
FACTA UNIVERSITATIS

Series: Electronics and Energetics vol. xx, 2018, xx-xx

COMPACT XOR-BI-DECOMPOSITION FOR
LATTICES OF BOOLEAN FUNCTIONS ∗

Bernd Steinbach1 and Christian Posthoff2

1Freiberg University of Mining and Technology, Institute
of Computer Science, Freiberg, Germany

2The University of the West Indies, Department of
Computing and Information Technology, Saint

Augustine, Trinidad & Tobago

Abstract: Bi-Decomposition is a powerful approach for the synthesis of multi-level
combinational circuits because it utilizes the properties of the given functions to find
small circuits, with low power consumption and low delay. Compact bi-decompo-
sitions restrict the variables in the support of the decomposition functions as much
as possible. Methods to find compact AND-, OR-, or XOR-bi-decompositions for a
given completely specified function are well known.

A lattice of Boolean functions represents all possible functions which are defined
by an incompletely specified function. Lattices of Boolean Functions significantly in-
crease the possibilities to synthesize a minimal circuit. However, so far only methods
to find compact AND- or OR-bi-decompositions for lattices of Boolean functions are
known. This gap, i.e., a method to find a compact XOR-bi-decomposition for a lattice
of Boolean functions, has been closed by the approach suggested in this paper.
Keywords: synthesis, combinational circuit, lattice of Boolean functions, XOR-bi-
decomposition, Boolean Differential Calculus, derivative operations.

1 INTRODUCTION

The aim of all decomposition methods in circuit design is to find decomposition
functions that are simpler than the given function. The bi-decomposition is an ap-

Manuscript received September 18, 2017
Corresponding author: Bernd Steinbach

Institute of Computer Science, Freiberg University of Mining and Technology, Bernhard-von-Cotta-
Str. 2, D-09596 Freiberg, Germany
(e-mail: steinb@informatik.tu-freiberg.de).

∗A preliminary version of this paper was presented at the Reed-Muller 2017 Workshop, Novi Sad,
Serbia, May 24-25, 2017.

1

2 B. Steinbach and C. Posthoff:

proach that decomposes a given Boolean function into two simpler decomposition
functions which are combined by an AND-, an OR-, or an XOR-gate. For the aim
of simplification, the bi-decomposition utilizes the properties of the given Boolean
function to design circuit structures of a small area, low power consumption, and
low delay [1].

There are several types of bi-decompositions. Both decomposition functions
of each strong bi-decomposition are simpler than the given function because they
depend on fewer variables. Unfortunately, there are functions for which no strong
bi-decomposition exists. Le [2] bridged this gap by means of the weak bi-decom-
position. He found that each function, for which neither a weak OR bi-decom-
position nor a weak AND bi-decomposition exists, can be simplified by a strong
XOR bi-decomposition. A simplified proof of the completeness of the strong and
weak bi-decomposition is given in [3, 4]. An implementation that reuses already
decomposed blocks outperforms other synthesis approaches [5]. A drawback of the
weak bi-decomposition is that the synthesized circuits can have a large difference
between the shortest and the longest path (unbalanced circuits).

Recently, vectorial bi-decompositions were suggested as supplement to strong
and weak bi-decompositions [6, 7]. The decomposition functions of these bi-
decompositions are simpler than the given function because they are independent
of the simultaneous change of several variables. Vectorial bi-decompositions can
exist for functions without any strong bi-decomposition. Benefits of the vectorial
bi-decomposition are their contribution to balanced circuits and the increased num-
ber of decomposition possibilities in comparison to the strong bi-decomposition.
All bi-decomposition approaches mentioned above utilize the Boolean Differential
Calculus (BDC) [3, 4, 8–12] to find optimal bi-decompositions.

There are several other approaches of bi-decompositions which demonstrate the
interest on this useful synthesis method; however, these other approaches are not
directly helpful to solve the problem explored in this paper. In [13] a method for
disjoint bi-decompositions with an extension to non-disjoint bi-decompositions for
a single common variable are suggested. A graph-based approach for bi-decompo-
sitions was suggested in [14]. Unfortunately, the used benchmarks in [5] and [14]
overlap only partially. One common benchmark is t481 where our approach from
[5] outperforms the graph-based approach from [14] in the number of gates (17/25).
Recently, semi-tensor products of matrices were suggested for bi-decompositions
of Boolean and multi-valued functions [15]. However, this paper does not contain
experimental results of benchmark circuits.

