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Abstract. Todays, Smart Grids as the goal of next generation power grid system span 

wide and new aspects of power generation from distributed and bulk power generators 

to the end-user utilities. There are many advantages to develop these complex and 

multilayer system of systems such as increasing agility, reliability, efficiency, privacy, 

security for both Energy and ICT sections in smart grid architecture. In emerging 

smart grids, the communication infrastructures play main role in grid development and 

as a result multimedia applications are more practical for the future power systems. In 

this work, we introduce our method for monitoring and inspection of Wind Turbine 

(WT) farms in smart grids. In our proposed system, a thermal vision camera is 

embedded on a wireless sensor node for each WT to capture appropriate images and 

send video streams to the coordinator. It gets video frames to perform machine Vision 

Inspection (VI) and monitoring purposes. In our constructed model, turbine blade 

velocity estimation is targeted by detecting two important landmarks in the image that 

are named hub and blade. By tracking the blade in the consecutive frames and based 

on proposed scoring function, we can estimate the velocity of the turbine blade. 

Obtained results clearly indicate that accurate hub and blade positions extraction lead 

to error free estimation of turbine blade velocity.  

Key words: Vision Inspection, Thermal Vision, Gabor Wavelets, Template Matching, 

Wind Turbine and Smart Grids.  

1. INTRODUCTION  

Smart Grids (SGs) as a future network of legacy power grids are sophisticated system 

of systems that support bidirectional power and data flows. SG benefits renewable 

energies such as wind energy and should be eco-friendly [1]. The self-healing, two-way 

communication, decentralization, and predictive reliability of SGs make electricity network 

operation and maintenance more manageable and easy [2]. In Europe, a total of 211 SG’s 

projects in the R&D phase is worth approximately € 820 million, and 248 projects under 

D&D have a total budget of around € 2320 million [3]. These investments clearly indicate 
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the importance of smart grids in the world’s future. The European roadmap for smart 

grids is based on SGAM model that includes five interoperability layers in five Domains 

and six Zones [4]. Fig. 1 shows SGAM architecture for Smart Grids. In addition to European 

standards, there are some strong models such as NIST Framework1 and NIST Framework2 

[5] that are conducting by related organizations in the USA. These comprehensive models 

cover all parts of SGs. In all mentioned SG models, telecommunication infrastructures play 

major role in the development of next generation power grid systems.  

  

 

Fig. 1 SGAM architecture for Smart Grids [4] 

These infrastructures can be deployed for multimedia applications [2] but there are a 

number of requirements that must be addressed in order to have fully robust, reliable and 

secure multimedia streaming in smart grid networks [2]. The most important requirements 

that should be considered in the SG’s communication backbone are latency, frequency ranges, 

reliability, data rate, security, and throughput. For example, in [6] the total throughput in ranges 

3–10 Mbps is estimated for SG communication systems in many applications as well as 

multimedia communications. In addition, they offer a frequency range under 2GHz to have a 

low-cost solution that can overcome line-of-sight issues, e.g., foliage, rain fade, and penetration 

through walls [6].  

In SG architecture, several major network types are defined in literatures [6-8]: Home Area 

Network (HAN), Building Area Networks (BAN), Neighborhood Area Network (NAN), Field 

Area Networks (FAN) and Wide Area Network (WAN). This multi-tier network structure type 
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is illustrated in Fig. 2. Each network area involves its technical restrictions and they will have 

mutual impacts on others.  

Now, there are increasing demands for energy monitoring through SG communication 

networks. Our work is considered to develop a special WT energy monitoring system 

based on multimedia applications. We assume that WT farms are located in NAN and/or 

FAN. In NAN/FAN applications, usually data rates vary between 100Kbps and 10Mbps 

[6] which is well adapted to monitor and video inspection purposes.  

