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Abstract: Our society greatly depends on services and applications provided
by mobile communication networks. As billions of people and devices become
connected, it becomes increasingly important to guarantee security of interac-
tions of all players. In this talk we address several aspects of this important,
many-folded problem. First, we show how to design cryptographic primitives
which can assure integrity and confidentiality of transmitted messages while
satisfying resource constrains of low-end low-cost wireless devices such as sen-
sors or RFID tags. Second, we describe countermeasures which can enhance
the resistance of hardware implementing cryptographic algorithms to hardware
Trojans.
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1 Introduction

Today minimal or no security is typically provided to low-end low-cost wire-
less devices such as sensors or RFID tags in the conventional belief that
the information they gather is of little concern to attackers. However, case
studies have shown that a compromised sensor can be used as a stepping
stone to mount an attack on a wireless network. For example, in the attack
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Nǐs, Nǐs, Serbia

Abstract: Bent functions are Boolean functions with highest nonlinearity
which makes them interesting for cryptography. Determination of bent func-
tions is an important but hard problem, since the general structure of bent
functions is still unknown. Various constructions methods for bent functions
are based on certain deterministic procedures, which might result in some reg-
ularity that is a feature undesired for applications in cryptography. Random
generation of bent functions is an alternative, however, the search space is very
large and the related procedures are time consuming. A solution is to restrict
the search space by imposing some conditions that should be satisfied by the
produced bent functions. In this paper, we propose three ways of imposing
such restrictions to construct subsets of Boolean functions within which the
bent functions are searched. We estimate experimentally the number of bent
functions in the corresponding subsets of Boolean functions.
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1 Introduction

Bent functions are by definition the most nonlinear Boolean functions, i.e.,
at the maximum distance of 2n−1−2n/2−1, n-number of variables, from affine
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functions. Due to that property, bent functions are useful for cryptographic
purposes, such as block ciphers, stream ciphers, and hash functions in many
areas [1], [2]. They have been attracted a lot of attention in cryptography,
but have also studied in many other areas such as combinatorics, coding
theory, logic synthesis, and signal processing [3], [4]. The problem is that
they are not balanced. Therefore, constructing bent functions followed by a
procedure to make them balanced is in foundations of many cryptographic
procedures.

There are many procedures to construct bent functions, but most of
them are exhaustive in the sense that can produce all bent functions for a
given n. Another problem is that being based on some deterministic pro-
cedures, there is a no negligible possibility that the produced bent func-
tion might express some degree of regularity. Random generation of bent
functions is often used as an alternative. The problem is however that the
number of bent functions is very small compared to the total number of 22n

Boolean functions. Expressed in percentages, it is 1, 36%, 2, 94×10−8%, and
8, 57×10−44% for n = 4, 6, 8, out of 65.536, 18.446.744.073.709.551.616, and
1, 1579208923731619542357098500869 × 10+77 functions.

Therefore, random finding of bent functions necessarily requires reduc-
tion of the search space by using properties of bent functions. In this paper,
we explore how large is the number of bent functions in certain restricted sub-
sets of Boolean functions with restrictions derived from properties of bent
functions. The aim is to provide specifications how to restrict the search
space for bent functions according to the probability of finding them in pre-
defined subsets of Boolean functions. The restrictions are formulated in the
Reed-Muller (RM) domain [5].

This paper is organized as follows: Section 2 shortly introduces the the-
oretical background and necessary concepts to be discussed. In Section 3,
three approaches to the restriction of the search space in finding bent func-
tions in RM domain are presented. The experimental results are shown and
discussed in Section 4. The closing Section 5 summarizes the results of the
research reported in this paper.

