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Abstract. The paper explores the analog analysis and higher order derivatives of drain 

current (ID) at gate source voltage (VGS), by introducing channel engineering technique 

of 3D conventional and Wavy Junctionless FinFETs (JLT) as silicon germanium  

(Si1-0.25Ge0.25) device layer. In view of this, the performances are carried out for different 

gate length (LG) values (15-30 nm) and current characteristics determined by maintaining 

constant ON current (ION 10-5) (A/μm) for both devices. With respect to this, a comparison 

has been made between these MOS structures at molefraction x = 0.25 and it was found 

that the electric field is perpendicular to the current flow which induces volume inversion 

approach. Accordingly, for the simulation study better channel controllability over the 

gate is observed for Wavy structures and high ID induces as the LG scales down. With 

respect to this the constant ION determine ID, transconductance (gm), transconductance 

generation factor (TGF) and its higher order terms (g\
m, and g\\

m) of the devices are 

studied with relaxed SiGe approximation. The extensive simulation study on short 

channel (SC) parameters are also performed and it is observed that the Wavy JL 

FinFET shows less sensitivity towards short channel effects (SCEs) over conventional 

one, therefore the dependency of N-type doping concentration (ND = 1.7x1019 cm-3) 

and metal workfunction (ϕM = 4.6 eV) are responsible to achieving reduced SCEs.    
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1. INTRODUCTION 

Due to the tremendous growth in technology, the exploration of novel architectures 

has become mandatory for ultra large scale integration (ULSI) applications. Among 

various architectures, the FinFET has become an attractive device solution for down 

scaling the SCEs. As the device dimensions have moved to nanometer range [1]–[4], this 

primarily owes to its superior gate control over channel.  Multi-gate structures like Silicon 

on insulator (SOI) MOSFETS [5], [6] are scaled down to decananometer range, however 

realizing these MOSFETS in decananometer [7] range requires extremely sharp source/drain 

p-n regions which are possibly achieved through high end annealing techniques and there by 

increases the fabrication cost. To overcome these difficulties a new MOSFET without 

source/drain p-n junction was proposed [8], [9], and named  junctionless nanowire transistor. 

The comparative study was performed between fabricated Junctionless FinFET (JLT) and 

conventional bulk FinFET, realizing the SCEs as  discussed in [10]. Heavily doped JLT 

induces fully depleted channel in the subthreshold region with high vertical electric field (E-

field). The E-field is neutral at the inversion mode of operation and the shift in VTH occurs 

when the bands (ϕM – ϕS) are flat at flat band voltage (VFB) [9]. The absence of doping 

concentration gradients eliminates diffusion impurities and the sharp doping profile problem. 

The paper explores the multi-gate JL FinFET topology which is an extended work of [11], 

[12], this mainly concentrating  the analog performances and the higher order gm 

parameters using ID characteristics.   

The probabilistic analyses of higher order derivatives are also important to study at 

scaled LG, the major issues that emphasize the analog and higher order derivatives are important 

for advance communication system. Non-linearity characteristics realizes unwanted 

disturbances with frequencies differences at input once, which generates Intermodulation 

Distortion (IMD) at output stage [13]–[15].  

The higher order analysis and the inter-modulation harmonics are important to 

maintain minimal linearity’s at the RF stage [16]. Accordingly, at pre-fabrication process 

the analog performance parameters are necessary at nanoscale regime. The paper 

discusses the higher order derivative parameters of 3D conventional and Wavy JL FinFETs 

using channel engineering scheme. Along with the introduction, Section 2 discusses the 

device architecture specifications and the simulation procedure undertaken, Section 3 

includes the comparative analysis on analog performances of these devices using Si1-

0.25Ge0.25 material as device layer. Finally, the conclusion is drawn. 

