
FACTA UNIVERSITATIS
Series: Electronics and Energetics Vol. 30, No 4, December 2017, pp. 459 - 475
DOI: 10.2298/FUEE1704459S

A NOVEL ARCHITECTURE WITH SCALABLE SECURITY

HAVING EXPANDABLE COMPUTATIONAL COMPLEXITY

FOR STREAM CIPHERS

Prathap Siddavaatam, Reza Sedaghat

Electrical and Computer Engineering, Ryerson University, Toronto, Canada

Abstract. Stream cipher designs are difficult to implement since they are prone to

weaknesses based on usage, with properties being similar to one-time pad besides

keystream is subjected to very strict requirements. Contemporary stream cipher designs

are highly vulnerable to algebraic cryptanalysis based on linear algebra, in which the

inputs and outputs are formulated as multivariate polynomial equations. Solving a

nonlinear system of multivariate equations will reduce the complexity, which in turn yields

the targeted secret information. Recently, Addition Modulo has been suggested over

logic XOR as a mixing operator to guard against such attacks. However, it has been

observed that the complexity of Modulo Addition can be drastically decreased with the

appropriate formulation of polynomial equations and probabilistic conditions. A new

design for Addition Modulo is proposed. The framework for the new design is

characterized by user-defined expandable security for stronger encryption and does not

impose changes in existing layout for any stream cipher such as SNOW 2.0,

SOSEMANUK, CryptMT, Grain Family, etc. The structure of the proposed design is

highly scalable, which boosts the algebraic degree and thwarts the probabilistic

conditions by maintaining the original hardware complexity without changing the

integrity of the Addition Modulo .

Key words: Algebraic Attack, Modulo Addition, Algebraic Degree, Scalability, SNOW

2.0, TRIVIUM, S-Box, LFSR, NFSR, SAT solver, Stream Cipher.

1. INTRODUCTION

In 1949, Shannon mentioned [1] the possibility of decrypting a good cryptosystem by

solving a system of simultaneous equations, which describes the cryptosystem, and the

equations have a large number of unknowns. One of the interpretations of this proposition

[2] is to describe a cryptosystem as a system of multivariate polynomial equations and to

solve this system. This has built the foundations of the cryptanalysis method commonly

known as Algebraic Attack nowadays. Applications of this idea were first introduced in

Received April 6, 2017

Corresponding author: Reza Sedaghat

Electrical and Computer Engineering, Ryerson University, Toronto, Canada
(e-mail: rsedagha@ee.ryerson.ca)

460 P. SIDDAVAATAM, R. SEDAGHAT

[3] and [4] to break public key scheme. Later, the attack was generalized and applied on

stream ciphers and block ciphers [5][6][7].

Algebraic Attack focuses on formulating multivariate polynomial equations between the

inputs and outputs with low algebraic degree. In the higher echelons of security framework

some methods tend to deploy a family of protocols which is designed specifically to be

secure against algebraic attacks [8]. The significance of the attack is that the formulae exist

with probability 1 or close to 1, unlike traditional probabilistic attacks such as differential

cryptanalysis [9] and linear cryptanalysis [10]. As a result, solving such equations successfully

will always yield the desire value of the targeted variable. The procedure to setup the attack

typically starts with the attacker finding a set of equations that can describe the relationship

between the input and the output. Each equation in the set contains an algebraic degree.

Higher degree results in higher difficulty to solve the equations. At the same time, it is

very common that the number of multivariate equations is less than the number of

variables. Therefore, an attacker would try to uncover ways that will lower the algebraic

degree of the existing equations or new independent equations that will help describe the

relationship between input and output. Moreover, it is often possible that the degree can

be lowered or that new equations can be formed based on some probabilistic condition.

Finally, solving the set of equations can be done through techniques such as Gaussian

reduction or methods described in [11], [12], and [13].

Addition Modulo 2
n
 has been widely used as an elementary cryptographic module in

both stream ciphers, such as CAST [14], TWOFISH [15], and MARS [16], and block

ciphers, such as SOBER-t32 [17], SNOW 2.0 [18], and ZUC [19]. Typically, it is used for

mixing, which combines two data sources to provide security. While the logic XOR

operation is also often used for mixing, Modulo Addition offers better security against

Algebraic Attack [20] because it is partly non-linear in GF(2). A linear operation in GF(2),

such as XOR, can be described by an equation of algebraic degree 1. Modulo Addition is

linear only at its least significant bit (LSB); therefore, it is harder for an attacker to solve

using Algebraic Attack. It has been discovered that the algebraic degree of the formulae

describing Modulo Addition can be reduced to quadratic [11]. At the same time, conditional

properties of the Modulo Addition are also discovered to lower the algebraic degree and

create new independent equations. These techniques help reduce the complexity of solving

Modulo Addition tremendously. As a result, this paper aims to devise a new structure that

will increase the algebraic degree when compared to the traditional Modulo Addition and

increase the difficulty of using the conditional properties. At the same time, the size of the

structure is user-defined and flexible, providing the users a scalable security against

Algebraic Attack specifically when security is considered as a key requirement during the

early stages of systems development [21][22][23][24].

