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Abstract: Our society greatly depends on services and applications provided
by mobile communication networks. As billions of people and devices become
connected, it becomes increasingly important to guarantee security of interac-
tions of all players. In this talk we address several aspects of this important,
many-folded problem. First, we show how to design cryptographic primitives
which can assure integrity and confidentiality of transmitted messages while
satisfying resource constrains of low-end low-cost wireless devices such as sen-
sors or RFID tags. Second, we describe countermeasures which can enhance
the resistance of hardware implementing cryptographic algorithms to hardware
Trojans.
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1 Introduction

Today minimal or no security is typically provided to low-end low-cost wire-
less devices such as sensors or RFID tags in the conventional belief that
the information they gather is of little concern to attackers. However, case
studies have shown that a compromised sensor can be used as a stepping
stone to mount an attack on a wireless network. For example, in the attack
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1 Introduction

Decision diagrams (DDs) are a compact data structures for discrete functions
representation. Bryant showed their canonicity in 1986 in [1] and after that
they have been applied in many areas in which discrete functions are used:
hardware design, hardware testing, signal processing, etc. Complexities of
the designed hardware or of the computations that are done by decision
diagrams are directly proportional to the size of the diagram. A main disad-
vantage of the decision diagrams is that their size is dependent on the order
of the variables that are used in the diagram.

Optimization of the DD size is a very often solved problem. Algorithms
for DD optimization can be classified into two categories: exact algorithms
and heuristic algorithms. The basic exact algorithm is a brute-force algo-
rithm creating the diagrams for all possible orders of variables and choosing
the best. A slightly improved exact algorithm is presented in [2]. But, all
exact algorithms are very slow and inapplicable for functions with a large
number of variables.

The most widely used heuristic algorithm for DD optimization is Rudells
sifting algorithm that was proposed in [3]. The main idea in that algorithm
is the sifting of each variable through all levels in the diagram and choose
the optimal position.

A genetic algorithm is a heuristic algorithm that can be applied in solving
different optimization problems. Using genetic algorithm in DD optimization
was first discussed in [4]. After that, genetic algorithms for DD optimization
were improved in many papers ( [5–13]). Some of them optimize the DD size
( [4–11]). In [12] the 1-paths number is optimized, and in [13] a method for
these two optimization is proposed.

In this paper, we present a genetic algorithm for optimization of BDDs
and FDDs. Our main goal was minimization of FDD size because we use
FDD in reversible synthesis (see for example [14], [15]). For comparison
we also include results on the minimization of the size of the BDDs. In
the applications for FDD-based reversible synthesis, the complexity of the
generated network is directly dependent of the FDD size. Additional problem
in FDD usage is that the size is dependent of the decomposition rules that
are used in the nodes. In FDD in each a node positive or negative Davio
decomposition can be used. Usually, the same decomposition is used in all
nodes from the same level. It follows that for one variable order, 2n different
FDDs can be created. An exact algorithm in that case should check 2n · n!
cases, which is impossible for large number of variables. Another group
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Abstract. In an overview of Horizontal Current Bipolar Transistor (HCBT) 
technology, the state-of-the-art integrated silicon bipolar transistors are described 
which exhibit fT and fmax of 51 GHz and 61 GHz and fTBVCEO product of 173 GHzV that 
are among the highest-performance implanted-base, silicon bipolar transistors. HBCT 
is integrated with CMOS in a considerably lower-cost fabrication sequence as 
compared to standard vertical-current bipolar transistors with only 2 or 3 additional 
masks and fewer process steps. Due to its specific structure, the charge sharing effect 
can be employed to increase BVCEO without sacrificing fT and fmax. Moreover, the 
electric field can be engineered just by manipulating the lithography masks achieving 
the high-voltage HCBTs with breakdowns up to 36 V integrated in the same process 
flow with high-speed devices, i.e. at zero additional costs. Double-balanced active 
mixer circuit is designed and fabricated in HCBT technology. The maximum IIP3 of 
17.7 dBm at mixer current of 9.2 mA and conversion gain of -5 dB are achieved. 

