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Abstract. This paper aims is devoted to modeling and simulation of electric field created 

by EHV power transmission line of 275 kV using an efficient hybrid methodology, the 

charge simulation method (CSM) with the Simplex Simulated Annealing (SIMPSA) 

algorithm in order to find the optimal position and number of fictitious charges used in 

CSM for an accurate calculation. Various factors that affect the electric field intensity 

were analyzed; it is found that the influence of the conductor sagging is clearly remarked, 

the maximum electric field strength at 1 m above the ground level recorded at mid-span 

point of the power line is 3.09 kV/m, in the proximity of the pylon, the maximum value is 

significantly reduced to 1.28 kV/m. The configuration type of the transmission line (single 

or double circuit) and the arrangements of phase conductors on double circuit pylons 

have a significant effect on the levels of electric field around the transmission line. For a 

single circuit, the triangular configuration provides the lowest maximum value of electric 

field. For a double circuit, the inverse phase arrangement (abc-cba) or low-reactance 

phasing produces the lowest maximum value of electric field. The resulting maximum 

electric field levels were found below the exposure values set by the ICNIRP and IRPA 

standards for both occupational and general public. The simulation results of electric 

field are compared with those obtained from the COMSOL 4.3b Multiphysics software, a 

fairly good agreement is found. 

Key words: Catenary Geometry, Charge Simulation Method (CSM), Electric Field, 

EHV Power Line, Simplex Simulated Annealing (SIMPSA) 

                                                           
Received October 7, 2017; received in revised form March 19, 2018 

Corresponding author: Djekidel Rabah  

Laboratory for Analysis and Control of Energy Systems and Electrical Systems LACoSERE, Laghouat 

University (03000), Algeria  

(E-mail: rabah03dz@live.fr) 



426 R. DJEKIDEL, S. BESSIDEK, A. HADJADJ 

1. INTRODUCTION 

Over the years, electricity has improved the conditions of human life; it plays a key role in 

responding to basic human needs. However, despite all its advantages, electricity has many 

negative effects on human health identified. As energy needs increase with the rapid growth of 

the human population, leading to adoption of electric transport systems with very high voltage 

levels and accelerated the creation of new transmission power lines using single circuit or 

double circuit near residential areas. The electric and magnetic fields at extremely low 

frequencies generated by the lines of the transmission network have assumed great importance 

in recent years, because of growing concern about the potential effects of these fields on human 

health and the environment. Exposures to these generated fields induce a current inside human 

bodies that interferes with those of the body and can, if sufficiently intense, cause harmful 

biological effects with important implications for human health.  

In the last years, several publications have been made for the calculation and 

measurement of very low frequency electric and magnetic fields (ELF) created by power 

transmission lines [1-5], based on the results and recommendations reported by these 

research studies.  A number of national and international standards have been established, to 

define the limits for occupational and public exposure of electric and magnetic fields at very 

low frequency [6-8]. In parallel, a wide variety of software using different numerical 

techniques have been developed for modeling and simulation of electric and magnetic fields 

in both 2D and 3D analysis. 

The international organizations responsible for providing guidance and advice on the 

health hazards of non-ionizing radiation exposure officially recognized by the World Health 

Organization (WHO) are the International Commission against Non-Ionizing Radiation 

(ICNIRP) and the International Radiation Protection Association (IRPA), usually at a 

frequency of 50 Hz, these organizations recommend an exposure limit (24 hours), for the 

general public are of the order of 5 kV/m for the electric field and 100 µT for the magnetic 

field, as regards the occupational exposure medium, these recommendations are 10 kV/m 

and 500 µT, respectively [6-8].  

Therefore, it is very important to assess the levels of electric and magnetic fields 

generated by these very-high-voltage transmission lines, in order to protect public health, 

environmental and electrical equipments [9,10]. 

 In view of the above, the purpose of this paper is to analyze the electric field levels 

generated by the High Voltage transmission lines (HVTL) in a steady state condition, 

using a novel modeling approach that combines charge simulation method (CSM) with 

Simplex Simulated Annealing (SIMPSA). 