The paper is structured as the following: Section 2 discusses the complexity of Algebraic

Attack and describes in detail Modulo Addition under the lens of Algebraic Attack. Section 3

presents the details of the proposed design. Section 4 provides the analysis of the design and

compares the design with traditional Modulo Addition. Section 5 demonstrates the application

of the new design in a contemporary stream cipher example and gives the analysis of its

application. Finally, Section 6 summarizes the proposed design briefly.

 A Novel Architecture With Scalable Security Having Expandable Computational Complexity 461

2. PRELIMINARIES AND TERMINOLOGY

2.1. Algebraic attack and its complexity

The steps taken typically in an Algebraic Attack can be summarized as the following:

 Formulate multivariate polynomials equations describing input-output relations

with probability 1

 Explore additional independent equations supplementing the existing system of

equations with probability 1 or close to 1

 Explore conditions that can lower the algebraic degree of the system of equations

 Solve the system of equations with the appropriate techniques.

Algebraic Immunity is a metric that has been developed [25] to provide a fast evaluation

of the security against Algebraic Attack for a given cryptographic function. It is defined as

the minimum algebraic degree in the system of equations. Moreover, the Algebraic

Immunity has been deemed to be insufficient and the Describing Degree, which is the

minimum algebraic degree such that an S-Box can be entirely defined by equations of that

minimum degree, has been developed to provide a more thorough evaluation of security

against Algebraic Attack [20]. These metrics all focus on measuring the algebraic degree of

the set of equations that describes the targeted function because the degree has direct

relationship to the complexity of solving the set of equations. These metrics do not attempt

to address fault attacks employ that inject faults at any random location and random point of

time for a stream cipher [26].

The complexity of solving Algebraic Attack has been explored in [5] and [7]. Though the

complexity can vary depending on the specific method used, it can be generalized by using

the estimation of the complexity of a Gaussian Elimination. When applying Algebraic Attack

on a generic stream cipher, the complexity can be estimated with the following steps:

 Define R as the number of multivariate equations formed between the output bit

and the states in the stream cipher

 Define N as the number of variables in the stream cipher or the number of states

equivalently

 Define D as the Describing Degree of the multivariate equations

 Define T as the number of monomials of degree ≤ D and T can be calculated as:

(1)

The estimated complexity can be calculated by multiplying T with the number of

operations and the cycle time required for each operation. Since these parameters can be

algorithm and platform dependent, T itself can be used to provide estimation. At the same

time, if conditional properties are used to reduce the algebraic degree of the set of equations,

the complexity increases by attaching the probability of the conditional properties happening

to T.

The complexity of Algebraic Attack on a generic block cipher is slightly different.

The complexity is contributed mainly from the non-linear component in a block cipher,

which is typically an S-Box. A typical S-Box transforms its n-bit input variables to m-bit

output variables, using a vectorial Boolean function. Using the definitions above, the

number of monomials, T, can be calculated as:

462 P. SIDDAVAATAM, R. SEDAGHAT

(2)

The number of equations, R, is determined by forming a matrix M of size 2

n
 T. This R

is calculated as a difference given by:

(3)

Thereby the complexity of solving this system of equations can be estimated by:

(4)

From (4), the complexity increases when the number of monomials increases. The

number of monomials increases when the algebraic degree of the set of equations

increases in (1) and (2).

2.2. Addition Modulo

When viewing Modulo Addition in the eyes of Algebraic Attack, a set of equations

describing the relationship between the input and output needs to be formed. This is

outlined in [12] for the n-bit Modulo Addition of Z=X Y, and shown in (5).

(5)

The variable C is used to denote the carries. The + sign in the equations denotes addition

in GF(2), or simply the logic XOR operation. Each carry variable can be described by the

set of equations given in (6). It can be seen from combining (5) and (6) that the Modulo

Addition is partly non-linear because the LSB of the output is linear. The algebraic

degree is dominated by the carry terms.

(6)

 A Novel Architecture With Scalable Security Having Expandable Computational Complexity 463

From (6), the degree increases linearly with the carry terms. This is because the more

significantly positioned carry terms not only depend on their corresponding input variables,

which have a degree 1, but also the previous carry terms. As C0 is generated by X0 and Y0,

the degree of Z1 becomes 2. Similarly, C1 is generated by X1 and Y1, and the degree of Z2

becomes 3. In fact, for an n-bit output, the algebraic degree for each output bit is:

 (7)

As mentioned before, the complexity of solving the equations increases with the

increment of algebraic degree. In [11], the author has devised a set of equations that

describes Modulo Addition but limits the algebraic degree to 2. This is shown in (8).

(8)

Moreover, the author is able to create in total – independent equations, instead of

the original n equations. This effectively reduces the complexity of Algebraic Attack on

Modulo Addition even before the deployment of conditional properties.