2. DEVICE DESCRIPTION AND SIMULATION FRAMEWORK 

The multi-gate transistors are the basic step to scale down the SCEs, the challenges 

and the issues are discussed in [17] and their performance metrics is given in [18]. A thin 

dual gate approach on SOI with the volume inversion is reported in  [5], [19]. The another 

representation using 2D planar UTB and 3D non-planar approach is first given by [20], 

[21] later provides the detailed analysis with several performance metrics analyzed and 

reported in [22]–[24]. The significance of the FinFET provides better layout area efficiency 

in the digital circuits [25]. In general, the Fin utilizes the availability of single Fin per pitch, 

in which most of the pitch area is unused. To overcome this, the FinFET limits the current 

per pitch technology representation. Therefore, the pitch area in FinFET utilizes fully 
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depleted SOI (FD-SOI) topology which is grown epitaxial and merged with the 2D-

FinFET forming a single device with common gate [21]. Utilizing these two approaches, a 

comparative analog analysis has been performed using channel engineering technique 

(SiGe material) with the Junctionless FinFET topology. In this section the architectural 

representation of conventional JL devices and Wavy-JLT is shown in Fig. 1(a), (b). 

Accordingly, the parameters required to construct the devices are tabulated in Table 1. 

The structural design is observed for different LG for 15-30 nm with a uniform doping 

concentration ND = 1.7 x10
19

 cm
-3

, and using high-k (HfO2) gate side wall spacer’s.  

The simulations are carried out using sentaurus TCAD [26] simulator. Phillips Unified 

Mobility Model is used with Lombardi model to account for high-κ induced carrier 

mobility degradation as considered [27]. For a deeper understanding of the quantum 

confinement effect, the thickness of Fin and UTB determine the density gradient based 

quantization models that are used. Inversion Accumulation layer Mobility model includes 

doping and transverse field dependency, which in turn accounts for a Coulomb impurity 

scattering being used. 

 (a)  (b)  

(c)  

Fig. 1 A 3D representation of (a) Conventional JL FinFET, (b) Wavy-JL FinFET  at 

LG = 15-30 nm (c) ID-VGS characteristics of Conventional and Wavy JL 

FinFET at LG = 20 nm and x = 0.25. 

To account for the longitudinal and vertical electron field an effective intrinsic density, 

OldSlotboom band gap narrowing model [28], Shockley-Read-Hall mechanism for 

generation and recombination [29], and quantum mechanical effects are included. The 

device physical properties are discretized onto a non-uniform mesh of nodes and simulated 

with appropriate parameterization models [30]. The same models are considered for the 
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simulation study to observe the performance of the devices. With respective to this, the 

ID-VGS characteristics are plotted and shown in Fig. 1(c) and the ION ranges constant for 

both the device, but a small improvement in ID is observe for 3D Wavy-JLT. 

Table 1 Parameter required for simulation. 

Parameters 3D JL FinFET 3D Wavy-JL FinFET 

SiGe device layer (WFin)  7 nm 7 nm 

SiGe device layer (HFin) 30 nm 30 nm 

Silicon thickness (TSi) --------- 10 nm 

Donor doping (ND) 1.7x10
19

 cm
-3

 1.7x10
19

 cm
-3

 

EOT of gate dielectric (TOX) 1 nm 1 nm 

Gate work Function (ϕM) 4.6 eV 4.6 eV 

Drain Supply Voltage (VDD) 0.05  V, 0.7 V 0.05  V, 0.7 V 

Channel length (LG) 15-30 nm 15-30 nm 

Underlap S/D (LUS, LUD) 5 nm 5 nm 

Molefraction (x) 0.25 0.25 

Total Device Length (LT) 110 nm 110 nm 

Total Device Width (LW) 32 nm 32 nm 

(a)  (b)  

(c)  (d)  

Fig. 2 Transfer characteristics of (a) JL FinFET and (b) Wavy-JL FinFET  

for varying LG = 15-30 nm at ND = 1.7 x10
19

 cm
-3

, ϕM = 4.6 eV. 