  

Fig. 2 Different network types in SGs 

In addition to energy mentoring and its essential priority in SG, wind turbines (WTs) 

as extremely high cost devices should have advance maintenance services [9]. Fig. 3 

shows a comparison between traditional and modern maintenance approaches. For a WT 

that its components are made from particularly carbon fiber reinforced plastic (CFRP), it 

is essential to have monitoring infrastructure and intelligent Vision Inspection (VI) during 

in-service operation [10]. In order to increase the lifetime of the WT farm and reduce the 

maintenance cost, well accurate predictions of system faults and failures are needed. In 

future grids, these predictions can be available based on advanced nondestructive testing 

(NDT) approaches such as intelligent VI. 

The blades monitoring and diagnostics based on intelligent vision inspection are actually a 

complex challenge, and until now, there is no work in the literature. Therefore, we conduct our 

research on the subject and introduce our architecture to monitor wind turbine (WT) farms in 

smart grids. In our proposed system, a thermal vision camera [10] is embedded on a wireless 

sensor node for each WT to capture appropriate images and stream video to the coordinator. It 

gets video streams to perform machine vision inspection and monitoring tasks. 
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Fig. 3 Comparison between traditional and intelligent maintenance methods [9]. 

Thermal cameras are passive sensors that capture the infrared radiation emitted by all 

objects with a temperature above absolute zero. Deploying this type of sensor in vision 

systems eliminates the illumination problems of normal greyscale and RGB cameras [11]. 

These type of cameras were originally developed as surveillance and night vision tools for 

the military systems, but recently their prices have dropped significantly. This means that 

a broader field of applications can use these cameras.  

In this work, turbine blade velocity estimation is targeted and it can be used to estimate 

power generation of WT farms as well. To tackle this challenging issue, we define two 

landmarks in a receiving image that related to the hub and blade of a WT. Accurate and 

robust estimation of these two objects in the consecutive frames can lead to the turbine blade 

velocity calculation that it is directly related to the power generated by a WT farm. 

Furthermore, our proposed structure based on thermal vision camera and sensor node is well 

designed for more vision inspections (VI) such as Mechanical Deformations, Surface 

Defects, Overheated Components in rotor blades, nacelles, slip rings, yaw drives, bearings, 

gearbox, generators, and transformers [9].  

2. PROPOSED MODEL 

In this section, we want to elaborate details of our comprehensive model for real-time 

video streaming from a sensor node to the coordinator node. Our main motivation to 

construct this architecture is that usually sensor nodes are low end devices with limited 

hardware resources [12-14] so running high complexity VI algorithms cannot be expected 

with acceptable performance in a light sensor node. As a result, for practical purposes, we 

propose to use our structured model for turbine blade velocity estimation at coordinator 

node as a medium or a high end receiver node. In the following, we demonstrate our 

proposed blade velocity estimation algorithm. 

2.1. Turbine blade velocity estimation system model  

The coordinator as the receiver node receives video output from the thermal vision 

camera. In predefined time window, it gets each frame and tries to find special objects in 
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the current image as landmarks. As mentioned before, we define two landmarks in a 

image that related to the hub and blade of a WT (Fig. 4).   

 

Fig. 4 Condition monitoring and diagnosis for Wind Turbine 

Firstly, the fast and robust Correlation Coefficient template matching approach is used 

for hub detection and localization in the received image, and then the mass center of the hub 

is calculated to set coordinate system (Cx,Cy). Based on the estimated hub position, the 

bounding box with height BH 
and width BW is assigned to the point on the circumference of a 

circle with predefined radius  and angle  in obtained coordinate system. This primary 

phase, constructs the adaptive structure of our algorithm to dynamic adaptation on the 

variation of the hub position in a sequence of images. Now, our Gabor Wavelet Filter Banks 

that well-tuned according to blade parameters are applied to the masked sub image. 