2.3 Conditional Properties of Modulo Addition

Conditional properties have been studied in [25] and the idea can be applied to Modulo

Addition in a similar fashion. The conditional properties of Modulo Addition are first

explored in [26] and then expanded in [20]. The goal of using conditional equations in

Modulo Addition is to lower the algebraic degree of the equations or to create more

independent equations with lower degree. In general, the occurrence of these conditions is

based on the manipulation of input bits and carries bits. As mentioned before, the cost of

these conditions is the probability. For input bits, the probability is assumed to be uniform,

or ½. For the carry bits, the probability can be generalized above in (9). The probability of a

carry being 1 nears toward ½ as the number of bits increase.

(9)

2.3.1. Modulo Addition with no Carries

A Modulo Addition that generates no carries will have a completely linearized equation.

In other words, the algebraic degree of (5) will be reduced to 1 when all carries are 0. The

probability of this condition can be calculated using (9) and can be approximated to .

464 P. SIDDAVAATAM, R. SEDAGHAT

2.3.2. Modulo Addition Output Characteristic

An output characteristic that can help linearize the equations is when the output bits

of the addition are all 1’s, or that the output is . Given that the carry-in is 0, the

output bits can be all 1’s only when the input bits are of opposite polarity. In other words,

for each pair of input bits, the two bits are either or . This is also referred to as

Propagate [6], and the probability of this occurring is . The algebraic degree of the

equations is lowered to 1 in this case.

2.3.3. Modulo Addition Input Characteristics

Two input characteristics can be utilized to linearize the equations. First, no carry is

generated when one of the input is simply 0. Second, there can be no carries generated

when one of the inputs is the Two’s Complement of the other input. The output bits of this

input pairing are always 0 in Modulo Addition. The distribution of the carry bits is as

follows: There will be no carries generated from the input pairs until the first pair.

Then, the subsequent input pairs will always generate a carry. This provides a controlled

distribution to the carry bits. In fact, if one of the inputs is a power of 2 and the other input

is the Two’s Complement, then no carry will be generated. Although these conditions can

reduce the algebraic degree, the probability attached to these conditions is . The

proposed design will not only increase the algebraic degree of the equations describing the

relationship between the input and output, but also increases the difficulty of utilizing the

conditional properties.

3. THE NEW MODULO ADDITION

The proposed design is a new type of cryptographic module that provides user-

defined scalable security against Algebraic Attack. The components in the new Modulo

Addition includes: Input Expansion, Modulo Addition, and Output Compaction. A block

diagram is shown in Figure 1 to contrast the new design and traditional Modulo Addition.

Fig. 1 Block Diagram of the New Design

 A Novel Architecture With Scalable Security Having Expandable Computational Complexity 465

3.1. Input Expansion

The Input Expansion function, FIN(), is a function that expands each single input bit

into a -bit string based on an n m-bit control string KI. We specify a user-defined

parameter m that can be determined depending on the security requirement. The input

control string KI typically can be generated within a cipher. The actual expansion

function can be flexible; meaning, the user can substitute other expanding functions

instead of the proposed one. For example, the expanding function can be an algebraic

function or it can be an S-Box.

The proposed expansion function is an arithmetic relationship that is easily scalable. Also,

each of its output bit is 0-1 balanced. We can define the Input Expansion function as follows:

Let X = x … x x be an n-bit input and KI = KI
 … KI

 KI
be its input control

string KI
∈ { } . Furthermore, let KI

=KI
 KI

, … KI
 KI

such

that KI
∈ { }, ≤ i ≤ n − and ≤ j ≤ m − . Then, let X′ be the expanded input

such that X = x′ … x′ x′ and x′ ∈ { } , where w = . KI
 is treated as a

decimal number in (10).

(10)

Using (10), it is recommended to define the user-defined parameter m ≥ 2 to avoid

repeating values.

3.2. Addition Modulo

The second component of the design takes the expanded inputs and performs Modulo

Addition. Nevertheless, the number of additions now has increased from to

where w = , as the inputs have been expanded. Let X = x … x x be an n-bit

input and = y … y y be another n-bit input. Let X = x
 … x

 x

 = (x′(n-

1)(w-1), …,x′(n-1)1, x′(n-1)0, …,x′1(w-1), …, x′11, x′10, x′0(w-1), …, x′01, x′00) be the expanded input

and Y′ = y′n-1, …, y′1, y′0 = (y′(n-1)(w-1), …, y′(n-1)1, y′(n-1)0, …, y′1(w-1), …, y′11, y′10, y′0(w-1),

…, y′01, y′00) be the other expanded input. Then, let Z′ = z′n-1, …, z′1, z′0 = (z′(n-1)(w-1), …,

z′(n-1)1, z′(n-1)0, …, z′1(w-1), …, z′11, z′10, z′0(w-1), …, z′01, z′00) be the sum of the Modulo

Addition. Equations (8) or (5) and (6) both can be used to describe the Modulo Addition.

In (11), the equations are derived from (8).