As shown in Fig. 2a and 2b, the ID-VGS is plotted in logarithmic and linear scales, an 

improvement in ION and IOFF is observed for Wavy-JL FinFET. The device layer (S/D and 

channel) is Si1-xGex material with molefraction x = 0.25. Considering x = 0.25, 
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substituting this value of x, results in high content of Si in SiGe material. Therefore, the 

device acquires the properties of Si material, and accordingly the simulation data are 

extracted. The conduction mechanism of JLT seems to be similar to that of IM devices, 

JL device with no concentration gradients across the S/D channel regions and high N–

type doping profile induces a volume inversion mechanism. From the Fig. 2 it is analyzed 

that, as the LG is scaled down, the ION enhances and IOFF reduces, on this point of view the 

performance of the device is identified using SiGe channel. In Fig. 2C and 2D the ID is 

plotted along the VGS for the different value of x at LG = 20 nm, from this it is realized that 

as the value of x increases the shift in VTH takes place which there reduces the IOFF. 

3. RESULTS AND DISCUSSIONS 

The section deals with the results and discussions carried out for the simulation study. 

The higher order gm of ID characteristics results in the second and third order (g
\
m, g

\\
m) 

parameters. Further, these parameters result in second and third order intermodulation and 

linearity performances. In MOS circuits, harmonic distortion occurs due to the nonlinearity 

exhibited by higher-order derivatives of ID-VGS characteristics. Therefore, the circuits 

realize balanced topologies, due to this the even-order harmonics are cancelled out. The 

third order harmonic, which represents g
\\

m, determines a lower limit of distortion and 

hence amplitude should be minimized. Thus, reducing g
\\

m and increasing the gm acts as a 

sustainable solution to improve device linearity[31]. 

 (a) (b)  

Fig. 3 TGF and gm as a function VGS (a) JL FinFET and (b) Wavy-JL FinFET 

for different LG = 15-30 nm at ND = 1.7 x10
19

 cm
-3

, ϕM = 4.6 eV and x = 0.25. 

The Fig. 3 represents TGF (gm/ID) and gm the values are extracted from the measured 

values of ID and plotted as a function of VGS as illustrated in Fig. 2(a, b). The graphs 

exhibit different dimensions of LG, JL transistors, and show that a lower gm is induced at 

room temperature because of the reduced carrier mobility with that of the IM devices.  

The mobility is an important parameter for evaluating gm, but the other factors may also 

affect this parameter. According to the drift equation the current that flows through the 

device layer has a great impact on the mobility, E-Field, and ND. This can be identified 

without including the mobility degradation models to the simulator and measured at 

different dimensions. The parameter TGF is observed as the available gain per unit value 

of power dissipation. From the Fig. 3 gm increases as the ID increases for scaled LG, but 
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the TGF decreases as the LG scales down. However, the TGF values are near to the ideal 

values and but the gm values are very high for JL FinFET. 

 (a)  (b)  

Fig. 4  g
\
m as a function VGS (a) JL FinFET and (b) Wavy-JL FinFET for different  

LG = 15-30 nm at ND = 1.7 x10
19

 cm
-3

, ϕM = 4.6 eV and x = 0.25. 

(a) (b)  

Fig. 5 g
\\

m as a function VGS (a) JL FinFET and (b) Wavy-JL FinFET for different  

LG = 15-30 nm at ND = 1.7 x10
19

 cm
-3

, ϕM = 4.6 eV and x = 0.25. 

Table 2 SC parameters 3D JL FinFET at VDS = 0.7V. 

LG (nm) S-Ssub (mV/decade) ION x10
-5

 (A/μm) IOFF x10
-10

 (A/μm) 

15 70.446 2.70 0.190 

20 80.12 2.30 2.57 

25 81.419 2.28 2.01 

30 70.905 2.37 0.20 

Table 3 SC parameters for Wavy-JL FinFET at VDS = 0.7V. 