It is a property of the given function whether it can be decomposed into two
simpler decomposition functions using a certain type of bi-decomposition. The
possibility to find a bi-decomposition increases when the function to decompose
can be chosen from a lattice of Boolean functions. Incompletely specified functions

FACTA UNIVERSITATIS
Series: Electronics and Energetics Vol. 31, No 2, June 2018, pp. 223 - 240
https://doi.org/10.2298/FUEE1802223S

Bernd Steinbach1, Christian Posthoff2

Received October 21, 2017; received in revised form January 24, 2018
Corresponding author: Bernd Steinbach
Institute of Computer Science, Freiberg University of Mining and Technology, Bernhard-von-Cotta-Str. 2,
D-09596 Freiberg, Germany
(E-mail: steinb@informatik.tu-freiberg.de)
*An earlier version of this paper was presented as an invited address at the Reed-Muller 2017 Workshop, Novi Sad,
Serbia, May 24-25, 2017

FACTA UNIVERSITATIS
Series: Electronics and Energetics Vol. 28, No 4, December 2015, pp. 507 - 525
DOI: 10.2298/FUEE1504507S

HORIZONTAL CURRENT BIPOLAR TRANSISTOR (HCBT) –
A LOW-COST, HIGH-PERFORMANCE FLEXIBLE BICMOS

TECHNOLOGY FOR RF COMMUNICATION APPLICATIONS

Tomislav Suligoj1, Marko Koričić1, Josip Žilak1, Hidenori Mochizuki2,
So-ichi Morita2, Katsumi Shinomura2, Hisaya Imai2

1University of Zagreb, Faculty of Electrical Engineering and Computing,
Department of Electronics, Micro- and Nano-electronics Laboratory, Croatia

2Asahi Kasei Microdevices Co. 5-4960, Nobeoka, Miyazaki, 882-0031, Japan

Abstract. In an overview of Horizontal Current Bipolar Transistor (HCBT)
technology, the state-of-the-art integrated silicon bipolar transistors are described
which exhibit fT and fmax of 51 GHz and 61 GHz and fTBVCEO product of 173 GHzV that
are among the highest-performance implanted-base, silicon bipolar transistors. HBCT
is integrated with CMOS in a considerably lower-cost fabrication sequence as
compared to standard vertical-current bipolar transistors with only 2 or 3 additional
masks and fewer process steps. Due to its specific structure, the charge sharing effect
can be employed to increase BVCEO without sacrificing fT and fmax. Moreover, the
electric field can be engineered just by manipulating the lithography masks achieving
the high-voltage HCBTs with breakdowns up to 36 V integrated in the same process
flow with high-speed devices, i.e. at zero additional costs. Double-balanced active
mixer circuit is designed and fabricated in HCBT technology. The maximum IIP3 of
17.7 dBm at mixer current of 9.2 mA and conversion gain of -5 dB are achieved.

Key words: BiCMOS technology, Bipolar transistors, Horizontal Current Bipolar
Transistor, Radio frequency integrated circuits, Mixer, High-voltage
bipolar transistors.

1. INTRODUCTION

In the highly competitive wireless communication markets, the RF circuits and
systems are fabricated in the technologies that are very cost-sensitive. In order to
minimize the fabrication costs, the sub-10 GHz applications can be processed by using the
high-volume silicon technologies. It has been identified that the optimum solution might

Received March 9, 2015
Corresponding author: Tomislav Suligoj
University of Zagreb, Faculty of Electrical Engineering and Computing, Department of Electronics, Micro- and
Nano-electronics Laboratory, Croatia
(e-mail: tom@zemris.fer.hr)

COMPACT XOR-BI-DECOMPOSITION FOR LATTICES
OF BOOLEAN FUNCTIONS*

1Freiberg University of Mining and Technology, Institute of Computer Science, Freiberg,
Germany

2The University of the West Indies, Department of Computing and Information Technology,
Saint Augustine, Trinidad and Tobago

Abstract. Bi-Decomposition is a powerful approach for the synthesis of multi-level
combinational circuits because it utilizes the properties of the given functions to find
small circuits, with low power consumption and low delay. Compact bi-decompositions
restrict the variables in the support of the decomposition functions as much as possible.
Methods to find compact AND-, OR-, or XOR-bi-decompositions for a given completely
specified function are well known.
A lattice of Boolean functions represents all possible functions which are defined by an
incompletely specified function. Lattices of Boolean Functions significantly increase the
possibilities to synthesize a minimal circuit. However, so far only methods to find compact
AND- or OR-bi-decompositions for lattices of Boolean functions are known. This gap,
i.e., a method to find a compact XOR-bi-decomposition for a lattice of Boolean functions,
has been closed by the approach suggested in this paper.