(11)

466 P. SIDDAVAATAM, R. SEDAGHAT

3.3. Output Compaction

The final component of the new design is a function that compresses Z′ to Z, i.e.

from { } { } , based on n m-bit output control string KO. The function is

flexible as long as the function chosen is capable of constricting the sum. In this design,

the proposed function is a MUX function. Let K = K … K K and

K = K … K K where K { }
 . We have, = … =

 z

 K … z

 K z

 K . The expression for can be

generalized in (12).

(12)

Here, (-1) refers to the complement of K , summation refers to logic XOR, and

multiplication refers to logic AND.
An example is given below for m = 3, p and q are index variables.

4. ANALYSIS OF THE NEW DESIGN

In this section, the proposed design is analyzed with respect to Algebraic Attack.

4.1. Probability of Carry

The probability of carry in the traditional Modulo Addition can be estimated using
(9). As mentioned before, each bit of the expanded input is 0-1 balanced. The Input
Expansion function can be viewed as a collection of Boolean functions such that each

output bit is a { } { } function. Each Boolean function, in this case, is 0-1
balanced because the output of the function has an equal chance of producing a 0 or 1.
With this assumption, the probability of carry for the new design can be derived as
below. The result shows that the formula is very similar to (9).

Let =
 …

 =

 …
 ,

 …
 …

 …

be the carry bits generated from summing the two expanded inputs. Also, the limits

are ≤ i ≤ n − ≤ j ≤ , and w = .

 A Novel Architecture With Scalable Security Having Expandable Computational Complexity 467

 (13)

4.2. New Design with No Carries

As a result of (13), the probability of carry has decreased from to

for the same n-bit input pair. This helps increase the difficulty of an attacker to create a

scenario without any carry, as discussed in Section 2.

4.3. Modulo Addition Output Characteristics in the New Design

In a traditional Modulo Addition, the output bits can be used directly to derive potential

carries and input pairings. In the new design, the Output Compaction function is lossy; thus,

the attacker can only obtain n bits out of 2
nw

 bits even if the output control string KO is

known. Therefore, these n bits cannot provide enough information to derive the potential

carries and input pairings. However, it is still possible to have all 1’s in the sum of the Modulo

Addition component in the new design. This requires specific combinations of the two m-bit

input control strings KI
and KIyi

 In particular, the two input control strings need to be the

same while the corresponding inputs need to be a propagate pair.

As mentioned before, the probability of output being all 1’s in a traditional Modulo

Addition is . The probability of this condition occurring in the new design is

decreased to ()().

4.4. Modulo Addition Input Characteristics in the New Design

Similar approach is applied to evaluate the use of input characteristics of the Modulo

Addition component in the new design. First, the expanded inputs will never be all 0’s

when using the Input Expansion function given in (10). Therefore, this characteristic

becomes invalid. Nevertheless, it is possible for the expanded inputs to be the Two’s

Complement of one another. By observing (10) carefully, it is discovered that there are

only 3 such cases given any m and m . Thus, the probability is derived to

be ⁄ , which is significantly less than .

468 P. SIDDAVAATAM, R. SEDAGHAT

4.5. Complexity of Solving the New Design

To evaluate the complexity of solving the new design under Algebraic Attack, the

algebraic degree needs to be understood. The algebraic degree can be obtained by expressing

the new design in its algebraic normal form (ANF), which describes a Boolean function using

logic XOR gates [25]. The algebraic degree of each component is first studied and then

the degree of the whole design is considered.

4.5.1. Algebraic Degree of Input Expansion

The algebraic degree is the monomial with the largest degree in the algebraic normal

form. For the Input Expansion function, each expanded variable can be expressed in the

ANF by considering itself as a Boolean function. Intuitively, the value of the expanded

variable is a manipulation of the original input value based on the value of the user-

defined parameter m. From the two examples given in the Table 1, it can be observed that

the algebraic degree directly relates to the value of user-defined parameter m.

The Table 1 also provides a comparison summary of the algebraic degree of the input

variables going into a traditional Modulo Addition and the Modulo Addition component

in the new design.

Table 1 ANF of Input Expansion Function when m = 2

Xi ANF
Algebraic

Degree
x′i0 KIx1 KIx0 KIx1KIx0 xi 2

x′i1 1 KIx0 KIx1KIx0 xi 2

x′i2 1 KIx1 KIx1KIx0 xi 2

x′i3 1 KIx1KIx0 xi 2

ANF of Input Expansion function when m = 3

Xi ANF
Algebraic

Degree
x′i0 KIx0 KIx1 KIx1KIx0 KIx2 KIx2KIx0 KIx2KIx1 KIx2KIx1KIx0 xi 3

x′i1 1 KIx0 KIx1KIx0 KIx2KIx0 KIx2KIx1KIx0 xi 3

x′i2 1 KIx1 KIx1KIx0 KIx2KIx1 KIx2KIx1KIx0 xi 3

x′i3 1 KIx1KIx0 KIx2KIx1KIx0 xi 3

x′i4 1 KIx2 KIx2KIx0 KIx2KIx1 KIx2KIx1KIx0 xi 3

x′i5 1 KIx2KIx0 KIx2KIx1KIx0 xi 3

x′i6 1 KIx2KIx1 KIx2KIx1KIx0 xi 3

x′i7 1 KIx2KIx1KIx0 xi 3

Comparison of Input Algebraic Degrees

Input to traditional
Modulo Addition

Input to Modulo Addition
in the new design

Algebraic Degree 1 m

 A Novel Architecture With Scalable Security Having Expandable Computational Complexity 469