LG (nm) S-Ssub (mV/decade) ION x10
-5

 (A/μm) IOFF x10
-11

 (A/μm) 

15 66.702 2.99 2.24 

20 66.545 2.83 2.12 

25 66.427 2.69 2.02 

30 66.357 2.55 1.94 
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Table 4 SC parameters at different values of X for JL FinFET  

VDS = 0.7V, LG = 20 nm. 

X S-Ssub (mV/decade) ION x10
-5

 (A/μm) IOFF (A/μm) 

0.25 80.12 2.30 2.57x10
-10

 

0.5 78.662 2.05 7.48x10
-11

 

0.75 77.449 1.42 1.79x10
-12

 

Table 5 SC parameters at different values of X for 3D Wavy-JL FinFET  

VDS = 0.7V, LG = 20 nm. 

X S-Ssub (mV/decade) ION x10
-5

 (A/μm) IOFF (A/μm) 

0.25 66.545 2.83 2.12 x10
-11

 

0.5 66.89 2.48 7.44 x10
-12

 

0.75 67.319 1.47 9.88 x10
-14

 

The higher order derivatives of ID (g
\
m and g

\\
m) as a function VGS for different LG at 

VDS = 0.7 V are plotted in Fig. 4 and 5 respectively. Usually for better linearity properties 

there should be a lesser distortion amplitude of g
\
m and g

\\
m. The value of VGS at which the 

higher order of transconductance parameters (g
\
m and g

\\
m) becomes zero is known as zero 

crossover point (ZCP) which decides the optimum bias point for device operation [15], 

[32]. Therefore, from the Fig. 4 and Fig. 5 the minimal higher order derivative shows 

better for Wavy-JL FinFET.  

The comparison of SC parameters for JLT devices at LG variation is tabulated in 

Tables 2 and 3, and at fixed LG with different values of x is given in Table 4 and 5. From 

the overall simulation study the Wavy- JLT explores good improvement in ION and 

possess less sensitivity to SCEs over the conventional one.   

4. CONCLUSION 

The paper investigates the performance study of analog analysis and higher order 

parameters for both conventional and Wavy JLFinFET for different LG variations. Due to 

the equal amount of doping profiles along the device layer the ION is improved and IOFF is 

decreased. The conduction mechanism of JL FinFET with the concept of SiGe device 

layer is explained at different values of x. The simulation results are extracted at VDSAT 

values at x = 0.25, ϕM = 4.6 eV are considered to estimate the ID characteristics and the 

higher order parameters are evaluated accordingly. From the results it has been observed 

that the higher order parameters show minimal non-linearity distortions performance for 

Wavy-JL FinFETs over conventional JLT. Therefore, the performance of the 3D Wavy-

JL FinFET shows better channel controllability through gate and thereby enhances the ID. 

On the other hand, the high ND with the effective channel length and width of the 

depletion layer are also responsible to achieve scaled SCEs.    



264 B. VANDANA, J. K. DAS, S. K. MOHAPATRA, S. L. TRIPATHI 

REFERENCES 

  [1] C. Hu, “Finfet and other new transistor technologies. Univ. of California. article. Finfet and other new 

transistor technologies,” 2011. 

  [2] X. Huang, W.-C. Lee, C. Kuo, D. Hisamoto, L. Chang, J. Kedzierski, E. Anderson, H. Takeuchi, Y.-K. 

Choi, K. Asano, and others, “Sub 50-nm finfet: Pmos,” in Technical Digest. International of the Electron 

Devices Meeting, IEDM’99., 1999, pp. 67–70. 

  [3] D. Hisamoto, W.-C. Lee, J. Kedzierski, H. Takeuchi, K. Asano, C. Kuo, E. Anderson, T.-J. King, J. 

Bokor, and C. Hu, “FinFET-a self-aligned double-gate MOSFET scalable to 20 nm,” IEEE Trans. 

Electron Devices, vol. 47, no. 12, pp. 2320–2325, 2000. 

  [4] S.-Y. Kim and J. H. Lee, “Hot carrier-induced degradation in bulk FinFETs,” IEEE Electron Device 

Lett., vol. 26, no. 8, pp. 566–568, 2005. 