Key words: BiCMOS technology, Bipolar transistors, Horizontal Current Bipolar 
Transistor, Radio frequency integrated circuits, Mixer, High-voltage 
bipolar transistors. 

1. INTRODUCTION 

In the highly competitive wireless communication markets, the RF circuits and 
systems are fabricated in the technologies that are very cost-sensitive. In order to 
minimize the fabrication costs, the sub-10 GHz applications can be processed by using the 
high-volume silicon technologies. It has been identified that the optimum solution might 
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Abstract. Decision diagrams (DD) are a widely used data structure for discrete functions 
representation. The major problem in DD-based applicationsis the DD size minimization 
(reduction of the number of nodes), because their size is dependent on the variables order. 
Genetic algorithms are often used in different optimization problems including the DD 
size optimization. In this paper, we apply the genetic algorithm to minimize the size of 
both Binary Decision Diagrams (BDDs) and Functional Decision Diagrams (FDDs). In 
both cases, in the proposed algorithm, a Bottom-Up Partially Matched Crossover (BU-
PMX) is used as the crossover operator. In the case of BDDs, mutation is done in the 
standard way by variables exchanging. In the case of FDDs, the mutation by changing 
the polarity of variables is additionally used. Experimental results of optimization of the 
BDDs and FDDs of the set of benchmark functions are also presented.

Key words: Binary Decision Diagrams, Functional Decision Diagrams, Decision 
Diagrams oprimization, Genetic algorithm.
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of minimization algorithms, sifting algorithms, analyze only variables order.
Because of that we choose a side to try by applying the genetic algorithm. In
the presented algorithm, for both BDD and FDD, a modified PMX crossover
operator (BU-PMX Bottom-Up Partially Matched Crossover) and mutation
by variable exchange are used. In the case of FDD optimization, mutation
by polarity change is additionally used.

The paper is organized in the following way: Section 2 contains most
important definitions related to the decision diagrams. Section 3 presents
the general idea of genetic algorithms and their specifications in the case of
applying in DD optimization. Section 4 describes the algorithm for BDD and
FDD optimization and the genetic operations that are used in it. Section 5
discuses experimental results and in Section 6 some concluding remarks are
given.

2 Decision diagrams

Definition 1 (Binary Decision Tree) A Binary Decision Tree (BDT) rep-
resenting a Boolean function f is the binary tree created by the recursive
application of the Shannon decomposition rule:

f = xk · f(xk = 0)⊕ xk · f(xk = 1) (1)

Definition 2 (Terminal and Nonterminal nodes) A BDT contains two
types of nodes: nonterminal and terminal. A nonterminal node represents
one decomposition and it has a joint decision variable. A terminal node
contains the value of the function.

Definition 3 (Level in BDT) A level in the BDT is a set of nonterminal
nodes with the same decision variable, or the set of terminal nodes.

Definition 4 (Functional Decision Tree) A Functional Decision Tree (FDT)
representing a Boolean function f is the binary tree created by the recursive
application of the positive (2) or negative (3) Davio decomposition rule:

f = f(xk = 0)⊕ xk · (f(xk = 0)⊕ f(xk = 1)) (2)

f = xk · (f(xk = 0)⊕ f(xk = 1))⊕ f(xk = 1) (3)

Definition 5 (Fixed Polarity Functional Decision Tree) A Functional
Decision Tree in which the same decomposition is used in each node from the
same level is called a Fixed Polarity Functional Decision Tree (FPFDT).
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Definition 6 (Polarity-vector) The polarity-vector of the FPFDT is a
bit vector which defines the types of the decompositions that are used in the
levels. 0 denotes that the positive Davio decomposition is used, 1 denotes the
negative.

Definition 7 (Positive-polarity FDT) A FDT in which positive Davio
decomposition is used at all levels is a positive-polarity FDT.

Definition 8 (Binary Decision Diagram) A BDT is transformed into a
Binary Decision Diagram (BDD) by using the following reduction rules:

1. Share the isomorphic sub-trees: if there are two terminal nodes with the
same value, or two non-terminal nodes with isomorphic sub-trees, one of
them is deleted. Its incoming edges are directed to the remaining node.