4.5.2. Algebraic Degree of Modulo Addition

The algebraic degree of the Modulo Addition component can be evaluated using (8)

or (5) and (6). Equation (8) limits the algebraic degree to quadratic in the original Modulo

Addition by utilizing the output variables. This is under the assumption that the output is

observable. In the new design, the output variables of the Modulo Addition component

may not be observable; however, it is possible to define them as additional variables so

that the algebraic degree of the expression can be reduced. The drawback of this method

is that the number of variables used to solve the set of equations has increased. Assuming

that additional variables are used, the algebraic degree of the Modulo Addition

component is at most 2m. This is because each input variable now has a degree of m and

the largest degree is quadratic using (8). At this point, it can be observed that the

algebraic degree has already increased by the user-defined parameter m.

In addition, it is possible to express the Modulo Addition using (5) and (6), and its

algebraic degree is outlined by (7). As mentioned before, each input variable now has a

degree of m. The LSB of the addition then has a degree of m and the rest of the output

bits have a degree of i w j m. Note that ≤ i ≤ n − ≤ j ≤ − , and

w = 2
m
. The derivation approach is similar to what is outlined in the previous section. The

degree of the carry terms increases linearly according to their bit positions; however, the

degree increases in multiples of m because the expanded input variables have a degree of

m. As a result, the degree of z′01 is generated by the multiplication of two degree-m

variables x′00 and y′00. The degree of z′02 can be generated by the multiplication of x′01,

x′00, and y′00, or the combination of y′01, x′00, and y′00. The degrees are 2m and 3m.

Therefore, each output variable of the Modulo Addition, z′ij, has a degree of i w
 j m. A comparison summary of algebraic degree is given in Table 2.

At this point, the effective increase of algebraic is m when compared to the original

Modulo Addition.

4.5.3. Algebraic Degree of Output Compaction

Finally, the algebraic degree of the Output Compaction function needs to be determined.

As mentioned before, the function is a 2
m
: 1 logic Multiplexer (MUX) function defined by

(12). This equation is itself in the algebraic normal form. Therefore, the degree can be

determined simply by observing (12). The degree is m + 1 because the output of the MUX

function depends on the values of all the select lines and the input. Note that the 1 comes

from the assumption that the degree of the input to the MUX is 1. It needs to be substituted

when the degree changes.

4.5.4. Algebraic Degree of the New Design

The algebraic degree of the new design can be determined by combining the degrees

of all the components. The Table 2 provides the summary of the algebraic degree of the

new design and a comparison to the traditional Modulo Addition. Note that the algebraic

degree of the traditional Modulo Addition is calculated using (8).

470 P. SIDDAVAATAM, R. SEDAGHAT

Table 2 Comparison of Modulo Addition Algebraic Degrees

Sum of traditional
Modulo Addition

Sum of Modulo Addition in
the new design

Algebraic Degree using (8) m m

Algebraic Degree using (5) and (6) i m i w j m

Table 3 Algebraic Degree of the New Design

Traditional Modulo

Addition
New Modulo

Addition
Algebraic Degree of Input 1 m

Algebraic Degree of Addition 2
m

 i w j m

Algebraic Degree of Output - m + 1

Total 1 2
 m

m
 i w j m

Algebraic Immunity and Describing Degree

Traditional Modulo

Addition
New Modulo

Addition

Algebraic Immunity 1 2m

Describing Degree 2
m

(n – –)m

Table 4 Complexity Comparison of the Corner Case

Traditional Modulo
Addition using (8)

New Modulo Addition
Corner Case

Number of Input Variables 2n 3mn + 2n

Number of Output Variables n n

Number of Extra Variables 0 0

Number of Equations R = 6n – 3 R = n

Algebraic Degree 2 n + 1

Condition Cost 0 23mn

Number of Monomials = ∑(
 n

i
)

 = ∑(
 n m

i
)

Complexity = n⁄ ⌈

 ⁄ ⌉
 =

(mn n ⁄ ⌈

 ⁄ ⌉

As described in Table 3, the Algebraic Immunity has increased by m, or at least 4 for

m = 2. The Describing Degree has increased from 2 to at least 10 for m = and n = . In

addition, it is worth noting that, an attacker can seek to lower the degree of the new design by

looking for additional independent equations with lower degree or by creating extra variables.

 A Novel Architecture With Scalable Security Having Expandable Computational Complexity 471

The benefit of these methods is to be determined by the attacker. However, a corner case

study is provided in the next section as a starting point.