2 Background Theory

2.1 Reed-Muller Transform

The algebraic normal form (ANF) is one of the most used representations
in cryptography. Every Boolean function has a unique representation in
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Abstract. In an overview of Horizontal Current Bipolar Transistor (HCBT) 
technology, the state-of-the-art integrated silicon bipolar transistors are described 
which exhibit fT and fmax of 51 GHz and 61 GHz and fTBVCEO product of 173 GHzV that 
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is integrated with CMOS in a considerably lower-cost fabrication sequence as 
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masks and fewer process steps. Due to its specific structure, the charge sharing effect 
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the high-voltage HCBTs with breakdowns up to 36 V integrated in the same process 
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1. INTRODUCTION 

In the highly competitive wireless communication markets, the RF circuits and 
systems are fabricated in the technologies that are very cost-sensitive. In order to 
minimize the fabrication costs, the sub-10 GHz applications can be processed by using the 
high-volume silicon technologies. It has been identified that the optimum solution might 
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areas [1], [2]. They have been attracted a lot of attention in cryptography,
but have also studied in many other areas such as combinatorics, coding
theory, logic synthesis, and signal processing [3], [4]. The problem is that
they are not balanced. Therefore, constructing bent functions followed by a
procedure to make them balanced is in foundations of many cryptographic
procedures.

There are many procedures to construct bent functions, but most of
them are exhaustive in the sense that can produce all bent functions for a
given n. Another problem is that being based on some deterministic pro-
cedures, there is a no negligible possibility that the produced bent func-
tion might express some degree of regularity. Random generation of bent
functions is often used as an alternative. The problem is however that the
number of bent functions is very small compared to the total number of 22n

Boolean functions. Expressed in percentages, it is 1, 36%, 2, 94×10−8%, and
8, 57×10−44% for n = 4, 6, 8, out of 65.536, 18.446.744.073.709.551.616, and
1, 1579208923731619542357098500869 × 10+77 functions.

Therefore, random finding of bent functions necessarily requires reduc-
tion of the search space by using properties of bent functions. In this paper,
we explore how large is the number of bent functions in certain restricted sub-
sets of Boolean functions with restrictions derived from properties of bent
functions. The aim is to provide specifications how to restrict the search
space for bent functions according to the probability of finding them in pre-
defined subsets of Boolean functions. The restrictions are formulated in the
Reed-Muller (RM) domain [5].

This paper is organized as follows: Section 2 shortly introduces the the-
oretical background and necessary concepts to be discussed. In Section 3,
three approaches to the restriction of the search space in finding bent func-
tions in RM domain are presented. The experimental results are shown and
discussed in Section 4. The closing Section 5 summarizes the results of the
research reported in this paper.

2 Background Theory

2.1 Reed-Muller Transform

The algebraic normal form (ANF) is one of the most used representations
in cryptography. Every Boolean function has a unique representation in
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the ANF as the binary coefficient vector, known as the positive polarity
Reed-Muller spectrum. Therefore in switching theory, logic design, signal
processing and related areas, the ANF is also called positive polarity Reed-
Muller normal form.

Any Boolean function of n variables can be expressed in the positive
polarity Reed-Muller form or algebraic normal form as [6]:

f(x1, x2, . . . , xn) =

n
⊕

i=1

siφi, (1)

where,

φi =

n−1
∏

k=0

(xk)
ik , (2)

where xk is a variable that may assume either 0 or 1. The values si ∈ {0, 1},
also known as the RM spectral coefficients, short RM-coefficients, determine
whether a product term is present or not in (1). In addition, coordinates
ik ∈ {0, 1} in binary representation of i indicate the presence or absence of
a variable xk in the product term φi, (x

1
k = xk, x

0
k = 1) . The symbol ⊕

denotes the EXOR operation, and multiplication is assumed to be the AND
operation.

The algebraic degree or the order of nonlinearity of f is the maximum
number of variables in a product term related with a non-zero coefficient
si. The positive polarity RM coefficients are divided into groups according
to the number of ones in the binary representation of their indices. For
example, coefficients of the first order are s1, s2, s4, s8 . . .. Coefficients of the
second order are assigned to product terms consisting of two variables. The
third order coefficients correspond to product of three variables and so forth,
until the coefficient of order n related to the last product term x1x2 . . . xn.