Consequently, the present or absent of a blade in this image will be recognized by GW 

coefficient analysing. Recalling the mentioned procedure in consecutive frames and using of 

some softening approaches lead to accurate estimation of blade velocity. In Fig. 5, proposed 

method for blade detection based on Gabor Wavelets is described. In addition, in Fig.6, 

overall view of our model is presented to clear more details of our algorithm. 

 

Fig. 5 Proposed method for blade detection based on Gabor Wavelets 
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2.2. Hub detection based on template matching 

In the first step of our algorithm, it is necessary to localize hub position as the first 

landmark object in the whole input image. This is the fundamental step that has a direct 

impact on the performance of next steps. In this work, we use Template matching (TM). TM 

plays an important role in many image processing applications. In a TM approach, it is 

sought the point in which it is presented the best possible resemblance between a sub image 

known as a template and its coincident region within a source image [15]. There are a lot of 

methods for pattern and template matching [15-18] but for simplicity, we use correlation 

coefficient [16] template matching to find a hub in an input image. So we benefits Pearson’s 

correlation coefficient as below [16]: 
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The correlation coefficient can be interpreted as a correlation between a template image 

(with average x ) and an input image (with average y ) after both the template and the image 

have been z-normalized (it is rescaled so that its mean is zero and the standard deviation is 

one) [12]. Illumination and contrast differences are thus eliminated before match quality is 

evaluated making the correlation coefficient an ideal measure of match when we want to 

ensure robustness for variations of pattern brightness and contrast. 

 
Fig. 6 Proposed algorithm for turbine blade velocity estimation  
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Our study shows that template matching based on the correlation coefficient can 

successfully identify potential target regions in a thermal camera video use case for WT. 

After hub localization, the sub image IH(x,y) is extracted to calculate its mass center 

(Cx,Cy) by the following equations [19, 20]: 
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Now, based on extracted reference point (Cx,Cy), the bounding box with height BH 
and 

width BW 
is assigned to the point on the circumference of a circle by radius  and angle  

This primary phase, constructs the adaptive structure of our algorithm to dynamic 

adaptation on the variation of the hub position in a sequence of images.  

2.3. Proposed Gabor Wavelet feature extraction method for blade detection 

From the morphological point of view, the turbine blade object is a directional pattern with 

known inter ridge spacing. There are a lot of approaches in the literature for example Radon 

Transform [21], Hough Transform and Gabor Wavelet Transform (GWT) [22] to analysis 

directional pattern. Among all mentioned methods, GWT has special and unique properties. 

The important property of the GWT is that it minimizes the product of its standard deviations in 

both time and frequency domain. Put another way, the uncertainty in information carried by this 

wavelet is minimized. However, they have the downside of being non-orthogonal, so efficient 

decomposition into the basis is difficult. Since their inception, various applications have 

appeared, from image processing to analyzing neurons in the human visual system [23, 24].  

At this stage, we use our structured Gabor Wavelet Filter Banks that are well adapted to 

turbine blade parameters. These tuned filter banks are applied to the masked sub image 

IB(x,y). This image includes neighbour pixels around the central point of a bounding box that 

located in (,), in our bipolar coordination system. In fact, our Gabor wavelet based feature 

extraction method is used to determine whether a blade is located in IB(x,y) or not? Before 

elaborating the details of our blade detection algorithm, the brief view of GWT should be 

presented. In [22], Bidimensional Gabor Wavelets,
 

gw,(x,y) = L(v)B(u), is used for 

directional pattern analysis. Where B(u) is the equation of a band pass filter, centered on the 

w frequency, and L(v) is the equation of a Gaussian low-pass filter. A Bidimensional Gabor 

Wavelet is composed of a band pass filter in the direction of the wave and low pass filter in 

orthogonal direction as below: 
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Where 
2
v and 

2
u are scale parameters in the direction of the wave and in its orthogonal 

direction respectively [22, 25]. 

In Fig. 7, real and imaginary parts of 2D Gabor Wavelet are depicted. 