Key words: synthesis, combinational circuit, lattice of Boolean functions,
XOR-bidecomposition, Boolean Differential Calculus, derivative operations.

2 B. Steinbach and C. Posthoff:

proach that decomposes a given Boolean function into two simpler decomposition
functions which are combined by an AND-, an OR-, or an XOR-gate. For the aim
of simplification, the bi-decomposition utilizes the properties of the given Boolean
function to design circuit structures of a small area, low power consumption, and
low delay [1].

There are several types of bi-decompositions. Both decomposition functions
of each strong bi-decomposition are simpler than the given function because they
depend on fewer variables. Unfortunately, there are functions for which no strong
bi-decomposition exists. Le [2] bridged this gap by means of the weak bi-decom-
position. He found that each function, for which neither a weak OR bi-decom-
position nor a weak AND bi-decomposition exists, can be simplified by a strong
XOR bi-decomposition. A simplified proof of the completeness of the strong and
weak bi-decomposition is given in [3, 4]. An implementation that reuses already
decomposed blocks outperforms other synthesis approaches [5]. A drawback of the
weak bi-decomposition is that the synthesized circuits can have a large difference
between the shortest and the longest path (unbalanced circuits).

Recently, vectorial bi-decompositions were suggested as supplement to strong
and weak bi-decompositions [6, 7]. The decomposition functions of these bi-
decompositions are simpler than the given function because they are independent
of the simultaneous change of several variables. Vectorial bi-decompositions can
exist for functions without any strong bi-decomposition. Benefits of the vectorial
bi-decomposition are their contribution to balanced circuits and the increased num-
ber of decomposition possibilities in comparison to the strong bi-decomposition.
All bi-decomposition approaches mentioned above utilize the Boolean Differential
Calculus (BDC) [3, 4, 8–12] to find optimal bi-decompositions.

There are several other approaches of bi-decompositions which demonstrate the
interest on this useful synthesis method; however, these other approaches are not
directly helpful to solve the problem explored in this paper. In [13] a method for
disjoint bi-decompositions with an extension to non-disjoint bi-decompositions for
a single common variable are suggested. A graph-based approach for bi-decompo-
sitions was suggested in [14]. Unfortunately, the used benchmarks in [5] and [14]
overlap only partially. One common benchmark is t481 where our approach from
[5] outperforms the graph-based approach from [14] in the number of gates (17/25).
Recently, semi-tensor products of matrices were suggested for bi-decompositions
of Boolean and multi-valued functions [15]. However, this paper does not contain
experimental results of benchmark circuits.

It is a property of the given function whether it can be decomposed into two
simpler decomposition functions using a certain type of bi-decomposition. The
possibility to find a bi-decomposition increases when the function to decompose
can be chosen from a lattice of Boolean functions. Incompletely specified functions

Compact XOR-Bi-Decomposition for Lattices of Boolean Functions 3

were traditionally used as a source of a lattice of Boolean functions. The ON-set-
function fq(x) and the OFF-set-function fr(x) are the preferred mark functions
of these lattices. The introduction of derivative operations for lattices of Boolean
functions [4, 16, 17] facilitates the application of lattices in circuit design.

A strong bi-decomposition divides the variables of the function to decompose
into three disjoint subsets. The variables xa control only the decomposition func-
tion g, the variables xb control only the decomposition function h, and the variables
xc are commonly used for both the decomposition functions g and h. The more
variables in the dedicated sets of variables xa and xb the simpler are the decom-
position functions g and h. A compact strong bi-decomposition uses the largest
possible sets of xa and xb.