The charge simulation method, due to its favorable characteristics, such as simplicity and 

ease of programming, the execution speed, has been very commonly used successfully in 

many studies to solve a variety of analysis problems of the electric field in high voltage 

electrical insulation systems [11-20]. To improve the performance of this technique, aiming 

to increase the calculation accuracy, it seems advisable to use one of the optimization 

techniques as the Simplex Simulated Annealing (SIMPSA) algorithm in combination with 

this method in order to determine the optimal number and position of simulation charges. 

This algorithm shows good robustness and accuracy in arriving at the global optimization of 

difficult non-convex highly unconstrained and constrained functions; it combines the 

downhill simplex method (DHS) with Simulated Annealing algorithm (SA) [21,22]. It 
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should be noted that this calculation takes into account the effects of the catenary line, where 

the conductor sag depends on the individual characteristics of the electrical line and 

environmental conditions, this effect is rarely considered in the literature, because most often 

it is assumed negligible. Usually, they use in the calculation method the notion of the 

average height of the electrical line. The simulation results will be compared with those 

obtained using COMSOL Multiphysics 4.3b based on the Finite Element Method. 

2. MODEL OF OVERHEAD POWER LINES 

The conductors of an overhead power line are not at all points at the same height along 

the span of this line (longitudinal axis). In fact, they regularly describe a catenary, where 

the sag depends on the individual characteristics of the line and environmental conditions. 

Fig. 1 depicts the basic catenary geometry for a single conductor line [18,23,24]. 
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Fig. 1 The basic catenary geometry for a single-conductor line 

The equation of the catenary shape of conductor placed in the (yz) plane is given by 

[25]. 
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Where z is the longitudinal position of the conductor about z axis, for a symmetrical 

line, you normally choose z = 0 at the mid-span; α is the solution of the transcendental 

equation, with. 
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To calculate the height of the electrical line along z axis in a span length, the following 

equation can be used [25]. 
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Some researchers, in the electric field calculation in the vicinity of power lines assumes 

that the conductors are horizontal of infinite length, parallel to a flat ground and parallel with 

each other, and the sagging due to the weight of conductors is neglected, taking into account 

an average height between the maximum height and the height minimum of the power line 

[18]. The average height aveh  is given by the following expression. 
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Where hmin is the minimum height of the line; hmax is the maximum height; S is the sag of 

the conductor; L is the length of the power line in one span.  

3. CHARGE SIMULATION METHOD (CSM) 

The basic principle of this method is very simple. If several discrete charges of any 

type are present in a region, the electrostatic potential at any point can be found by the 

superposition of the potentials resulting from the individual charges as long as this point, 

this potential can be given as follows [11-13]. 
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   (4) 

Where n is the number of fictitious charges and Pij called the potential coefficient, 

means the potential at point i caused by a unit charge of Qj.  

Once the types of simulation charges and their positions are defined, the simulation 

charges of conductors are replaced by fictitious charges placed inside the conductor, when 

this procedure is applied to n contour points, this leads to a linear system of n equations 

for n unknown charges [11-13]. 

 
1
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Where Pij is the potential coefficients matrix; Qj is the column vector of fictitious simulation 

charges; Vci is the column vector of known potentials at the contour point (Boundary 

conditions). 

After determining the values of the simulation charges by solving the matrix system 

shown in equation 5, it was necessary to check all the calculated charges by choosing new 

points located on the contour (check points), the new potential Vvi is calculated at these check-

points, the error tolerance is checked. If this value is lower than the simulation accuracy, 

the potential and electric field at any point can be calculated, if not, it will be necessary to 

repeated the all calculations by changing the number and/or the locations of simulation 

charges [16-19]. 
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4. ELECTRIC FIELD CALCULATION 

The conductor of an electrical line is usually represented by an infinite line charges 

because its length is much greater than the other dimensions, these charges are placed inside 

the periphery of this conductor. In the charge simulation method (CSM), the effect of the 

ground is simulated by an image charge for each conductor. This ensures that potential at 

any point on the ground plane is zero. Using the image technique, each conductor of the line 

is represented by a positively charged line and a negatively charged image conductor. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2 Arrangement of the simulation charges and the contour points of conductor 

 

The arrangement of fictitious charges and contour points in the conductors of the power 

line is shown in Fig. 2. The coordinates of these points are calculated using the following 

formulas [18,21]. 
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Where R= {r1 if k=i, r2 if k=j} ; x0 is the heights of conductors above ground; y0 is the 

horizontal coordinates of conductors. 