  

(a) Real part (b) Imaginary part 

Fig. 7 Real and imaginary parts of a 2D Gabor Wavelet 

An example of Gabor filter bank feature extraction including 12 coefficients, in the 

case of 3 frequencies and 4 directions, is shown in Fig. 8. According this figure, providing 

that the input image frequency and orientation are W 
*
 and  *

 respectively, Gabor wavelet 

coefficient for (W 
*
,  *

)
 
will be the maximum and vice versa.  

In our work, in order to have the best adaptation on blade direction and frequency 

features, we define (2K +1) directions and (2KW +1) frequencies around (w0,0) so we 

have Gabor Bank, including (2KW +1)(2K +1) filters, then we should compute the local 

projections of the normalized masked image, I
 '
B(x,y), on the filter bank. I

 '
B(x,y) is the 

normalized version of I
'
B(x,y) that obtained from equation below: 

 

,
0 0

0 0

( , ) [ ( , ) ( , )]
( , )

B B

V
I x y I x y m x y

v x y
 

 

(7) 

Where m(x0,y0) and v(x0,y0) 
are the mean and standard deviation of IB(x,y) respectively, 

and norm of I
 '
B can be noted according equation (8): 
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 Now, we can calculate our Gabor wavelet coefficients bank as is following: 
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Fig. 8 An example of Gabor filters bank feature extraction  

in the case of 3 frequencies and 4 directions 

Then features can be extracted by proposed equation (10): 
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At the final step of our analysis, decision making should be down to recognize 

present/absent of a blade in this frame. We define the equation (11) for scoring the blade 

detection results: 
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Where w1,w2 are weighting coefficients and SBD is the blade detection score. If a blade 

is available in IB, most of the Aw, coefficients will have a large value near or greater than 

Sthr while in null case which there is no blade in IB; coefficients may have a relatively low 

value. We proposed such weighted scoring function as mentioned in the equation (11) to 

intensify score gap between null and blade situations.  
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Now, by comparing SBD to predefined threshold Sthr, final decision can be made. 

Simply, if SBD  Sthr, we have detected a blade in the masked image. We rewrite blade 

detection score function for current frame index k as below: 
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So S
(k)

BD  0 clearly means that a blade detected for frame index k. This algorithm should 

be repeated for all image frames in our predefined time window, TW.  

2.4. Blade velocity estimation method 

In the previous section, the blade detection method is well presented. This procedure 

should be called for all frames in the predefined time window, TW. Now, all information 

that needed for velocity estimation is calculated as below: 

  { } ( ){ 1,2..., },TW i

BD BD W SS S i N N T f   
 

(13) 

Where fS is the video frame rate in frame per second (fps). In order to estimate blade 

velocity, it is necessary to fit the gathered scores by appropriate function so we deploy 

―Sum of Sine‖ approximation function ( )f x  including 3n parameters: 

 1

( ) sin(W x )
n
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i
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(14) 

Then, we select the harmonic Wi
*
 with the highest power Ai

*
 as the frequency of blade 

rotation: Ai
*
 = Ai* and Wi

*
 = Wi*  

where: 

 
* Argmax{ 1,2,3,...n}ii A i 

 
(15) 

Finally, the velocity of Blade can be calculated by our proposed equation: 

 
*

12 (W ) 60( )B si
V f RPM   . (16) 

3. SIMULATION AND RESULTS 

In order to investigate the performance of our proposed system architecture, we use 

―Rotary Blade.avi‖, including 440 image frames with size 512 by 512 and fs = 40 fps in 

Matlab software. We receive video stream at the coordinator and convert each buffered 

image to a 8-bit RGB image for further inspection. Fig. 9(a)-(d) evidently show that our 

algorithm accurately detect both HUB and blade landmarks.  

