 ⁄ ⌉ 
 =       

(   mn   n ⁄  ⌈
 

 ⁄ ⌉ 

As described in Table 3, the Algebraic Immunity has increased by  m, or at least 4 for 

m = 2. The Describing Degree has increased from 2 to at least 10 for m =    and n =  . In 

addition, it is worth noting that, an attacker can seek to lower the degree of the new design by 

looking for additional independent equations with lower degree or by creating extra variables. 
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The benefit of these methods is to be determined by the attacker. However, a corner case 

study is provided in the next section as a starting point. 

4.5.5. Corner Case Analysis of the New Design 

The corner case can be obtained by looking for a conditional property of the new 

design. In other words, there is a probabilistic condition that can help lower the algebraic 

degree. From Table 1, it can be seen that the algebraic degree of the Input Expansion 

function depends on the multiplication of the input control string variables. Once the 

variables are known, the degree falls to 1. Specifically, if the input control string has all 0’s, 

the expanded inputs are either the same as the inputs or the complement of the inputs. 

Under this condition, the degree of addition becomes at least 1, which is the same as the 

traditional Modulo Addition. However, the degree does not scale linearly with the 

significance of the bit positions. In each block of expanded inputs, the expression of the 

summation of the expanded input variables can be reduced because many of the variables 

are the same. In fact, the degree of the LSB in each block of expanded inputs is      , for 0 

≤ i ≤ n – 1. The rest of the summation bits from adding each block of the expanded inputs 

have a degree of      .  

Furthermore, the attacker would notice that if the Output Compaction function is able 

to select the LSB in each block of the summation, i.e., z′i0, the algebraic degree is the 

lowest. For this to happen, the output control string needs to be all 0’s. As a result, the 

degree of the new design becomes       for Z′i, and 0 ≤ i ≤ n – 1. This is the same as the 

traditional Modulo Addition as shown in Table 2. Nevertheless, the cost of this condition 

has a probability of 2
-3mn

 as all control bits need to be 0’s.  

 

Fig. 2 New Design Schematic for SNOW 2.0 

Traditional Modulo Addition and the new design can be viewed as S-Boxes and their 

complexity against Algebraic Attack can be approximated as S-Boxes. For the traditional 

Modulo Addition, the required parameters have been studied in [20]. A comparison for 

the same has been listed in Table 4. In the corner case, the number of monomials is still 
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larger because of the increased in number of variables and algebraic degree. At the same 

time, the complexity has increased by attaching the conditional cost. 

5. APPLICATIONS OF NEW DESIGN 

In this section a contemporary stream cipher like SNOW 2.0 is used to demonstrate 

the application of the new design. This application explores the new design being deployed 

in a stream cipher that uses combiner with memory. The following example describes the 

new design being applied in the stream cipher, SNOW 2.0, which constitutes a LFSR with 

non-linear feedback and uses an output combiner function with memory [18].  

5.1.1. Overview of SNOW 2.0 

SNOW 2.0 uses a length 16 LFSR over         . In other words, the LFSR has 16 

elements, or states, but each state contains a 32-bit word. Let        ,…,     denote the states 

of the LFSR. The feedback function is defined as the XOR combination of     multiplied 

by  ,    and     divided by  . To produce the output key stream, a Finite State Machine 

(FSM) is used in conjunction with the LFSR. The FSM contains two 32-bit registers R1 and 

R2. The value of R2 is determined by feeding the value of R1 through a set of AES S-Boxes 

and the AES Mix Column function. The value of R1 is determined by performing Addition 

Modulo 232 between R2 and   . Finally, the output combiner function is defined as first 

performing Addition Modulo     between R1 and    , second XORing the result with R2, 

and finally XORing the result of the former with   . Consequently, SNOW 2.0 operates in 

two modes: Initialization and Key Stream Generation; it uses a 128-bit secret key and a 128-

bit initialization vector in Initialization Mode. 

5.1.2. Application of the New Design 

The new design is used to replace the two Modulo Additions and the user-defined 

parameter m is chosen to be 3. There are 288 extra bits required to supply the input and 

output control strings of each addition because for each input bit of the 32-bit addition, a 

3-bit control string is needed. Therefore, 576 bits in total are required for two additions. 

Again, many ways can be utilized to generate the extra bits. In this case,     is used to 

generate 288 bits and the same set of bits is used for the two insertions of the new design. 

The generation logic is defined as the following: 

 For each bit of the first input X, there are 3 input control bits needed. They will be the 

3 LSBs of the 3-bit circular-left-shifted    . For example: KI  
 = (     ,      ,      ) 

and KI  
= (      ,       ,       ).  

 For each bit of the second input Y, the 3 input control bits will come from the 3 LSBs 

of the 3-bit circular-right-shifted and inverted    . Let   
   denotes the bit-wise 

inverted    . Then, KI  
 = (  

    ,   
    ,   

    ) and KI  
 = (  

    ,   
    ,   

    ). 

 For the output control string, each 3 output control bits come from the 3 LSBs of the 3-

bit circular-right-shifted    . For example:  K   = (     ,            ) and K   = 

(     ,      ,      ). 