Definition 1 In matrix notation, if a function f and its RM spectrum Sf

are represented by vectors F = [f0, f1, . . . , f2n−1]
T and Sf = [s0, s1, . . . , s2n−1]

T

respectively, the positive polarity RM transform is defined by the positive po-
larity RM matrix RM(n) [6]:

Sf = R(n)F, (3)

where,

R(n) =

n
⊗

i=1

R(1), (4)
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and

R(1) =

[

1 0
1 1

]

(5)

is the basic positive Reed-Muller transform matrix. Note that RM(1) and,
therefore, also RM(n) is a self-inverse matrix.

The Kornecker product used in (4) determines the so-called Hadamard
order of the RM-coefficients which will be used in the following considera-
tions. When the order of coefficients is specified, then the position of each
coefficient in the RM-spectrum is uniquely determined. This property will
be used to define restrictions reducing the search space for bent functions.

Definition 2 The function f is reconstructed from its RM spectrum as:

f(x1, x2, . . . , xn) = X(n)Sf , (6)

where

X(n) =

n
⊗

i=1

[

1 xi
]

. (7)

2.2 Walsh transform

Definition 3 For a Boolean function f in (1,−1) encoding defined by the
truth-vector F = [f0, f1, . . . ,f2n−1]

T , the Walsh spectrum Sf,W = [r0, r1, . . . , r2n−1]
T

is defined as [?]:
Sf,W = W (n)F, (8)

where,

W (n) =

n
⊗

i=1

W (1), (9)

where,

W (1) =

[

1 1
1 −1

]

(10)

is the basic Walsh transform matrix.

2.3 Bent functions

For the case of even number of variables, there is a class of Boolean functions
introduced by O. Rothaus achieving maximum nonlinearity, the so-called
bent functions, figurative meaning is opposite to linear. The exact number
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of n-variable bent functions is known only for small number of variables,
for n < 10. The general number of bent functions is an open problem and
it is known the upper bounds in respect to n. The following theorems and
definition determine some basic properties of bent functions that will be used
in the present considerations.

Theorem 1 [3] There are defined some ”naive” lower and upper bounds

on the number of bent functions. The lower bound is (2n/2)!22
n/2

, and upper

bound is 2
2n−1+

1

2
( n
n/2).

Note that, the number of bent functions increases rapidly due to expo-
nential increasing of lower bound.

Theorem 2 [2] If f is a bent function, f is also bent.

Theorem 3 [1] Every bent function has a Hamming weight (number of
ones in the truth vector) of 2n−1 ± 2n/2−1.

The following definition of a bent function is formulated in terms of the
Walsh transform coefficients:

Definition 4 [4] A Boolean function f(x1, x2, . . . , xn) in (1,−1) encoding
is called bent if all Walsh coefficients in vector Sf,W have the same absolute
value 2n/2.

Theorem 4 [4] The algebraic degree of bent functions f(x1, x2, . . . , xn) is
at most n/2 for n > 2.

Positions of the non-zero RM coefficients in the Sf of a bent function
are related with the order of coefficients. For example, the bent functions
of four variables can have non-zero RM coefficients of order 0,1,2 and the
number of ones in the binary representation of their vector index is ≤ 2.

In relation to that, the maximal number of non-zero coefficients in the
RM spectrum of bent functions is:

n/2
∑

i=0

(

n

i

)

= 2n−1 +
1

2

(

n
n
2

)

. (11)

These both features will be used in the present paper.
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Example 1 Consider for a bent function of four variables f(x1, x2, x3, x4) =
x1x2 ⊕ x3x4, given by F = [0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1, 1, 0]T . The RM
spectrum is Sf = [0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0]T , from where the num-
ber of non-zero RM coefficients is 2 and algebraic degree is 2 ≤ 4/2. The
Walsh spectrum with (1,−1) encoding is Sf,W = [4, 4, 4,−4, 4, 4, 4,−4, 4, 4, 4,−4,−4,−4,−4, 4]T ,
where all coefficients have the same absolute value 22 = 4.