2. Eliminate the redundant nodes: if both outgoing edges from a non-terminal
node point to the same sub-tree, this node is redundant and it is deleted.
Its incoming edges are directed to the common sub-tree.

Definition 9 (Functional Decision Diagram) An FDT is transformed
into an FDD by using the reduction rule 1 above and the following 0-suppress
reduction rules:

2.1 If the right outgoing edge from a positive Davio node points to the 0, the
node is deleted. The edges pointing to the deleted node are directed to
its left sub-tree.

2.2 If the left outgoing edge from a negative Davio node points to the 0, the
node is deleted. The edges pointing to the deleted node are directed to
its right sub-tree.

Example 1 Figure 2 shows the BDD (a) and the positive-polarity FDD (b)
of the function f(x1, x2, x3, x4) = x1 · x2 + x1 · x2 + x3 + x4.

Definition 10 (DD size) DD size is equal to the number of the nontermi-
nal nodes.

Example 2 Figure 2 shows the BDDs of the function f(x1, . . . , x6) =
x1x2 + x3x4 + x5x6 for variables orders (a) (x1, x2, x3, x4, x5, x6) and (b)
(x1, x4, x2, x5, x3, x6). The size of the first BDD is 6, but the size of the
second is 14.
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Definition 6 (Polarity-vector) The polarity-vector of the FPFDT is a
bit vector which defines the types of the decompositions that are used in the
levels. 0 denotes that the positive Davio decomposition is used, 1 denotes the
negative.

Definition 7 (Positive-polarity FDT) A FDT in which positive Davio
decomposition is used at all levels is a positive-polarity FDT.

Definition 8 (Binary Decision Diagram) A BDT is transformed into a
Binary Decision Diagram (BDD) by using the following reduction rules:

1. Share the isomorphic sub-trees: if there are two terminal nodes with the
same value, or two non-terminal nodes with isomorphic sub-trees, one of
them is deleted. Its incoming edges are directed to the remaining node.

2. Eliminate the redundant nodes: if both outgoing edges from a non-terminal
node point to the same sub-tree, this node is redundant and it is deleted.
Its incoming edges are directed to the common sub-tree.

Definition 9 (Functional Decision Diagram) An FDT is transformed
into an FDD by using the reduction rule 1 above and the following 0-suppress
reduction rules:

2.1 If the right outgoing edge from a positive Davio node points to the 0, the
node is deleted. The edges pointing to the deleted node are directed to
its left sub-tree.

2.2 If the left outgoing edge from a negative Davio node points to the 0, the
node is deleted. The edges pointing to the deleted node are directed to
its right sub-tree.

Example 1 Figure 2 shows the BDD (a) and the positive-polarity FDD (b)
of the function f(x1, x2, x3, x4) = x1 · x2 + x1 · x2 + x3 + x4.

Definition 10 (DD size) DD size is equal to the number of the nontermi-
nal nodes.

Example 2 Figure 2 shows the BDDs of the function f(x1, . . . , x6) =
x1x2 + x3x4 + x5x6 for variables orders (a) (x1, x2, x3, x4, x5, x6) and (b)
(x1, x4, x2, x5, x3, x6). The size of the first BDD is 6, but the size of the
second is 14.
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Fig. 1: BDD (a) and FDD (b) of the function from Example 1.

In the general case, for the function of 2n variables f(x1, x2, . . . x2n−1, x2n) =
x1x2+· · ·+x2n−1x2n, the size of the BDD with variables order (x1, x2, . . . , x2n−1, x2n)
is 2n, and with variables order (x1, xn+1, . . . , xn, x2n) it is O(2n−1).

Besides the variable order, the size of fixed polarity FDDs is dependent
also on the polarities for the variables.

Example 3 Figure 3 shows the FDDs of the function in Example 1 for
polarity vectors (a) F = [1 1 1 1]T and (b) F = [0 1 0 1]T. The size of the
diagram if the first case is 4, and in the second case is 6.