  [5] T. Ernst, S. Cristoloveanu, G. Ghibaudo, T. Ouisse, S. Horiguchi, Y. Ono, Y. Takahashi, and K. Murase, 

“Ultimately thin double-gate SOI MOSFETs,” IEEE Trans. Electron Devices, vol. 50, no. 3, pp. 830–

838, 2003. 

  [6] J. P. Colinge, “The new generation of SOI MOSFETs,” Rom. J. Inf. Sci. Technol, vol. 11, no. 1, pp. 3–

15, 2008. 

  [7] T. Rudenko, S. Barraud, Y. M. Georgiev, V. Lysenko, and A. Nazarov, “Electrical Characterization and 

Parameter Extraction of Junctionless Nanowire Transistors.,” J. Nano Res., vol. 39, 2016. 

  [8] J.-P. Colinge, C. W. Lee, A. Afzalian, N. Dehdashti, R. Yan, I. Ferain, P. Razavi, B. O’Neill, A. Blake, 

M. White, and others, “SOI gated resistor: CMOS without junctions,” in Proceedings of the IEEE 

International SOI Conference, 2009, pp. 1–2. 

  [9] A. Kranti, R. Yan, C. W. Lee, I. Ferain, R. Yu, N. D. Akhavan, P. Razavi, and J. P. Colinge, 

“Junctionless nanowire transistor (JNT): Properties and design guidelines,” in Proceedings of the 

ESSDERC Conference, 2010, pp. 357–360. 

[10] R. Rios, A. Cappellani, M. Armstrong, A. Budrevich, H. Gomez, R. Pai, N. Rahhal-Orabi, and K. Kuhn, 

“Comparison of junctionless and conventional trigate transistors with Lg down to 26 nm,” IEEE 

Electron Device Lett., vol. 32, no. 9, pp. 1170–1172, 2011. 

[11] B. Vandana, B. S. Patro, S. K. Mohapatra, and J. K. Das, “Exploration towards Electrostatic Integrity for 

SiGe on Insulator (SG-OI) on Junctionless Channel transistor (JLCT),” Facta Universitatis, Series: 

Electronics and Energetics, vol. 30, no. 3, pp. 383-390, 2017. 

[12] B. Vandana, B. S. Patro, J. K. Das, and S. K. Mohapatra, “Physical insight of junctionless transistor with 

simulation study of Strained channel,” ECTI Trans. Electr. Eng. Electron. Commun., vol. 15, no. 1, pp. 

1–7, 2017. 

[13] P. Ghosh, S. Haldar, R. S. Gupta, and M. Gupta, “An investigation of linearity performance and 

intermodulation distortion of GME CGT MOSFET for RFIC design,” IEEE Trans. Electron Devices, 

vol. 59, no. 12, pp. 3263–3268, 2012. 

[14] Y. Pratap, S. Haldar, R. S. Gupta, and M. Gupta, “Performance evaluation and reliability issues of 

junctionless CSG MOSFET for RFIC design,” IEEE Trans. Device Mater. Reliab., vol. 14, no. 1, pp. 

418–425, 2014. 

[15] S. K. Mohapatra, K. P. Pradhan, and P. K. Sahu, “Linearity and analog performance analysis in GSDG-

MOSFET with gate and channel engineering,” in Proceedings of the Annual IEEE India Conference 

(INDICON), 2014, pp. 1–5. 

[16] B. Razavi and R. Behzad, RF microelectronics, vol. 2. Prentice Hall New Jersey, 1998. 

[17] J.-T. Park and J.-P. Colinge, “Multiple-gate SOI MOSFETs: device design guidelines,” IEEE Trans. 

Electron Devices, vol. 49, no. 12, pp. 2222–2229, 2002. 

[18] S. K. Mohapatra, “Investigation on Performance Metrics of Nanoscale Multigate MOSFETs towards RF 

and IC Applications,” 2015. 