For an infinite length of charge type, the potential coefficient is given in equation 

below [18,21]. 
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Where (xi, yi) are the coordinates of contour points; (xj, yj) are the coordinates of 

simulation charges. 

For a cartesian coordinate system, the magnitude of the total electric field at the desired 

point is calculated by the summation of the components.  
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Where fxi, fyi are the field intensity coefficients between the contour points and the 

simulation charges Qj, they are given below. 
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In this analysis of electric field created by power transmission line, the catenary form 

of the overhead power line conductors (conductor sag) is taken into account; this 3D 

quasi-static analysis can supply to good electric field estimation. 

It should be noted that in this analysis, the influence of the towers and metallic objects 

encountered which act as screens is neglected. 

5. SIMPLEX SIMULATED ANNEALING (SIMPSA)  

The Simplex Simulated Annealing (SIMPSA) algorithm was developed for the global 

solution of optimization problems. It is based on the original SA that was proposed for 

discrete optimization problems. SIMPSA combines the original simulated annealing 

algorithm (Metropolis algorithm) with the non-linear simplex algorithm (simplex downhill 

search). Simulated annealing algorithm employs a stochastic generation of solution vectors 

and employs similarities between the physical process of annealing and a minimization 

problem. This algorithm shows good robustness and accuracy in arriving at the global 

optimum of difficult non-convex highly constrained functions [21,22]. Due to the application 

of the simplex downhill search, a simplex with D + 1 vertex for D decision variable is 

used. The algorithm starts with an arbitrary solution in the search space, a new solution is 

created according to the Metropolis algorithm and the fitness function values are 

calculated for both solutions, the difference between these two points is calculated, the 

better function evaluation is accepted and becomes the starting point for the next iteration; 

otherwise a new point is accepted with the Boltzmann probability of intexp (- / . )BP E k T  , 

where E is the difference of fitness function values, kB is Boltzmann’s constant, and Tinit 

is the annealing temperature. For the assumed acceptance ratio Ar, the initial annealing 

temperature Tinit is estimated by [26-28]. 
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Where m1 and m2 are the number of successful and unsuccessful reflections, respectively, 
*E is the average increase in objective function values for m2. In the preliminary generations, 

the temperature value is remains high, but it is decreased during next generations in order to 

reduce the acceptance probability. The cooling schedule will then continue with estimated 

Tinit by equation (10) as [26-28]. 
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Where rcool is the cooling rate and σ is the standard deviation of all solutions at T(g) 

(current temperature). 

The abovementioned steps are repeated, and the process is continued with a sufficient 

number of successful generations for the current temperature. The temperature is then 

gradually reduced using equation (11) and the entire process is repeated until the stopping 

criterion is met [26-28]. 

The fitness function used for optimization is based on the accuracy of the calculation 

method, which is obtained by evaluating the relative error between the potential calculated 

by the check contour charges and the real potential applied on active conductors. The fitness 

function (FF) has the form 
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Where Vci is the exact potential to which is subjected the conductors and Vvi is the 

actual voltage of the check charges; nc is the total number of check points. 

The main steps of the proposed GA–CSM algorithm are given as follows [26-28]. 

1  SIMPSA generates initial solution with high temperature.  

2  At each step, a new solution is created; the CSM will evaluate the objective function 

values for both points. 

3  Compare the two solutions using the Metropolis criterion.  

4  Steps 2 and 3 are repeated until system reaches equilibrium state. 

5  Decrease temperature and repeat the above steps, until the stopping criteria are met. 

6. FINITE ELEMENT METHOD (FEM) 

The finite element method (FEM) is a numerical technique, used to find approximate 

solutions of partial differential equations, reducing the latter to a system of algebraic 

equations. The great advantage of this computational technique consists in the fact that 

the implementation in a code of iterative algorithms, relatively simple, allows having 

solutions, practically exact, with an acceptable approximation, of very complex problems, 

with calculation time considerably reduced. The finite element analysis of any problem 

involves basically four steps. Those are: (a) discrediting the solution region into a finite 

number of sub-regions or elements, (b) deriving governing equations for a typical element, 