4.5.5. Corner Case Analysis of the New Design

The corner case can be obtained by looking for a conditional property of the new

design. In other words, there is a probabilistic condition that can help lower the algebraic

degree. From Table 1, it can be seen that the algebraic degree of the Input Expansion

function depends on the multiplication of the input control string variables. Once the

variables are known, the degree falls to 1. Specifically, if the input control string has all 0’s,

the expanded inputs are either the same as the inputs or the complement of the inputs.

Under this condition, the degree of addition becomes at least 1, which is the same as the

traditional Modulo Addition. However, the degree does not scale linearly with the

significance of the bit positions. In each block of expanded inputs, the expression of the

summation of the expanded input variables can be reduced because many of the variables

are the same. In fact, the degree of the LSB in each block of expanded inputs is , for 0

≤ i ≤ n – 1. The rest of the summation bits from adding each block of the expanded inputs

have a degree of .

Furthermore, the attacker would notice that if the Output Compaction function is able

to select the LSB in each block of the summation, i.e., z′i0, the algebraic degree is the

lowest. For this to happen, the output control string needs to be all 0’s. As a result, the

degree of the new design becomes for Z′i, and 0 ≤ i ≤ n – 1. This is the same as the

traditional Modulo Addition as shown in Table 2. Nevertheless, the cost of this condition

has a probability of 2
-3mn

 as all control bits need to be 0’s.

Fig. 2 New Design Schematic for SNOW 2.0

Traditional Modulo Addition and the new design can be viewed as S-Boxes and their

complexity against Algebraic Attack can be approximated as S-Boxes. For the traditional

Modulo Addition, the required parameters have been studied in [20]. A comparison for

the same has been listed in Table 4. In the corner case, the number of monomials is still

472 P. SIDDAVAATAM, R. SEDAGHAT

larger because of the increased in number of variables and algebraic degree. At the same

time, the complexity has increased by attaching the conditional cost.

5. APPLICATIONS OF NEW DESIGN

In this section a contemporary stream cipher like SNOW 2.0 is used to demonstrate

the application of the new design. This application explores the new design being deployed

in a stream cipher that uses combiner with memory. The following example describes the

new design being applied in the stream cipher, SNOW 2.0, which constitutes a LFSR with

non-linear feedback and uses an output combiner function with memory [18].

5.1.1. Overview of SNOW 2.0

SNOW 2.0 uses a length 16 LFSR over . In other words, the LFSR has 16

elements, or states, but each state contains a 32-bit word. Let ,…, denote the states

of the LFSR. The feedback function is defined as the XOR combination of multiplied

by , and divided by . To produce the output key stream, a Finite State Machine

(FSM) is used in conjunction with the LFSR. The FSM contains two 32-bit registers R1 and

R2. The value of R2 is determined by feeding the value of R1 through a set of AES S-Boxes

and the AES Mix Column function. The value of R1 is determined by performing Addition

Modulo 232 between R2 and . Finally, the output combiner function is defined as first

performing Addition Modulo between R1 and , second XORing the result with R2,

and finally XORing the result of the former with . Consequently, SNOW 2.0 operates in

two modes: Initialization and Key Stream Generation; it uses a 128-bit secret key and a 128-

bit initialization vector in Initialization Mode.

5.1.2. Application of the New Design

The new design is used to replace the two Modulo Additions and the user-defined

parameter m is chosen to be 3. There are 288 extra bits required to supply the input and

output control strings of each addition because for each input bit of the 32-bit addition, a

3-bit control string is needed. Therefore, 576 bits in total are required for two additions.

Again, many ways can be utilized to generate the extra bits. In this case, is used to

generate 288 bits and the same set of bits is used for the two insertions of the new design.

The generation logic is defined as the following:

 For each bit of the first input X, there are 3 input control bits needed. They will be the

3 LSBs of the 3-bit circular-left-shifted . For example: KI
 = (, ,)

and KI
= (, ,).

 For each bit of the second input Y, the 3 input control bits will come from the 3 LSBs

of the 3-bit circular-right-shifted and inverted . Let
 denotes the bit-wise

inverted . Then, KI
 = (

 ,
 ,

) and KI
 = (

 ,
 ,

).

 For the output control string, each 3 output control bits come from the 3 LSBs of the 3-

bit circular-right-shifted . For example: K = (,) and K =

(, ,).

This setup can at least guarantee that the input control bits for the first input pair will

not be all 0’s simultaneously. The new SNOW 2.0 setup is shown in Table 5. The secret key

 A Novel Architecture With Scalable Security Having Expandable Computational Complexity 473

and the initialization vector are defined as given in the Table 5. This is one of the test vectors

listed in [18]. At this specific timeframe, S15 = 0xCC15A50B, R1 = 0xAAB91A68, and S14

= 0x5164B6D9. The output of the new design here is 0x37F7B4F7 while the original

Modulo Addition gives 0x76CEBF73. Also, the first output key stream of new SNOW

2.0 is 0x91CC022F and the original key stream is 0xC355385D.