There are formulas [3, 4, 10–12] containing operations of the Boolean Differen-
tial Calculus that can be used to decide whether a lattice of Boolean functions con-
tains a compact strong AND- or a compact strong OR-bi-decomposition. Unfor-
tunately, so far it is only possible to find a compact strong XOR-bi-decomposition
for a single decomposition function or to assign only a single variable to the set
xa for the check whether a lattice of Boolean functions contains a strong XOR-
bi-decomposition [18]. We suggest in this paper an approach to find also compact
strong XOR-bi-decompositions for a lattice of Boolean functions. This new method
combines the ideas of simplifications used in both the strong and the vectorial bi-
decomposition. Hence, we are going to solve a problem that is more than 20 years
known as unsolved.

The rest of this paper is organized as follows. Section 2 briefly describes lat-
tices of Boolean functions and single derivatives of functions belonging to such
a lattice. Section 3 summarizes the known approach to find and determine non-
compact XOR-bi-decompositions. Section 4 introduces into the theory of compact
XOR-bi-bi-decompositions, concludes the main theorem and the consequence for
compact XOR-bi-bi-decompositions, and provides two consecutive algorithms that
solve this task using XBOOLE [19, 20]. Section 5 demonstrates the benefits of the
suggested new decomposition method by means of a simple example. Section 6
concludes the paper.

2 LATTICES OF BOOLEAN FUNCTIONS

Lattices of Boolean functions occur, e.g., in circuit design where each function of
the lattice can be chosen as a function to realize the circuit structure. Hence, lattices
of Boolean functions provide a possibility for optimization in circuit design.

Widely used are lattices which can be modeled as incompletely specified func-
tion (ISF). Such an incompletely specified Boolean function divides the 2n patterns

224 B. STEINBACH, C. POSTHOFF Compact XOR-Bi-Decomposition for Lattices of Boolean Functions 225

2 B. Steinbach and C. Posthoff:

proach that decomposes a given Boolean function into two simpler decomposition
functions which are combined by an AND-, an OR-, or an XOR-gate. For the aim
of simplification, the bi-decomposition utilizes the properties of the given Boolean
function to design circuit structures of a small area, low power consumption, and
low delay [1].

There are several types of bi-decompositions. Both decomposition functions
of each strong bi-decomposition are simpler than the given function because they
depend on fewer variables. Unfortunately, there are functions for which no strong
bi-decomposition exists. Le [2] bridged this gap by means of the weak bi-decom-
position. He found that each function, for which neither a weak OR bi-decom-
position nor a weak AND bi-decomposition exists, can be simplified by a strong
XOR bi-decomposition. A simplified proof of the completeness of the strong and
weak bi-decomposition is given in [3, 4]. An implementation that reuses already
decomposed blocks outperforms other synthesis approaches [5]. A drawback of the
weak bi-decomposition is that the synthesized circuits can have a large difference
between the shortest and the longest path (unbalanced circuits).

Recently, vectorial bi-decompositions were suggested as supplement to strong
and weak bi-decompositions [6, 7]. The decomposition functions of these bi-
decompositions are simpler than the given function because they are independent
of the simultaneous change of several variables. Vectorial bi-decompositions can
exist for functions without any strong bi-decomposition. Benefits of the vectorial
bi-decomposition are their contribution to balanced circuits and the increased num-
ber of decomposition possibilities in comparison to the strong bi-decomposition.
All bi-decomposition approaches mentioned above utilize the Boolean Differential
Calculus (BDC) [3, 4, 8–12] to find optimal bi-decompositions.

There are several other approaches of bi-decompositions which demonstrate the
interest on this useful synthesis method; however, these other approaches are not
directly helpful to solve the problem explored in this paper. In [13] a method for
disjoint bi-decompositions with an extension to non-disjoint bi-decompositions for
a single common variable are suggested. A graph-based approach for bi-decompo-
sitions was suggested in [14]. Unfortunately, the used benchmarks in [5] and [14]
overlap only partially. One common benchmark is t481 where our approach from
[5] outperforms the graph-based approach from [14] in the number of gates (17/25).
Recently, semi-tensor products of matrices were suggested for bi-decompositions
of Boolean and multi-valued functions [15]. However, this paper does not contain
experimental results of benchmark circuits.