(c) assembling of all elements in the solution region, and (d) solving the system of equations 

obtained [29,30]. In bi-dimensional (2D) problems, the energy in an electrostatic field in 

Cartesian coordinates (x, y) has the functional expression [30,31]. 
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In FEM, the volume of the proposed region is divided into "m" small triangular elements 

where their sides form a grid with "Ne" nodes. The potential function is approximated by 

[31,32].  
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Where Vi is the electric potential of node i, r is any point on the proposed region, fi(r) 

represents the shape function having the feature that any fi(r) is equal to unit at the 

location of node i and zero at the other nodes. 
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Substituting equation (15) into equation (14), it is obtained the approximate energy W, 

which is minimized under the following conditions. 
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A system of equations whose unknowns are the electric potential values in the nodes 

of the mesh is obtained. The electric field intensity within each element is obtained using 

the gradient expression as follows. 
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Fig. 3 275 kV Single circuit three phase overhead transmission line  

In the present work, a three-phase EHV overhead electrical line of 275 kV with earth 

wires is considered, with the arrangement and the geometric coordinates, referred to the 

suspension pylon (height at tower), as shown in Fig. 3, each phase of the transmission line 

consists of a bundle of two conductors separated by 30 cm with a radius of 10 mm, the 

ground wire radius is selected as 10 mm, the span length is 300 m, the sag of the conductors 

s=8 m, and s=6 m for the ground wires. The system of phase voltages is considered 
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symmetrical and of direct (positive) succession with a nominal frequency of 50 Hz, the earth 

is assumed to be homogeneous with a resistivity of 100Ω.m. 

 

 

 

 

 

 

 

Fig. 4 Different configurations of single circuit lines -  

(1) Horizontal, (2) Vertical (3) Triangular, (4) Inverted triangular 

 

 

 

 

 

 

 

Fig. 5 Different configurations of double circuit lines -  

(1) Vertical, (2) Triangular (3) Inverted triangular 

6. RESULTS AND DISCUSSIONS 

After choosing the type of fictitious charges as infinite line type, the Simplex Simulated 

Annealing  algorithm (SIMPSA) is used to find an appropriate arrangement (number and 

location) of both fictitious charges and contour points of charge simulation method (CSM) 

for accurate calculation of electric field. The preferred parameters settings for SIMPSA 

algorithm taken from [33-35] and search intervals of the variables for the charge simulation 

method (CSM) are summarized in Table 1. 
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Table 1 Charge Simulation Method and Simplex Simulated Annealing Parameters 

Algorithm+CSM Number of max generation (iteration) =80 

SIMPSA Cool_rate=10,Min_cooling_factor=0.9,Initial_acceptance_ratio=0.95 

CSM 

Range of fictitious charges=   4–30. 

Range of fictitious radius for phase conductor =0.01–0.05 

Range of fictitious radius for ground wire =0.001–0.009 

After multiple runs for the optimization of the fitness function, once the algorithm 

terminates execution, the best fitness function value and the optimal parameter values are 

obtained. The optimal values converged by this algorithm, which are incorporated into the 

proposed method, are summarized in Table 2: 

Table 2 Optimum values of CSM 

 
Fictitious charges 

number 

  Fictitious conductor 

radius [m] 
FF value 

Phase conductor 12 0.016 3.64e-12 

Ground wire  30 0.0045 

The convergence of the fitness function (FF) mentioned above in equation (12) with 

number of iterations is shown in Fig. 6. The best value for the fitness function is (3.64e-

12) and is practically achieved approximately after 75 iterations. 
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Fig. 6 Convergence of fitness function used in SIMPSA algorithm 

The search process of this algorithm at successive iterations with optimal solutions are 

represented in Figs. 7 and 8 respectively, where it becomes clear that the algorithm converge 

quickly to these values. 
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Fig. 7 Convergence of the optimum values of fictitious charges number on the conductor 
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Fig. 8 Convergence of the optimum value of fictitious conductor radius  

Fig. 9 shows the lateral profile of the electric field calculated at 1 m above ground level 

at mid-span length and pylon foot in different points within the right of way. Generally, it is 

observed that this intensity has a lower value in the centre of the power line, and then 

increases to a maximum value near under the lateral conductor, from this point; it decreases 

gradually as the lateral distance from the power line center increases. It appears clear from 

this figure that the electric field profile is symmetric around the middle conductor.  