3 Genetic algorithm

A genetic algorithm is a method for solving different optimization problems
based on an analogy to the natural selection process. In this algorithm, the
solution of a problem is presented as an array that is named chromosome.
An element of the chromosome is a gene.

In general, the initial set of chromosomes are generated randomly, and
then, the new generation is created by using two genetic operations: crossover
and mutation. The crossover operator defines the way for creating the child
chromosomes by combination of the genes from parent chromosomes. In
practice, one point crossover (fig. 4(a)) and two-point crossover (fig. 4(b))
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1. Share the isomorphic sub-trees: if there are two terminal nodes with the
same value, or two non-terminal nodes with isomorphic sub-trees, one of
them is deleted. Its incoming edges are directed to the remaining node.

2. Eliminate the redundant nodes: if both outgoing edges from a non-terminal
node point to the same sub-tree, this node is redundant and it is deleted.
Its incoming edges are directed to the common sub-tree.

Definition 9 (Functional Decision Diagram) An FDT is transformed
into an FDD by using the reduction rule 1 above and the following 0-suppress
reduction rules:

2.1 If the right outgoing edge from a positive Davio node points to the 0, the
node is deleted. The edges pointing to the deleted node are directed to
its left sub-tree.

2.2 If the left outgoing edge from a negative Davio node points to the 0, the
node is deleted. The edges pointing to the deleted node are directed to
its right sub-tree.

Example 1 Figure 2 shows the BDD (a) and the positive-polarity FDD (b)
of the function f(x1, x2, x3, x4) = x1 · x2 + x1 · x2 + x3 + x4.

Definition 10 (DD size) DD size is equal to the number of the nontermi-
nal nodes.

Example 2 Figure 2 shows the BDDs of the function f(x1, . . . , x6) =
x1x2 + x3x4 + x5x6 for variables orders (a) (x1, x2, x3, x4, x5, x6) and (b)
(x1, x4, x2, x5, x3, x6). The size of the first BDD is 6, but the size of the
second is 14.
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Fig. 2: BDDs of the function from Example 2 for two different variable or-
ders.

are usually chosen. The mutation is often realized by changing the value of
the gene at a selected position.

The measure of the quality of a solution (chromosome) is named fit-
ness score. Fitness scores are used to compute the possibilities for selecting
the chromosomes for parents for the next generation, and for selecting the
chromosomes that will die after an iteration.

To define the genetic algorithm for a concrete optimization problem
means to define: the type of genes, the fitness function and the genetic
operations.

3.1 Genetic algorithm for BDD size optimization

One chromosome in a BDD optimization problem is one order of input vari-
ables, i.e. one permutation of the integer numbers from interval [1, n]. It
follows that standard genetic operators cannot be used. Because of that, for
a BDD optimization, special genetic operators are defined. Crossover oper-
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Fig. 3: FDDs of the function from Example 1 for two different polarity vec-
tors.

Fig. 4: One-point (a) and two-point (b) crossover operators.

ators that will be discussed in this section are: Order Crossover ( [10], [11]),
Cyclic Crossover ( [10], [11]), Partially Matched Crossover ( [4], [10], [11])
and Alternating Crossover ( [7]).

Algorithm 1 (Cyclic Crossover Operator - CX) :

Step 1. Create a cycle of the genes defined by corresponding positions in
the parent chromosomes starting from first unused gene in the first
parent.

Step 2. Copy the genes from the cycle from one parent in the first child and
from other parent in the second child.

174 S. StojkoviĆ, D. veliČkoviĆ, C. Moraga  Genetic Algorithm for BDD and FDD Optimization 175



8 S. STOJKOVIĆ, D. VELIČKOVIĆ AND C. MORAGA

Step 3. Repeat steps 1 and 2 by alternating change the target child in which
the genes from one parent is copied.