2.4 Construction of bent functions

Finding the complete set of bent functions for a given number of inputs is an
open problem. There are no formal methods for generalization, construction,
or classification of all bent functions for a given number of inputs. Thus, it
has been developed a variety of approaches for construction and classification
of bent functions with particular properties [2]. However, bent functions that
have some predefined specific properties are very rare and they constitute
a rather small subset of the total of all bent functions. Therefore, it is
important to define different approaches for determination of bent functions.

Different classes of bent functions are focused on bent functions satis-
fying certain additional conditions. For example, quadratic bent functions
have an important place in bent function construction. All bent functions
from this class are known and they can be obtained by applying the affine
transformations to the variables of the function [7].

Two most known approaches for construction classification of bent func-
tions are based on a combinatorial construction and an algebraic construc-
tion of functions [2]. The well-known combinatorial constructions are Maiorana-
McFarland [8], partial spreads [9], Dobbertin [10], iterative constructions
[11], minterm constructions [12], Maiorana-McFarland super class [13], etc.
The most widely known algebraic constructions are monomial bent func-
tions in the Kasami, Gold, Dillon and Canteaut-Leander case [14], hyper
bent functions [15], Niho bent functions [16], etc.

3 Subsets of Bent Functions in the RM Domain

In this paper, we propose to split the set of all Boolean functions with
respect to three different criteria related to the properties of RM-spectra of
bent functions:

1. The number of non-zero RM-coefficients. We call it the vertical subset.

2. The orders of nonlinearity defined as the maximum number of variables
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Example 1 Consider for a bent function of four variables f(x1, x2, x3, x4) =
x1x2 ⊕ x3x4, given by F = [0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1, 1, 0]T . The RM
spectrum is Sf = [0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0]T , from where the num-
ber of non-zero RM coefficients is 2 and algebraic degree is 2 ≤ 4/2. The
Walsh spectrum with (1,−1) encoding is Sf,W = [4, 4, 4,−4, 4, 4, 4,−4, 4, 4, 4,−4,−4,−4,−4, 4]T ,
where all coefficients have the same absolute value 22 = 4.

2.4 Construction of bent functions

Finding the complete set of bent functions for a given number of inputs is an
open problem. There are no formal methods for generalization, construction,
or classification of all bent functions for a given number of inputs. Thus, it
has been developed a variety of approaches for construction and classification
of bent functions with particular properties [2]. However, bent functions that
have some predefined specific properties are very rare and they constitute
a rather small subset of the total of all bent functions. Therefore, it is
important to define different approaches for determination of bent functions.

Different classes of bent functions are focused on bent functions satis-
fying certain additional conditions. For example, quadratic bent functions
have an important place in bent function construction. All bent functions
from this class are known and they can be obtained by applying the affine
transformations to the variables of the function [7].

Two most known approaches for construction classification of bent func-
tions are based on a combinatorial construction and an algebraic construc-
tion of functions [2]. The well-known combinatorial constructions are Maiorana-
McFarland [8], partial spreads [9], Dobbertin [10], iterative constructions
[11], minterm constructions [12], Maiorana-McFarland super class [13], etc.
The most widely known algebraic constructions are monomial bent func-
tions in the Kasami, Gold, Dillon and Canteaut-Leander case [14], hyper
bent functions [15], Niho bent functions [16], etc.

3 Subsets of Bent Functions in the RM Domain

In this paper, we propose to split the set of all Boolean functions with
respect to three different criteria related to the properties of RM-spectra of
bent functions:

1. The number of non-zero RM-coefficients. We call it the vertical subset.

2. The orders of nonlinearity defined as the maximum number of variables
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in a product term corresponding to a non-zero RM-coefficient. We call
it the horizontal subset.