It is a property of the given function whether it can be decomposed into two
simpler decomposition functions using a certain type of bi-decomposition. The
possibility to find a bi-decomposition increases when the function to decompose
can be chosen from a lattice of Boolean functions. Incompletely specified functions

Compact XOR-Bi-Decomposition for Lattices of Boolean Functions 3

were traditionally used as a source of a lattice of Boolean functions. The ON-set-
function fq(x) and the OFF-set-function fr(x) are the preferred mark functions
of these lattices. The introduction of derivative operations for lattices of Boolean
functions [4, 16, 17] facilitates the application of lattices in circuit design.

A strong bi-decomposition divides the variables of the function to decompose
into three disjoint subsets. The variables xa control only the decomposition func-
tion g, the variables xb control only the decomposition function h, and the variables
xc are commonly used for both the decomposition functions g and h. The more
variables in the dedicated sets of variables xa and xb the simpler are the decom-
position functions g and h. A compact strong bi-decomposition uses the largest
possible sets of xa and xb.

There are formulas [3, 4, 10–12] containing operations of the Boolean Differen-
tial Calculus that can be used to decide whether a lattice of Boolean functions con-
tains a compact strong AND- or a compact strong OR-bi-decomposition. Unfor-
tunately, so far it is only possible to find a compact strong XOR-bi-decomposition
for a single decomposition function or to assign only a single variable to the set
xa for the check whether a lattice of Boolean functions contains a strong XOR-
bi-decomposition [18]. We suggest in this paper an approach to find also compact
strong XOR-bi-decompositions for a lattice of Boolean functions. This new method
combines the ideas of simplifications used in both the strong and the vectorial bi-
decomposition. Hence, we are going to solve a problem that is more than 20 years
known as unsolved.

The rest of this paper is organized as follows. Section 2 briefly describes lat-
tices of Boolean functions and single derivatives of functions belonging to such
a lattice. Section 3 summarizes the known approach to find and determine non-
compact XOR-bi-decompositions. Section 4 introduces into the theory of compact
XOR-bi-bi-decompositions, concludes the main theorem and the consequence for
compact XOR-bi-bi-decompositions, and provides two consecutive algorithms that
solve this task using XBOOLE [19, 20]. Section 5 demonstrates the benefits of the
suggested new decomposition method by means of a simple example. Section 6
concludes the paper.

2 LATTICES OF BOOLEAN FUNCTIONS

Lattices of Boolean functions occur, e.g., in circuit design where each function of
the lattice can be chosen as a function to realize the circuit structure. Hence, lattices
of Boolean functions provide a possibility for optimization in circuit design.

Widely used are lattices which can be modeled as incompletely specified func-
tion (ISF). Such an incompletely specified Boolean function divides the 2n patterns

Compact XOR-Bi-Decomposition for Lattices of Boolean Functions 3

were traditionally used as a source of a lattice of Boolean functions. The ON-set-
function fq(x) and the OFF-set-function fr(x) are the preferred mark functions
of these lattices. The introduction of derivative operations for lattices of Boolean
functions [4, 16, 17] facilitates the application of lattices in circuit design.

A strong bi-decomposition divides the variables of the function to decompose
into three disjoint subsets. The variables xa control only the decomposition func-
tion g, the variables xb control only the decomposition function h, and the variables
xc are commonly used for both the decomposition functions g and h. The more
variables in the dedicated sets of variables xa and xb the simpler are the decom-
position functions g and h. A compact strong bi-decomposition uses the largest
possible sets of xa and xb.

There are formulas [3, 4, 10–12] containing operations of the Boolean Differen-
tial Calculus that can be used to decide whether a lattice of Boolean functions con-
tains a compact strong AND- or a compact strong OR-bi-decomposition. Unfor-
tunately, so far it is only possible to find a compact strong XOR-bi-decomposition
for a single decomposition function or to assign only a single variable to the set
xa for the check whether a lattice of Boolean functions contains a strong XOR-
bi-decomposition [18]. We suggest in this paper an approach to find also compact
strong XOR-bi-decompositions for a lattice of Boolean functions. This new method
combines the ideas of simplifications used in both the strong and the vectorial bi-
decomposition. Hence, we are going to solve a problem that is more than 20 years
known as unsolved.