Example 4 Let we see the following parents:

p1 = [1 2 3 4 5 6 7 8 9 10]

p2 = [5 4 6 9 2 8 3 7 1 10]

The first cycle of the genes is created starting from the gene 1 from the
first parent. On the corresponding position in the second parent is the gene
5. Then, we find the gene 5 in the first parent and in the corresponding
position in the second parent is the gene 2. Process is continued until the
cycle is closed. The created cycle is 1 → 5 → 2 → 4 → 9 → 1. The child
chromosomes after putting first cycle are:

c1 = [1 2 4 5 9 ]

c2 = [5 4 9 2 1 ]

Second cycle is created starting from the gene 3: 3 → 6 → 8 → 7 → 3

Child chromosomes after putting second cycle in the child chromosomes
are:

c1 = [1 2 6 4 5 8 3 7 9 ]

c2 = [5 4 3 9 2 6 7 8 1 ]

The last cycle contains only gene 10, and, finally, child chromosomes
are:

c1 = [1 2 6 4 5 8 3 7 9 10]

c2 = [5 4 3 9 2 6 7 8 1 10]

Algorithm 2 (Order Crossover Operator - OX) :

Step 1. Randomly select two crossover points.

Step 2. Copy in the child chromosome the genes from the first parent between
crossover points.

Step 3. Delete from second parent the genes which are already in the child.

Step 4. Place the genes from the second parent into unfilled positions in child
chromosome from left to right.

176 S. StojkoviĆ, D. veliČkoviĆ, C. Moraga  Genetic Algorithm for BDD and FDD Optimization 177
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Example 5 Let the parent variable orders be given by arrays:

p1 = [1 2 3 |4 5 6 |7 8 9 10]

p2 = [6 7 4 2 3 10 9 5 1 8]

The crossover points are marked in the first parent. After step one, the
child chromosome is:

c = [ |4 5 6 | ]

After deleting corresponding genes, second parent is:

p2 = [�6 7 �4 2 3 10 9 �5 1 8]

Finally, after putting the genes from second parent, the generated child
is:

c = [7 2 3 |4 5 6 |10 9 1 8]

Algorithm 3 (Partially Matched Crossover Operator - PMX) :

Step 1. Perform a two-point crossover.

Step 2. Create the mapping table of the genes from the central part of one
parent that do not appear in the central part of the second parent.
The mapping pair of a gene from position i of the first parent (p1[i])
is the gene at the same position in the other parent (p2[i]) if the gene
p2[i] is not in the central part of the first parent, otherwise, if the
p2[i] = p1[j] the mapping pair of p1[i] is equal to the mapping pair
of the gene p1[j].

Step 3. Eliminate duplicated genes in child chromosomes so that the central
part of the chromosomes remains unchanged. If some gene from the
central part appears again in other parts, replace it by the corre-
sponding mapping pair.

Example 6 Let the parent variable orders be given by arrays:

p1 = [9 8 4 |5 2 7 |1 3 6 10]

p2 = [8 7 1 |2 3 10 |9 5 4 6]

Let the two-point crossover operator be performed with the crossover
points 3 and 6. The resulting child chromosomes are:

c′1 = [9 8 4 |2 3 10 |1 3 6 10]
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c′2 = [8 7 1 |5 2 7 |9 5 4 6]

Let us create a mapping table:

p2[4] = 2 exists in the central part of p1, and it is not mapped.

p2[5] = 3 → 2 → 5. Pair (3, 5) is added into the mapping table.

p2[6] = 10 → 7. Pair (10, 7) is added into the mapping table.

Resulting child chromosomes after duplicate elimination are:

c1 = [9 8 4 |2 3 10 |1 5 6 7]

c2 = [8 10 1 |5 2 7 |9 3 4 6]

Algorithm 4 (Alternating Crossover Operator - AX) Create the child
chromosome by taking alternatively the genes from the first and the second
parent. Before storing the gene into a child chromosome check whether it
already exists there.

Example 7 Let the alternating crossover be performed over the same par-
ents as in the previous example. The resulting child chromosome is:

c = [9 8 7 4 1 5 2 3 10 6]

Mutation cannot be realized as it is shown in the previous section, too.
In the literature, three ways for the mutation operation are suggested:

Algorithm 5 (Mutation by one variables exchange) Randomly select
two positions in a chromosome and exchange the variables from the selected
positions.

Algorithm 6 (Mutation by two variables exchanges) Apply two-times
mutation defined in the Algorithm 5.