[19] F. Balestra, S. Cristoloveanu, M. Benachir, J. Brini, and T. Elewa, “Double-gate silicon-on-insulator 

transistor with volume inversion: A new device with greatly enhanced performance,” IEEE Electron 

Device Lett., vol. 8, no. 9, pp. 410–412, 1987. 

[20] L. Mathew, M. Sadd, S. Kalpat, M. Zavala, T. Stephens, R. Mora, S. Bagchi, C. Parker, J. Vasek, and D. 

Sing, “Inverted T channel FET (ITFET)-Fabrication and characteristics of vertical-horizontal, thin body, 

multi-gate, multi-orientation devices, ITFET SRAM bit-cell operation. A novel technology for 45nm and 

beyond CMOS.,” in Technical Digest IEEE International Electron Devices Meeting, IEDM ., 2005, pp. 

713–716. 



 Channel Engineering (Si1-0.25Ge0.25) technique on gm (Transconductance) and its Higher Order Derivatives 265 

[21] W. Zhang, J. G. Fossum, and L. Mathew, “The ITFET: A novel FinFET-based hybrid device,” IEEE 

Trans. Electron Devices, vol. 53, no. 9, pp. 2335–2343, 2006. 

[22] A. N. Hanna, M. T. Ghoneim, R. R. Bahabry, A. M. Hussain, and M. M. Hussain, “Zinc oxide 

integrated area efficient high output low power wavy channel thin film transistor,” Appl. Phys. Lett., vol. 

103, no. 22, p. 224101, 2013. 

[23] A. N. Hanna, A. M. Hussain, and M. M. Hussain, “Wavy Channel architecture thin film transistor (TFT) 

using amorphous zinc oxide for high-performance and low-power semiconductor circuits,” in 

Proceedings of the 73rd Annual Device Research Conference (DRC), 2015, pp. 201–202. 

[24] K. P. Pradhan, P. K. Sahu, and R. Ranjan, “Investigation on asymmetric dual-k spacer (ADS) Trigate 

Wavy FinFET: A novel device,” in Proceedings of the 3rd International Conference on Devices, Circuits 

and Systems (ICDCS), 2016, pp. 137–140. 

[25] J.-W. Yang and J. G. Fossum, “On the feasibility of nanoscale triple-gate CMOS transistors,” IEEE 

Trans. Electron Devices, vol. 52, no. 6, pp. 1159–1164, 2005. 

[26] http://www.synopsys.com/, “Sentaurus TCAD User’s Manual,” in Synopsys Sentaurus Device, 

Synopsys, 2012. 

[27] D. B. M. Klaassen, “A unified mobility model for device simulation-I. Model equations and 

concentration dependence,” Solid. State. Electron., vol. 35, no. 7, pp. 953–959, 1992. 

[28] J. Del Alamo, S. Swirhun, and R. M. Swanson, “Simultaneous measurement of hole lifetime, hole 

mobility and bandgap narrowing in heavily doped n-type silicon,” in Proceedigns of the 1985 

International Electron Devices Meeting, 1985, vol. 31, pp. 290–293. 

[29] W. Shockley and W. T. Read Jr, “Statistics of the recombinations of holes and electrons,” Phys. Rev., 

vol. 87, no. 5, p. 835, 1952. 

[30] S. Saha, “MOSFET test structures for two-dimensional device simulation,” Solid. State. Electron., vol. 

38, no. 1, pp. 69–73, 1995. 

[31] N. Aggarwal, I. Gupta, K. Sikka, and R. Chaujar, “TCAD Linearity Performance Evaluation of Gate 

Workfunction Engineering in Surrounding Gate Silicon Nanowire MOSFET,” Nanoscale, vol. 9, no. B, 

p. 10, 2012. 

[32] S. Kang, B. Choi, and B. Kim, “Linearity analysis of CMOS for RF application,” IEEE Trans. Microw. 

Theory Tech., vol. 51, no. 3, pp. 972–977, 2003. 

 