The rest of this paper is organized as follows. Section 2 briefly describes lat-
tices of Boolean functions and single derivatives of functions belonging to such
a lattice. Section 3 summarizes the known approach to find and determine non-
compact XOR-bi-decompositions. Section 4 introduces into the theory of compact
XOR-bi-bi-decompositions, concludes the main theorem and the consequence for
compact XOR-bi-bi-decompositions, and provides two consecutive algorithms that
solve this task using XBOOLE [19, 20]. Section 5 demonstrates the benefits of the
suggested new decomposition method by means of a simple example. Section 6
concludes the paper.

2 LATTICES OF BOOLEAN FUNCTIONS

Lattices of Boolean functions occur, e.g., in circuit design where each function of
the lattice can be chosen as a function to realize the circuit structure. Hence, lattices
of Boolean functions provide a possibility for optimization in circuit design.

Widely used are lattices which can be modeled as incompletely specified func-
tion (ISF). Such an incompletely specified Boolean function divides the 2n patterns

224 B. STEINBACH, C. POSTHOFF Compact XOR-Bi-Decomposition for Lattices of Boolean Functions 225

4 B. Steinbach and C. Posthoff:

x of the Boolean space Bn into three disjoint sets:

x ∈ don’t-care-set ⇔ fϕ(x1, . . . ,xn) = 1

⇔ it is allowed to choose the function value of

f (x) without any restrictions;

x ∈ ON-set ⇔ fq(x1, . . . ,xn) = 1

⇔ (fϕ(x1, . . . ,xn) = 0)∧ (f (x1, . . . ,xn) = 1) ;

x ∈ OFF-set ⇔ fr(x1, . . . ,xn) = 1

⇔ (fϕ(x1, . . . ,xn) = 0)∧ (f (x1, . . . ,xn) = 0) .

Each pair of these mark functions can be used to specify all functions of the lattice.
A function f (x) belongs to the lattice L

〈
fq(x), fr(x)

〉
if

fq(x)≤ f (x)≤ fr(x) .

The single derivatives with regard to xi of all functions of a lattice L
〈

fq(x), fr(x)
〉

results again in a lattice of Boolean function that is specified by the mark functions:

f ∂xi
q (x1) = max

xi
fq(xi,x1)∧max

xi
fr(xi,x1) , (1)

f ∂xi
r (x1) = min

xi
fq(xi,x1)∨min

xi
fr(xi,x1) . (2)

3 KNOWN NON-COMPACT XOR-BI-DECOMPOSITIONS FOR LATTICES
OF BOOLEAN FUNCTIONS

A lattice of Boolean functions L
〈

fq(xa,xb,xc), fr(xa,xb,xc)
〉

contains at least one
function f (xa,xb,xc) that is strongly XOR-bi-decomposable with regard to the sin-
gle variable xa and the set of variables xb if and only if

max
xb

m f ∂xa
q (xb,xc)∧ f ∂xa

r (xb,xc) = 0 . (3)

The decomposition function g(xa,xc) of this XOR-bi-decomposition is uniquely
specified by

g(xa,xc) = xa ∧max
xb

m f ∂xa
q (xb,xc) , (4)

and the associated decomposition function h(xb,xc) can be chosen from the lattice
with the mark functions

hq(xb,xc) = max
xa

((g(xa,xc)∧ fq(xa,xb,xc))∨ (g(xa,xc)∧ fr(xa,xb,xc))) , (5)

hr(xb,xc) = max
xa

((g(xa,xc)∧ fr(xa,xb,xc))∨ (g(xa,xc)∧ fq(xa,xb,xc))) . (6)

More details about strong and weak bi-decompositions are given in [3, 4, 10, 11].

226 B. STEINBACH, C. POSTHOFF Compact XOR-Bi-Decomposition for Lattices of Boolean Functions 227

4 B. Steinbach and C. Posthoff:

x of the Boolean space Bn into three disjoint sets:

x ∈ don’t-care-set ⇔ fϕ(x1, . . . ,xn) = 1

⇔ it is allowed to choose the function value of

f (x) without any restrictions;

x ∈ ON-set ⇔ fq(x1, . . . ,xn) = 1

⇔ (fϕ(x1, . . . ,xn) = 0)∧ (f (x1, . . . ,xn) = 1) ;

x ∈ OFF-set ⇔ fr(x1, . . . ,xn) = 1

⇔ (fϕ(x1, . . . ,xn) = 0)∧ (f (x1, . . . ,xn) = 0) .