Algorithm 7 (Mutation by neighbor exchange) Randomly select one
position i. Exchange the variables from positions i and i+ 1.

The fitness function in a BDD optimization problem is the size of the
BDD.
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4 Genetic algorithm for BDD and FDD size optimization

In the original PMX algorithm, the central part of the chromosome is trans-
ferred into the child chromosome unchanged. But, the possibility of deleting
a DD node in the reduction phase is greater if the node is at the bottom
levels. It follows that good properties of the parents will be inherited if the
order of the variables on the last levels is not changed. Because of that,we
used a modified PMX algorithm in which the right part of the genes from
parent chromosomes are directly transferred to the child chromosomes. This
operator is named as the Bottom-up PMX, because the genes are written
into the child chromosome from the right to the left, i.e. from the bottom
levels up. The second reason why the part of the unchanged genes is shifted
to the end of the chromosome is that in that case the DD corresponding to
the child chromosome contains an identical set of nodes in the last levels as
the DD corresponding to the parent chromosome and calculation time of the
fitness function is shortened.

Algorithm 8 (Bottom-up PMX Operator - BU-PMX) :

Step 1. Perform an one-point crossover.

Step 2. Create the PMX mapping table for the right part of chromosomes.

Step 3. Eliminate duplicate genes from the left part of child chromosomes by
using the PMX mapping table.

Example 8 Let the Bottom-up PMX operator be performed over parents:

p1 = [1 2 3 4 5 6 |7 8 9 10]

p2 = [7 4 1 2 5 6 |9 3 8 10]

After performing one-point crossover the generated children are:

c′1 = [7 4 1 2 5 6 |7 8 9 10]

c′2 = [1 2 3 4 5 6 |9 3 8 10]

The mapping table contains only the pair (7, 3). After duplicates elimi-
nation, the resulting child chromosomes are:

c1 = [3 4 1 2 5 6 |7 8 9 10]

c2 = [1 2 7 4 5 6 |9 3 8 10]
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Fig. 5: Positive (a) and negative (b) Davio nodes.

As it was shown in Example 3, the FDD size is dependent on the po-
larity vector. Because of that, in FDD optimization an additional mutation
producing a polarity change is used. To specify the transformation that is
done on the FDD when this mutation is performed, the positive Davio and
negative Davio nodes are shown in Figure 5 ((a) and (b), respectively). In
this figure f0 = f(xk = 0) and f1 = f(xk = 1). Let fl and fr be the left
and right successors of the node. If the polarity is changed from positive to
negative, the transformation that is done is:

fl new = fr old

fr new = fl old ⊕ fr old

(4)

If the reverse polarity change is done, the applied transformation is:

fr new = fl old

fl new = fl old ⊕ fr old

(5)

Algorithm 9 (Mutation by polarity change) Randomly select a vari-
able. Change the expansion rule in all nodes at the level corresponding to
the selected variable.

The complete genetic algorithm that is used for BDD and FDD opti-
mization is shown in the Algorithm 10.

Algorithm 10 (Genetic algorithm for DD optimization) :

Step 1. Create initial population of chromosomes and compute the fitness
score for each of them.

Step 2. Select pairs of parents for reproduction.
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Fig. 6: Number of iterations needed to reach the minimum BDD size for the
bw benchmark function as a function of a percents of the mutated child
chromosomes.

Step 3. Create child chromosomes by BU-PMX.

Step 4. Mutate child chromosomes (by mutation probability).

Step 5. Do Darwins process - remove from population the worst chromosome
or more bad chromosomes if the population is full.

Step 6. Repeat steps 2-5 until the goal is reached or the computing time is
exhausted.

5 Experimental results

5.1 Results of BDD size optimization

At first, we tested how the mutation probability influences the convergence
of the algorithm. Figure 6 shows the number of iterations that is needed
to reach the minimum BDD size for the function bw for different percents
of mutated chromosomes. Each experiment was repeated 100 times and in
the figure the average values are shown. The number of needed iterations
decreases when the percents of the mutated chromosomes increases. For
percents greater than 15 the decreasing is very slow and 0.15 is chosen as an
optimal mutation probability.