3. Both, the number of non-zero RM-coefficients and the order of nonlin-
earity. We call it the grid subset.

The main objective is to investigate the number of bent functions in
each of these subsets. In order to study the proposed subsets of functions
in the spectral RM domain, we developed in C++ three independent im-
plementations of the algorithms for vertical, horizontal, and grid RM subset
classifications. These implementations are used to investigate considered
subsets of bent functions with 4, 6, and 8 variables.

3.1 Vertical subset

Since the order of nonlinearity of n-variable bent functions is less or equal to
n/2, in their RM-spectra there cannot be non-zero RM-coefficients assigned
to product terms with more than n/2 variables. The values of coefficients of
larger order are 0. Therefore, the number of possible non-zero coefficients is
smaller than 2n.

Functions that do not satisfy this requirement can be eliminated from
checking for bentness. In this way, the search space for bent functions is
considerably reduced which permits for finding bent functions in a reasonably
short time.

Since the RM-expression for a bent function cannot contain product
terms with more than n/2 variables, the maximal number of non-zero coef-
ficients of k-th order is

(

n
k

)

, k = 0, 1, . . . , n/2. Therefore, the total number
of non-zero coefficients in the RM spectrum of bent functions is:

(

n
0

)

+
(

n
1

)

+
. . .+

(

n
n/2

)

= 2n−1 + 1

2

(

n
n
2

)

.

Vertical (V ) subset consists of n-variable Boolean functions with no more
than 2n−1 + 1

2

(n
n
2

)

RM-coefficients.

Definition 5 A bent function belongs to the Vertical k-subset V (k) iff it has
k non-zero RM-coefficients.

Clearly, the number of possible V subsets depends of the number of
variables.

Example 2 The maximal number of non-zero spectral RM coefficients of
bent functions with 4 variables is 11 out of 16 coefficients. Hence, there are
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11 possible V subsets for bent function with 4 variables. The V (1) subset
is the subset of bent functions having the RM spectrum with 1 non-zero RM
coefficient, the V (2) subset is the subset having 2 non-zero RM coefficients,
and etc.

There are 42 possible V subsets for bent functions with 6 variables, and
163 possible V subsets for bent functions with 8 variables.

Example 3 Two bent functions of 4 variables f1(x1, x2, x3, x4) = 1⊕x1x2⊕
x3x4, and f2(x1, x2, x3, x4) = x4⊕x1x2⊕x3x4 have 3 non-zero RM-coefficients
and belong to the same subset V (3).

3.2 Horizontal subset

In definition of this subset, we take into account the order of the RM coeffi-
cients.

If we fix the order of RM coefficients, then we know the positions of
coefficients that have to be 0 in the RM spectrum of a bent function, due
to this restriction related to the order of nonlinearity. All other coefficients
can be either 0 or 1.

As noticed above, in this paper, we use the so-called Hadamard ordering
of RM coefficients originating in the Kronecker product structure of the
Reed-Muller matrix in (4). In this ordering, for a given n, we can determine
positions of coefficients which cannot be 1 by referring to (7).

Example 4 For a bent function of four variables, the RM spectrum can be
represented by Sf = [−,−,−,−,−,−,−,×,−,−,−,×,−,×,×,×]T , where
the possible positions of the non-zero coefficients are denoted by dash lines
and the restricted positions are denoted with ×.

Definition 6 A bent function belongs to the Horizontal (kmin, kmax)-subset
H(kmin, kmax) iff it has the minimum kmin and the maximum kmax order of
RM coefficients.

H subsets involve the application of ranges of possible non-zero RM
spectrum coefficients orders. The number of H subsets also depends of the
number of variables of the bent functions.

Example 5 The maximal order of non-zero spectral coefficients of bent func-
tions with 4 variables is 2. Hence, there are 3 possible H subsets H(0, 2),
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H(1, 2), and H(2, 2). There are H subsets H(0, 0), H(0, 1), and H(1, 1),
that do not contain any of the bent functions.

Example 6 For bent functions with 6 variables, there are 10 possible H sub-
sets: H(0, 0), H(0, 1), H(0, 2), H(0, 3), H(1, 1), H(1, 2), H(1, 3), H(2, 2),
H(2, 3), and H(3, 3). Some of subsets also do not contain any of the bent
functions.