This setup can at least guarantee that the input control bits for the first input pair will 

not be all 0’s simultaneously. The new SNOW 2.0 setup is shown in Table 5. The secret key 
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and the initialization vector are defined as given in the Table 5. This is one of the test vectors 

listed in [18]. At this specific timeframe, S15 = 0xCC15A50B, R1 = 0xAAB91A68, and S14 

= 0x5164B6D9. The output of the new design here is 0x37F7B4F7 while the original 

Modulo Addition gives 0x76CEBF73. Also, the first output key stream of new SNOW 

2.0 is 0x91CC022F and the original key stream is 0xC355385D. 

Table 5 SNOW 2.0 Test Vectors [24] 

Attribute Hexadecimal Value 

Secret Key(K)  x                                 
Initialization Vector (IV)   x                                 

5.1.3. Analysis of New SNOW 2.0 

Algebraic Attack on SNOW 2.0 has been studied in [26] and [20]. Two methods have 

been proposed to linearize the Addition Modulo 2
32

 in the stream cipher. The first method 

is relatively straightforward, as the Modulo Addition can be completely linearized when 

there are no carries. The probability of this occurring can be estimated using (9). To be 

more precise, the condition is satisfied as long as each input pair does not generate a carry. 

The probability of this happening is (3/4)
31 

because the probability of an input pair to generate 

no carries is (3/4). The author in [26] seeks to use this condition for both additions and for 17 

consecutive cycles. The probability of this is    ⁄                 , which is close to 

exhaustive search 2
-576

. In SNOW 2.0, the exhaustive search includes the search for 512 

bits in the LFSR states and two 32-bit registers.  

In the new SNOW 2.0, the cost of having no carries has greatly increased. As m = 3 in this 

application, the length of the Modulo Addition component in the new design becomes 32*2
3
 = 

256. To fix the carries for one Modulo Addition, the probability is estimated to be 2
-(31*8*17)

 = 

2
-4216 

by using (9). This is much larger than exhaustive search. 

The second method sees the attacker trying to manipulate the output characteristics of the 

Modulo Addition to linearize the equations, as described in [20]. In particular, 9 consecutive 

values of the register R1 are fixed. The desired output values from the summation are R11 = 0, 

R12 = 2
32

 – 1, R13 = 0, R14 = 0, R15 = 0, R16 = 0, R17 = 0, R18 = 0, and R19 = 0. The value of 

R1 comes from summing R2 and S5 but the value of R2 comes from feeding R1 through the 

ASE S-Boxes and Mix Column operation. Therefore, only S5 needs to be fixed. Due to the 

nature of LFSR, 9 states need to be fixed and they are: S5, S6, S7, S8, S9, S10, S11, S12, and S13. 

The associated probability is 2
-(32*9)

 = 2
-288

.  

With the new design applied; however, the output characteristic may not be applicable.  

As discussed in Section 4, the probability of fixing all outputs to be 1 in the new design is  

2
-n(m+1)

. In this scenario, the probability has become 2
-32(3+1)

 = 2
-128

. In addition, the probability 

of fixing all outputs to be 0 in the new design is (3 / 2
2m+2

)
n
. Again, the probability becomes  

(3 / 2
2*3+2

)
32

 ≈ 2
-205

. For a total of 9 consecutive cycles, the probability has become 2
-205*8

*2
-128

 

= 2
-1768

.  

In essence, the adversary may want to utilize the corner case of the new design to 

lower the algebraic degree. However, the control string generation logic, outlined in 

Section 5, guarantees that the input control strings for the LSBs of the two inputs will not 

be simultaneously 0. Therefore, the set of equations cannot be completely linearized. A 

summary is provided in Table 6. 
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Table 6 Result Analysis of New SNOW 2.0 

 SNOW 2.0 New  SNOW 2.0 

By Method 1: Fix Carries to 0 2
-248

 2
-4216

 

By Method 2: Fix Consecutive  Outputs 2
-288

 2
-1768

 

Corner Case - NA 

6. CONCLUSIONS 

In this paper, a new type of Modulo Addition is proposed to defend against Algebraic 

Attack. It contains three components: Input Expansion, Modulo Addition, and Output 

Compaction. In addition, the new design utilizes an expanding and compacting structure 

that can be user-defined to fit into various cryptographic security architectures.  The new 

design is capable of improving the Algebraic Immunity by 4 times, by defining the user-

defined parameter m to 2, and the Describing Degree by at least 5 times, as outlined in 

Table 3. Although the algebraic degree can potentially fall back to the same as the 

original Modulo Addition, the associated cost of doing so is at least 2
-mn

. In Section 5, the 

new design was applied to stream cipher like SNOW 2.0 to demonstrate the capability of 

the new design against Algebraic Attack. The cost of utilizing output and input 

characteristics of Modulo Addition has been increased to more than the exhaustive 

search, which is 2
-576

, in the new SNOW 2.0. Overall, the new design can serve as a new 

cryptographic component that provides scalable security against Algebraic Attack. 
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