Table 5 SNOW 2.0 Test Vectors [24]

Attribute Hexadecimal Value

Secret Key(K) x
Initialization Vector (IV) x

5.1.3. Analysis of New SNOW 2.0

Algebraic Attack on SNOW 2.0 has been studied in [26] and [20]. Two methods have

been proposed to linearize the Addition Modulo 2
32

 in the stream cipher. The first method

is relatively straightforward, as the Modulo Addition can be completely linearized when

there are no carries. The probability of this occurring can be estimated using (9). To be

more precise, the condition is satisfied as long as each input pair does not generate a carry.

The probability of this happening is (3/4)
31

because the probability of an input pair to generate

no carries is (3/4). The author in [26] seeks to use this condition for both additions and for 17

consecutive cycles. The probability of this is ⁄ , which is close to

exhaustive search 2
-576

. In SNOW 2.0, the exhaustive search includes the search for 512

bits in the LFSR states and two 32-bit registers.

In the new SNOW 2.0, the cost of having no carries has greatly increased. As m = 3 in this

application, the length of the Modulo Addition component in the new design becomes 32*2
3
 =

256. To fix the carries for one Modulo Addition, the probability is estimated to be 2
-(31*8*17)

 =

2
-4216

by using (9). This is much larger than exhaustive search.

The second method sees the attacker trying to manipulate the output characteristics of the

Modulo Addition to linearize the equations, as described in [20]. In particular, 9 consecutive

values of the register R1 are fixed. The desired output values from the summation are R11 = 0,

R12 = 2
32

 – 1, R13 = 0, R14 = 0, R15 = 0, R16 = 0, R17 = 0, R18 = 0, and R19 = 0. The value of

R1 comes from summing R2 and S5 but the value of R2 comes from feeding R1 through the

ASE S-Boxes and Mix Column operation. Therefore, only S5 needs to be fixed. Due to the

nature of LFSR, 9 states need to be fixed and they are: S5, S6, S7, S8, S9, S10, S11, S12, and S13.

The associated probability is 2
-(32*9)

 = 2
-288

.

With the new design applied; however, the output characteristic may not be applicable.

As discussed in Section 4, the probability of fixing all outputs to be 1 in the new design is

2
-n(m+1)

. In this scenario, the probability has become 2
-32(3+1)

 = 2
-128

. In addition, the probability

of fixing all outputs to be 0 in the new design is (3 / 2
2m+2

)
n
. Again, the probability becomes

(3 / 2
2*3+2

)
32

 ≈ 2
-205

. For a total of 9 consecutive cycles, the probability has become 2
-205*8

*2
-128

= 2
-1768

.

In essence, the adversary may want to utilize the corner case of the new design to

lower the algebraic degree. However, the control string generation logic, outlined in

Section 5, guarantees that the input control strings for the LSBs of the two inputs will not

be simultaneously 0. Therefore, the set of equations cannot be completely linearized. A

summary is provided in Table 6.

474 P. SIDDAVAATAM, R. SEDAGHAT

Table 6 Result Analysis of New SNOW 2.0

 SNOW 2.0 New SNOW 2.0

By Method 1: Fix Carries to 0 2
-248

 2
-4216

By Method 2: Fix Consecutive Outputs 2
-288

 2
-1768

Corner Case - NA

6. CONCLUSIONS

In this paper, a new type of Modulo Addition is proposed to defend against Algebraic

Attack. It contains three components: Input Expansion, Modulo Addition, and Output

Compaction. In addition, the new design utilizes an expanding and compacting structure

that can be user-defined to fit into various cryptographic security architectures. The new

design is capable of improving the Algebraic Immunity by 4 times, by defining the user-

defined parameter m to 2, and the Describing Degree by at least 5 times, as outlined in

Table 3. Although the algebraic degree can potentially fall back to the same as the

original Modulo Addition, the associated cost of doing so is at least 2
-mn

. In Section 5, the

new design was applied to stream cipher like SNOW 2.0 to demonstrate the capability of

the new design against Algebraic Attack. The cost of utilizing output and input

characteristics of Modulo Addition has been increased to more than the exhaustive

search, which is 2
-576

, in the new SNOW 2.0. Overall, the new design can serve as a new

cryptographic component that provides scalable security against Algebraic Attack.

Acknowledgement: This work is supported by the Optimization and Algorithm Research Lab

(OPRAL), Ryerson University.

REFERENCES

[1] C. Shannon, “Communication theory for security systems,” Bell System Technical Journal 28, 1949.

[2] C. Adams, “Designing against a class of algebraic attacks on symmetric block ciphers,” Applicable
Algebra in Engineering, Communications, and Computing, vol. 17, no. 1, pp. 17-27, Apr. 2004.

[3] J. Patarin, “Hidden Fields Equations (HFE) and Isomorphisms of Polynomials (IP): Two New Families

of Asymmetric Algorithms,” in Advances in Cryptography – EUROCRYPT’96, Springer Berlin
Heidelberg, 1996, pp. 33-48.