The most important result which the electric field strength at the mid-span length is 

significantly higher to that at the pylon (points of suspension), this is due to the effect of 

the height difference of the conductors above ground level. Consequently, since the 

suspension height of the conductors above the ground is minimal, the value of the electric 

field is very high. 
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Fig. 9 Electric field profile at mid-span and pylon foot calculated at 1m above the ground 

For the average height, the maximum calculated electric field value represents the 

average value between the maximum value obtained at mid-span and that at the pylon 

foot. This assumption does not reflect the actual situation of the power line. 

The longitudinal profile of the electric field at 1 m above the ground level shown in 

Fig.10 illustrates very well this observation, the electric field is greatest at mid-span (3.09 

kV/m), as the location of the electric field profile approaches the pylon in both directions, 

the electric field gradually decreases to a minimum value (1.28 kV/m), the electric field 

near the pylon is much lower than at mid-span.   

For the average height, the electric field strength at 1 m above ground level is 2.2 

kV/m; this value remains constant along the span of the power line. 

This shows that the use of the conductor sagging in the electric field calculation is a 

very practical way of modeling the real shape of the power line; it plays a considerable 

role in the determination of the real values of the electric field. 

It should be noted that the maximum peak values of the electric field obtained are well 

below the limits prescribed by the ICNIRP and IRPA international standards. 

Fig.11 shows the three-dimensional profile of the electric field over a right of way equal 

to 50 m either side of the power line center and a span length between the suspension pylons 

of 300 meters. The values of the higher electric fields exist only in a small area near the mid- 

span, and then decrease rapidly towards the pylons and even more rapidly away from the 

side conductors. 

Fig.12 describes the mapping of the electric field intensity, in an area defined by the 

height of the conductors, and the axis of the lateral distance along the corridor. It may be 

interesting to note that the concentrated level of the electric field is produced around the 

phase of the conductor surface; the electric field gradually decreases with the lateral 

distance from the power line center in both directions of the corridor. 
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Fig. 10 Longitudinal electric field profile calculated at 1m above the ground 
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Fig. 11 Three-dimensional (3D ) electric field profile calculated at 1 m above the ground 

 

In the following, it should be mentioned some factors which may influence the value of 

the electric field. The effect of varying the conductor’s height and the phase spacing is 

shown in Fig.13. An increase in the conductor height above the ground (clearance 

between conductor and ground) causes a significant reduction in the electric field value. 

An increase of the spacing between phases provokes a slight increase in the strength of 

the electric field. 
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Fig. 12 Mapping of the electric field generated by  

the single-circuit 275 kV power line at mid-span length 
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Fig. 13 Electric field profile calculated at 1m above the ground as a function  

of the conductor height and the spacing between the conductors 

Fig.14 illustrates the effect of changing the observation point height of electric field 

calculation above ground, so it can be seen that the increasing in the calculation point 

height above ground level can lead as a first step to a small increase in the electric field 

up to a certain height of 8 m, from this height, the rise becomes sudden. It can be 

concluded that the amplitude of the electric field is the highest in the immediate vicinity 

of the surface of the phase conductors and gradually decreases as it goes towards the 

ground. 

Fig.15 shows the effect of bundle phase conductors on the value of the electric field, 

as seen in this figure, the electric field intensity is slowly increased if the numbers of sub-

conductors per phase are increased.  
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Fig. 14 Electric field profile as a function of the observation point height above ground 
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Fig. 15 Electric field profile as a function of the bundle conductors 