Then, we tested the convergence of the proposed algorithm on the set of
a small benchmark functions for which we know the optimal size. We tested
the number of iterations that is needed to reach the minimum BDD size. We
compared these results with results obtained by using the Order Corossover
(OX), Cyclic Crossover (CX), original PMX and Alternating Crossover (AX)
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Table 1: Number of iterations needed to reach minimum BDD size by using
different crossover operators

Function In/Out OX CX PMX AX BU-PMX

bw 5/25 5.5 7.4 5.9 7.9 5.2

5xp1 7/10 56.1 46.6 47.5 72.8 32.1

con1 7/2 97.9 76.8 87.2 86.7 71

misex1 8/7 152.5 93 67.7 84.2 107.8

sqrt8 8/4 135.4 159.3 116.8 371.1 113.7

clip 9/5 72.9 75 59.4 194.4 49.7

operators. The experiments were repeated 10 times and in Table 1 the
average values are shown. Table 1 shows that for 5 out of 6 functions the
smallest BDD size was obtained with the smallest number of iterations when
the BU-PMX operator is used. In these 5 cases, alternating crossover was
the worst. Only for the function misex1 the minimal BDD size was obtained
with less number of iterations when PMX operator is used.

Finally, we optimized the BDD size for benchmark functions of a larger
number of variables. Table 2 compares the sizes of the BDDs with initial
order of variables and with optimal order generated by the genetic algo-
rithm. In each experiment, the initial population contains 2n chromosomes
(permutations) and maximum population size is 10n, where n is the number
of input variables. The table shows that the proposed algorithms reduced
the size of the BDD, on the average, by 46.375%.

5.2 Comparison BDD optimization by proposed genetic algo-
rithm and by other heuristic algorithms

The paper [11] compares the sizes of BDDs optimized by different heuristic
algorithms and with genetic algorithm with 3 types of crossover operators
(OX, CX and PMX). The paper shows that results that were produced by
genetic algorithms are better than results of the other heuristic algorithms.
Table 3 compares the sizes of DDs generated by the genetic algorithm pre-
sented in the paper [11] and by the genetic algorithm that is proposed in this
paper. Table 3 shows that, for the functions with small number of variables,
all algorithms found absolute minimum. For the functions with large num-
ber of variables algorithms that used PMX or BU-PMX operator produced
better results. The algorithm that is proposed in this paper produced the
smallest BDD for 13 out of 15 functions.
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Table 2: BDD size for initial variable order and for optimal order generated
by the proposed genetic algorithm

Function In/Out INIT OPTIMAL Iterations Red. ratio [%]

alu4 14/8 1352 701 300 48

cu 14/11 65 37 300 43

misex3 14/14 1301 544 300 58

misex3c 14/14 810 443 300 45

table3 14/14 941 752 300 20

b12 15/9 91 60 300 34

table5 17/15 873 683 300 22

cc 21/20 105 49 400 53

dike2 22/29 976 373 400 62

i1 25/16 58 43 500 26

misex2 25/18 140 86 500 39

vg2 25/8 1059 84 500 92

frg1 28/3 203 89 600 56

c8 28/18 145 93 600 36

in4 32/20 1109 410 600 63

unreg 36/16 146 81 600 45

Average 46.375

5.3 Results of FDD size optimization

As was shown above, the FDD size is dependent on the variable order and
the polarity. To determine the mutation that should be used in FDD opti-
mization, a genetic algorithm with different mutation operators is performed
on the set of function of a small number of variables (less than 10). Table
4 shows sizes of FDDs when:

• the initial order of variables and positive-polarity is used (INIT),

• the genetic algorithm with mutation by variables exchange is used
(GA,VE),

• the genetic algorithm with mutation by polarity change is used (GA,
PC), and

• the genetic algorithm with both mutation operators (with probabilities
0.5) are used (GA,VE+PC).
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0.5) are used (GA,VE+PC).
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Table 3: Comparision of sizes of BDDs produced by the proposed algorithm
and by the existing genetic algorithm with OX, CX and PMX
crossover operators