Example 7 Two bent functions of 4 variables f1(x1, x2, x3, x4) = x1x2 ⊕
x2x4 ⊕ x3x4, and f2(x1, x2, x3, x4) = x1x3 ⊕ x2x4 have only second order
non-zero RM-coefficients and belong to the same subset H(2, 2).

3.3 Grid subset

In definition of this subset, we take into account both, the orders and the
number of the coefficients.

Definition 7 A bent function belongs to the Grid (k, kmin, kmax)-subset G(k, kmin, kmax)
iff it has k non-zero RM-coefficients and minimum order of RM coefficients
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There are two types of methods for enumerations of bent functions, pri-
mary and secondary. The primary methods are based on the direct enu-
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enumeration in the Reed-Muller domain. The most known secondary meth-
ods use property that all bent functions of n variables have algebraic degree
at most n/2 [17]. The secondary method for complete enumeration of bent
functions of 8 variables has been used approximately 50 PCs running for
3 months [18]. It is known that, there are 8 bent functions in two vari-
ables, 896 bent functions in four variables, 5.425.430.528 bent functions in 6
variables, and 99.270.589.265.934.370.305.785.861.242.880 bent functions in
8 variables [2].

The efficiency of using parallel multi-core CPU technique for random
generation of bent function in the RM domain is analyzed in [19]. To improve
execution performance, the algorithm for efficient parallel generation of bent
function in the RM domain using GPU platform have been defined in [20].

For experimental purposes, we developed a C++ implementations of the
algorithm for creating subsets of bent functions in the RM domain. The
algorithm for creation of subsets in RM domain is similar to the techniques
for hardware enumeration of bent functions [21] and generation of bent func-
tion in the RM domain [19], except that the search space of further reduced.
Note that, for some functions of 6 and 8 variables, experiments were not
shown, since the computation time was limited to 30 minutes.

Table 1 shows the number of bent functions in the subsets V (k) for
n = 4 variables. There exists no bent function that can be represented by
a single product term. Note that majority of the bent functions requires 4
to 7 coefficients. Precisely, more that 756 of the total of 896 bent functions
for n = 4 require 4 to 7 non-zero coefficients. This makes 84, 375% of the
total of bent functions. From data in Table 1, it can be seen that vertical
subsets V (5) and V (6) contain more than a half of the total number of bent
functions. Note that vertical subsets V (2), V (10), and V (11) contain small
number of the bent functions.

Table 2 shows the number of bent functions in the most of RM vertical
subsets for functions with 6 variables. From data in Table 2, it can be
seen again that central vertical subsets contains large number of the bent
functions. For example, the RM vertical subsets V (18) and V (19) contain
about 20% of the bent functions. Again, note that vertical subsets V (3),
V (4), V (36) and V (37) contain small number of the bent functions. The
numbers of bent functions for the subsets from V (20) to V (27) are not
included due to very long computation time.

Table 3 shows the number of bent functions with 4 and 5 non-zero RM
coefficients for functions with 8 variables. It is again confirmed that vertical
subsets with small and large number of coefficients do not contain many bent
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Table 1: The number of bent functions in the subsets V (k) for n = 4 vari-
ables

k #f of V (k)

2 3
3 27
4 102
5 210
6 256
7 188
8 82
9 22
10 5
11 1

functions. For example, experiments show that there are no bent functions
with 1,2, and 3 as well as with 157, 158, 159, 160, 161, 162, and 163 non-
zero RM-coefficients. Note that the number of ”empty” vertical subsets with
small number of coefficients is linearly increases in the number of variables
of bent functions. Moreover, ”empty” vertical subsets with great number of
coefficients exponentially increase in respect to number of variables of bent
functions.

Table 4 shows the number of bent functions in some RM horizontal sub-
sets for functions with 4, 6, and 8 variables. It is evident that subsets with
only third order non-zero RM coefficients contain very small number of bent
functions.