Electric field profile for different single circuit phase configurations (see Fig.4) is 

shown in Fig. 16. It can be seen that the horizontal configuration produces the higher 

maximum electric field than other all configurations due to all conductors being close to 

the ground level, and on the other hand, the triangular configuration produces the lowest 

maximum electric field due to better cancellation effect of the line voltages. 
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Fig. 16 Lateral electric field profile calculated at 1m above the ground for different  

phase configurations of single-circuit 275 kV transmission line 

For various double circuit configurations lines (see Fig. 5), for the same phasing (abc-

abc), the lateral distribution of electric field is illustrated by Fig.17. Typically, one can 

observe that the triangular configuration gives lower maximum electric field than the 

other configurations in the immediate vicinity of the power line center into an interval 

between [-7,+7] m, for a distance between 7 and 30 m ±[7-30], the vertical configuration 

is the preferred configuration, within this range the values obtained indicate a significant 

reduction in the electric field strength. 
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Fig. 17 Lateral electric field profile calculated at 1 m above the ground for different 

phase configurations of double-circuit 275 kV transmission line 
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In double circuit overhead power line, the phase sequence arrangement has a significant 

influence on the electric field intensity; it is highly possible to adjust the position of the 

phase order to reduce the electric field under the power line to a lower level. As an example, 

the electric field for different phase arrangements in a vertical double circuit line with the 

same parameters is illustrated in Fig. 18. As can be seen in this figure, the inverse phase 

arrangement (abc-cba) or low-reactance phasing gives the lowest value of electric field for 

the different points along the power line corridor, because of the best electric field 

cancellation caused by the phase- shift between phases, while the phase arrangement (abc-

acb) produces a higher electric field than all other arrangements of phase conductors. 
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Fig. 18 Comparison of electric field in different phase’s arrangement  

for double circuit vertical line 275 kV 

 

 

 

 

 

 

 

 

 

 

 

 

                              

Fig. 19 Finite element discretization of the study domain given in Fig. 3 
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In order to validate the adopted method in this study, the COMSOL Multiphysics 

software (version 4.3b) specializing in electromagnetism numerical simulation based on the 

finite element method (FEM) can be used to simulate and evaluate the electric field around 

the overhead power lines.  

 

 

 

 

 

 

 

 

 

 

Fig. 20 Electric field profile at mid-span length calculated  

at 1m above the ground using COMSOL 4.3b software 

 

 

 

 

 

 

 

 

 

 

 

Fig. 21 Electric field profile at pylon foot calculated at 1m  

above the ground using COMSOL 4.3b software 
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The electrostatic module was appropriately chosen for this computational work to 

solve and analyze this model in 2D dimensional space. The Mesh using linear triangular 

elements generated by this software in the study domain with the defined settings of the 

system is shown in Fig. 19. 

Figs. 20 and 21 respectively, show the electric field distribution at mid-span length and 

pylon foot under the HV power line at 1 m above the ground level using the COMSOL 4.3b 

software.  

It can be seen that the electric field under the middle conductor is less intense, and 

then it increases to a maximum intensity nearly under the lateral conductors. As the 

distance from this point increases, the electric field strength decreased quite rapidly. 
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Fig. 22 Comparison of Electric field levels between  

the proposed method and COMSOL 4.3b software 

The comparison of the electric field results obtained by the proposed method with 

those simulated from COMSOL 4.3b software is shown in Fig. 22. These results are in 

good agreement; the graphs of two figures are approximately superposed, the maximum 

error value is not significant; it does not exceed the value of 4.8%.  

7. CONCLUSION 

In this study, a novel optimized approach that couples the Simplex Simulated Annealing 

algorithm (SIMPSA) and the charge simulation method (CSM) has been presented. The 

adopted algorithm offers efficiency and accuracy for determination of the optimal position and 

number of fictitious charges. Accurate results on the 3D quasi-static analysis of electric field 

created by an EHV overhead power line have been obtained. From the results, it is clear that the 

electric field intensity is less intense under the middle phase conductor and increases to peak 

intensity near under the side phase conductor; then decreases with increasing the lateral 

distance. It has also been found that the electric field depends on several factors, such as the 

spacing between two adjacent conductors and conductor height above the ground, the type of 
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lines, single or double circuit. For double circuit lines, it is possible to adjust the phases in an 

appropriate manner in order to achieve a significant reduction of the electric field. 

 The most important parameter is the influence of the conductor sag; it is noted that the value 

of the electric field at mid-span length is much higher than that at the pylon foot. The obtained 

results were compared with those obtained from the COMSOL 4.3b software. The simulation 

results are almost identical and are visually superimposed; the comparison is satisfying enough 

and it sufficient to validate the combined method. 
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