In Fig. 10(a)-(d), different blade orientations are presented. In all figures, a hub is 

detected correctly, but in Fig. 10(a)-(c) the blade orientations are not matched to the GW 

filter bank so for these frames we have SBD < Sthr that means the blade is not detected. For 

Fig. 10(d), the orientation of the blade is well adapted to the GW filter bank and SBD  Sthr 

is satisfied thus we have a blade in this sub image.  
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We conduct our experiment for all 440 images. Obtained results for these images 

indicate that in 94.97% the hub is detected correctly and approximately in 50 frames 

(11.36%) a blade is recognized by our GWT feature extraction and scoring method.  

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 

Fig. 9 Hub and blade detection: (a) Original image (b) Hub detection by proposed 

correlation coefficient template matching (c) Adaptive bounding box at (,) 

(d) Proposed blade detection by GWT 

In Fig. 11, the gathered scores of blade detector are presented for several sample 

frames of this video stream. For example, Fig. 11(a) shows that for frame indexes from 

264 to 268, in all 5 consecutive frames, a blade is detected with scores over 820. In fact, 

all of these five detections just related to unique blade and must count as one blade. This 

is due to our defined directional drifts in the proposed GW filter bank to increase a blade 

detection probability. As the same way, Fig. 11(b) presents two blade detections for frame 

indexes 363 and 365 while Fig. 12 shows the results for the whole video stream. As 

mentioned before, in order to estimate blade velocity, it is necessary to fit the gathered 

scores by appropriate function so we deploy ―Sum of Sine‖ approximation function f(x) 

based on equation (14). In Fig. 12(b), the soft approximation of blade score function is 

depicted.  
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(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 10 Hub and blade detection during blade rotation  

(a)(b)(c) Non-matched blade orientation: No blade is detected  

(d) Matched bade orientation: A blade is detected 

 

 

 

 
(a) 

 
(b) 

Fig. 11 Blade detection scores for sample frames  
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(a) 

 

(b) 

Fig. 12 Blade detection scores vs frame index 

(a) Without softening function  

(b) Results of ―Sum of Sine‖ estimation 

Now, we select the harmonic Wi* with the highest power ( * Argmax{ 1,2,3,...n}ii A i  ) 

as the frequency of blade rotation. Finally, the velocity of the blade can be calculated by 

simply replacing W i
*
 =0.1789 and fS = 40 in equation (16) then VB = 52.68RPM will be 

estimated for simulated scenario. This value means that our model successfully estimate 

blade velocity without any error.  

In the final step of our analysis, we evaluate robustness of our algorithm by adding 

zero mean Gaussian noise to the video stream. Fig. 13 shows three noisy samples. 

Table 1 shows the result of 
2
n variations and its impact on velocity estimation (noise 

variance can vary between 0 and 1). The obtained results emphasize that our model is 

highly robust against noisy conditions.  
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(a) 

 
(b) 

 
(c) 

Fig. 13 Adding zero mean Gaussian noise to the input image 

(a) 
2
n = 0.01, (b) 

2
n = 0.05, (c) 

2
n = 0.10 

Table 1 Gaussian noise impact on velocity estimation accuracy 


2
n 0 0.01 0.02 0.05 0.10 

VB(RPM)  52.68 52.62 52.44 52.53 5368 

4. CONCLUSION 

Many smart grid applications face harsh environmental conditions, but have high 

reliability and maintenance requirements. In this work, an intelligent nondestructive test 

(NDT) based on vision inspection is modelled. In the proposed model, the velocity of 

turbine blade is targeted as a main goal to energy monitoring while it is also well designed 

for more vision inspections (VI) procedures such as Mechanical Deformations, Surface 

Defects, and Overheated Components in rotor blades, nacelles, slip rings, yaw drives, 

bearings, gearbox, generators, and transformers. Although, our structured model is the 

first work in the related literature that fully concentrated on practical VI based NDT 

maintenance for WTs in SGs, the obtained results show the high accuracy and robustness 

of our algorithm. It is worth nothing that our blade velocity estimation can be used to estimate 

WT power generation [26] as well. 
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