Function In/Out OX CX PMX BU-PMX

squar5 5/8 37 37 37 37

bw 5/28 106 106 106 106

5xp1 7/10 68 69 68 68

con1 7/2 16 15 15 15

inc 7/9 72 72 72 72

misex1 8/7 36 36 36 36

sqrt8 8/4 33 33 33 33

clip 9/5 102 109 93 93

sao2 10/4 92 90 85 85

alu4 14/8 891 939 734 701

b12 15/9 70 68 50 60

t481 16/1 85 78 30 38

duke2 22/9 506 512 390 373

misex2 25/18 100 102 87 86

vg2 25/8 339 301 148 84

It can be seen from the table that the FDDs with minimal sizes are
generated when both mutations are used in the genetic algorithm. Because of
that, in the experiments for optimization of FDDs of the functions of a larger
number of variables (greater than 10), the approach with both mutation
operators is used. Results of these experiments are shown in Table 5. As
it can be seen from this table, FDDs are reduced by the proposed genetic
algorithm, on the average, by 48.875%.

These experiments are done with the functions up to 25 variables. It
is applicable on the functions with large number of variables, because the
number of cases that are checked in the algorithm is determined by three
parameters:

• number of crossover operations that is done in one iteration (CX),

• possibility of applying of mutation operator (pm), and

• maximal number of iterations (IT ).

Total number of created DDs is:
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Table 4: Initial FDDs sizes and sizes of FDDs generated by genetic algo-
rithms with different mutation operators

Function In/Out (INIT) (GA,VE) (GA,PC) (GA, VE+PC)

add2 4/3 8 7 7 7

squar5 5/8 32 30 29 29

bw 5/28 144 97 93 93

inc 7/9 121 79 78 73

f51m 8/8 40 34 27 20

sqrt8 8/4 48 25 26 24

Table 5: FDD size for initial variable order and positive-polarity and for
order and polarity generated by the proposed genetic algorithm

Function In/Out INIT OPTIMAL Iterations Red. ratio [%]

alu4 14/8 840 541 300 36

cu 14/11 74 37 300 50

misex3 14/14 1024 764 300 25

misex3c 14/14 759 635 300 16

b12 15/9 116 62 300 47

cc 21/20 78 40 400 49

misex2 25/18 149 37 500 75

vg2 25/8 942 68 500 93

Average 48.875

N = CX · (1 + pm) · IT

If we need smaller DD, the number of CX and IT should be greater.
If the execution time is critical, CX and IT should be smaller. In our
experiments:

CX = 2 · n,

pm = 0.15,

IT = [n/5] · 100.

N = 2 · n · 1.15 · [n/5] · 100 ≈ 46 · n2.

It is much smaller than when the brut-force exact algorithm in which
N = 2n · n!.
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6 Conclusion

In this paper, a genetic algorithm for BDD and FDD optimization is pre-
sented. In the algorithm a modification of the PMX operator is proposed:
in the initial phase, instead of two-point crossover, one-point crossover is
used. It follows that in the generated DD based on child permutation, part
of the DD in the last levels is equal to the corresponding part of DD gener-
ated by the parent chromosome. In this way, the child chromosome inherits
good properties of parent chromosome. In the case of FDD optimization,
the proposed algorithm introduced mutation of polarity. Experiments show
that when this mutation is used in combination with variable exchange, the
genetic algorithm gives the best results. In the presented algorithm, sifting
is not used as an additional method to improve the generated diagrams.
Our goal was to show the performances of the genetic algorithm. In a real
application of the algorithm, sifting can be included, too.
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[4] R. Drechsler, B. Becker, and N. Göckel, “A genetic algorithm for variable
ordering of ob-dds,” in IEE Proceedings Computers and Digital Techniques,
vol. 143, no. 6, 1996, p. 363368.
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[4] R. Drechsler, B. Becker, and N. Göckel, “A genetic algorithm for variable
ordering of ob-dds,” in IEE Proceedings Computers and Digital Techniques,
vol. 143, no. 6, 1996, p. 363368.
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