[4] J. Patarin, “Cryptanalysis of the Matsumoto and Imai Public Key Scheme of Eurocrypt’88,” in Advances

in Cryptography – EUROCRYPT’95, Springer Berlin Heidelberg, 1995, pp. 248-261.
[5] N. Courtois and W. Meier, “Algebraic Attack on Stream Ciphers with Linear Feedback,” in Advances in

Cryptography – EUROCRYPT 2003, Springer Berlin Heidelberg, 2003, pp. 345-359.
[6] N. Courtois, “Algebraic Attack on Combiners with Memory and Several Outputs,” in Information

Security and Cryptography – ICISC 2004, Springer Berlin Heidelberg, 2004, pp. 3-20.

[7] N. Courtois and J. Pieprzyk, “Cryptanalysis of Block Ciphers with Overdefined System of Equations,” in
Advances in Cryptography – ASIACRYPT 2002, Springer Berlin Heidelberg, 2002, pp. 267-287.

[8] C. Adams and S. Tavares, “Designing s-boxes for ciphers resistant to differential cryptanalysis,” In

Proceedings of the 3rd Symposium on the State and Progress of Research in Cryptography, Feb. 1993,
pp. 181-190.

[9] E. Biham and A. Shamir, “Differential cryptanalysis of DES-like cryptosystems,” Journal of

Cryptography, vol. 4, no. 1, pp. 3-72, Jan. 1991.
[10] M. Matsui, “Linear Cryptanalysis Method for DES Cipher,” in Advances in Cryptography –

EUROCRYPT’93, Springer Berlin Heidelberg, 1994, pp. 386-397.

 A Novel Architecture With Scalable Security Having Expandable Computational Complexity 475

[11] N. Courtois and J. Patarin, “About the XL Algorithm over GF(2),” in Topics in Cryptography – CT-RSA

2003, Springer Berlin Heidelberg, 2003, pp. 141-157.
[12] N. Courtois, “Higher Order Correlation Attacks, XL Algorithm and Cryptanalysis of Toyocrypt,” in

Information Security and Cryptography – ICISC 2002, Springer Berlin Heidelberg, 2002, pp. 182-199.

[13] N. Courtois, A. Klimov, J. Patarin, and A. Shamir, “Efficient Algorithms for Solving Overdefined
Systems of Multivariate Polynomial Equations,” in Advances in Cryptography – EUROCRYPT 2000,

Springer Berlin Heidelberg, 2000, pp. 392-407.

[14] C. Adams, “Constructing Symmetric Ciphers Using the CAST Design Procedure,” in Selected Areas in
Cryptography, Springer US, 1997, pp. 71-104.

[15] B. Scheier et al, The Twofish encryption algorithm: a 128-bit block cipher, New York, NY, Wiley, 1994.

[16] C. Burwick et al, “MARS – a candidate cipher for AES,” IBM Corp., Rep., 1998.
[17] P. Hawkes and G. Rose, “Primitive specification and supporting documentation for SOBER-t32

submission to NESSIE,” In the Proceedings of the first open NESSIE workshop, 2000.

[18] P. Ekdahl and T. Johansson, “A New Version of the Stream Cipher SNOW,” in Selected Area in
Cryptography, Springer Berlin Heidelberg, 2003, pp. 47-61.

[19] “Specification of the 3GPP Confidentiality and Integrity Algorithms 128-EEA3 & 128-EIA3. Document

2: ZUC Specification,” Rep. version 1.6, Jan. 2011.
[20] N. Courtois and B. Debraize, “Algebraic Description and Simultaneous Linear Approximations of

Addition in Snow 2.0,” in Information and Communications Security, Springer Berlin Heidelberg, 2008,

pp. 328-344.
[21] A. Bushager, M. Zwolinski, "Evaluating system security using Transaction Level Modelling," Facta

Universitatis, Series: Electronics and Energetics, vol.27, issue.1, pp.137-151, 2014.

[22] A. Khanna, “An architectural design for cloud of things”, Facta Universitatis, Series: Electronics and
Energetics, vol. 29 issue 3, pp. 357-365, 2016.

[23] A. Janjic, S. Savic, G. Janackovic, M. Stankovic and L.Velimirovic, “Multi-criteria assessment of the

smart grid efficiency using the fuzzy analytic hierarchy process”, Facta Universitatis, Series: Electronics
and Energetics, vol. 29, issue. 4, pp. 631-646, 2016.

[24] M. A. Dimitrijević, M. Andrejević-Stošović, J. Milojković, V. Litovski, " Implementation Of Artificial

Neural Networks Based AI Concepts To The Smart Grid ", Facta Universitatis, Series: Electronics and
Energetics, vol.27, issue.3, pp.411-424, 2014.

[25] W. Meier, E. Pasalic, and C. Carlet, “Algebraic Attacks and Decomposition of Boolean Functions,” in

Advances in Cryptography – EUROCRYPT 2004, Springer Berlin Heidelberg, 2004, pp. 474-491.
[26] S. Sarkar, S. Banik and S. Maitra, "Differential Fault Attack against Grain Family with Very Few Faults

and Minimal Assumptions," IEEE Transactions on Computers, vol. 64, no. 6, pp. 1647-1657, June 2015.