Table 5, 6, and 7 shows the number of bent functions in some RM grid
subsets for functions with 4, 6, and 8 variables, respectively. It is evident
that subsets with only second order non-zero RM coefficients contain large
number of functions, especially in central grid subsets with respect to the
total number of coefficients of only second order. It is interesting that there
are only two non-”empty” grid subsets for functions with 6 variables with
only third order non-zero RM coefficients. It is evident that most of bent
functions are with mixture of first, second, and third order of non-zero RM
coefficients. Experiments with mixture of different orders of coefficients are
not included in this paper.
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Table 2: The number of bent functions in the subsets V (k) for n = 6 vari-
ables

k #f of V (k)

3 15
4 405
5 4575
6 30885
7 147630
8 548190
9 1657950
10 4239474
11 9512343
12 19341969
13 36536505
14 65365185
15 112296016
16 185615422
17 290719416
18 420742250
19 551175695
28 57338355
29 25754775
30 9869427
31 3098124
32 770562
33 153060
34 26070
35 3882
36 504
37 72

Table 3: The number of bent functions in the subsets V (k) for n = 8 vari-
ables

k #f of V (k)

4 105
5 8505

5 Conclusion

For practical cryptographic applications, it is often necessary to generate
random bent functions. The runtime of an exhaustive search method for
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Table 4: The number of bent functions in some subsets H(kmin, kmax) for
n =4,6, and, 8 variables

n kmin, kmax #f of H(kmin, kmax)

4 2,2 24
6 2,2 13440
6 3,3 12
8 2,2 111992832

Table 5: The number of bent functions in some subsets G(k, kmin, kmax) for
n = 4 variables

k, kmin, kmax #f of G(k, kmin, kmax)

2,2,2 2
3,2,2 8
4,2,2 10
5,2,2 4

Table 6: The number of bent functions in some subsets G(k, kmin, kmax) for
n = 6 variables

k, kmin, kmax #f of G(k, kmin, kmax)

3,2,2 12
4,2,2 144
5,2,2 732
6,2,2 1968
7,2,2 3008
8,2,2 3040
9,2,2 2360
10,2,2 1384
11,2,2 564
12,2,2 176
13,2,2 44
14,2,2 8
16,3,3 6
17,3,3 6

generation of bent function is exponential in terms of the number of variables.
In this paper, we propose an approach to the restriction of the search space
based on the restriction of the number and order of RM-coefficients for bent
functions.

Using properties of bent function in RM domain, we define RM vertical,
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Table 7: The number of bent functions in some subsets G(k, kmin, kmax) for
n = 8 variables

k, kmin, kmax #f of G(k, kmin, kmax)

2,2,2 2
3,2,2 8
4,2,2 90
5,2,2 2160
6,2,2 23850
7,2,2 157860
8,2,2 687030
9,2,2 2081400
10,2,2 4753710
11,2,2 8640684
12,2,2 12897908
13,2,2 16181264
14,2,2 17405460
15,2,2 16291480
16,2,2 13230940
17,2,2 9215136
18,2,2 5554956
19,2,2 2907720
20,2,2 1277010
21,2,2 476288
22,2,2 157730
23,2,2 41412
24,2,2 7630
25,2,2 1000
26,2,2 102
27,2,2 12

horizontal, and grid subsets of Boolean functions that might contain bent
functions. The proposed approach is experimentally verified through enu-
meration of bent functions in some RM vertical, horizontal, and grid subsets
for functions with 4, 6, and 8 variables. Experimental results showed some
interesting properties of different subsets in the spectral Reed-Muller do-
main. It is shown that some vertical, horizontal and grid subsets contain
large and small number of the bent functions, or they are ”empty”. This
information can be helpful in designing search method for generation of bent
function.
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It can be concluded from these experimental results that besides the
Walsh and the Reed-Muller domain, exploring bent functions in some other
representation domains can be interesting.
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