Each pair of these mark functions can be used to specify all functions of the lattice.
A function f (x) belongs to the lattice L

〈
fq(x), fr(x)

〉
if

fq(x)≤ f (x)≤ fr(x) .

The single derivatives with regard to xi of all functions of a lattice L
〈

fq(x), fr(x)
〉

results again in a lattice of Boolean function that is specified by the mark functions:

f ∂xi
q (x1) = max

xi
fq(xi,x1)∧max

xi
fr(xi,x1) , (1)

f ∂xi
r (x1) = min

xi
fq(xi,x1)∨min

xi
fr(xi,x1) . (2)

3 KNOWN NON-COMPACT XOR-BI-DECOMPOSITIONS FOR LATTICES
OF BOOLEAN FUNCTIONS

A lattice of Boolean functions L
〈

fq(xa,xb,xc), fr(xa,xb,xc)
〉

contains at least one
function f (xa,xb,xc) that is strongly XOR-bi-decomposable with regard to the sin-
gle variable xa and the set of variables xb if and only if

max
xb

m f ∂xa
q (xb,xc)∧ f ∂xa

r (xb,xc) = 0 . (3)

The decomposition function g(xa,xc) of this XOR-bi-decomposition is uniquely
specified by

g(xa,xc) = xa ∧max
xb

m f ∂xa
q (xb,xc) , (4)

and the associated decomposition function h(xb,xc) can be chosen from the lattice
with the mark functions

hq(xb,xc) = max
xa

((g(xa,xc)∧ fq(xa,xb,xc))∨ (g(xa,xc)∧ fr(xa,xb,xc))) , (5)

hr(xb,xc) = max
xa

((g(xa,xc)∧ fr(xa,xb,xc))∨ (g(xa,xc)∧ fq(xa,xb,xc))) . (6)

More details about strong and weak bi-decompositions are given in [3, 4, 10, 11].

Compact XOR-Bi-Decomposition for Lattices of Boolean Functions 5

4 COMPACT XOR-BI-DECOMPOSITION FOR LATTICES OF BOOLEAN
FUNCTIONS

A compact bi-decomposition is determined by maximal numbers of variables in the
dedicated sets xa and xb. The number of commonly used variables xc is as small as
possible, and consequently the decomposition functions g(xa,xc) and h(xb,xc) will
be the simplest in case of a desirable compact bi-decomposition.

Condition (3) allows us to find a maximal number of possible variables for the
dedicated set xb of an XOR-bi-decomposition, but it unfortunately restricts to a
single variable xa of the dedicated set xa. As initial solution we can calculate the
decomposition function g(xa,xc) using (4) and the lattice L

〈
hq(xb,xc),hr(xb,xc)

〉
,

using (5) and (6), from which the decomposition function h(xb,xc) can be chosen.
The set of all variables x is distributed to the three disjoint sets xa = xa, xb, and xc.

We assume that xb contains as much as possible variables, because it can be
verified by (3) that no other variable can be added to the dedicated set xb without
loosing the property of an XOR-bi-decomposition of the given lattice. A given
XOR-bi-decomposition is not compact if at least one variable can be moved from
xc to xa. Moving a variable xi from xc to xa does not change the set of variables the
function g(xa,xc) is depending on; however, it reduces the support of the function
h(xb,xc). The set of variables xc is split into xi and xc0.

Due to the evaluation of Condition (3) for all variables, we know that the
function h(xb,xc) depends on all variables (xb,xc). Hence, only another function
h′(xb,xc0) is able to solve the problem. In the context of the XOR-bi-decomposi-
tion, the following transformation steps show the key idea to solve the problem:

g(xa0,xc)⊕h(xb,xc) (7)

= g(xa0,xc0,xi)⊕h(xb,xc0,xi) (8)

= g(xa0,xc0,xi)⊕ (xi ⊕h′(xb,xc0)) (9)

= (g(xa0,xc0,xi)⊕ xi)⊕h′(xb,xc0) (10)

= g′(xa0,xi,xc0)⊕h′(xb,xc0) (11)

= g′(xa,xc0)⊕h′(xb,xc0) ; (12)

• the step from (7) to (8) emphasizes the variable xi as element of the given set
of variables xc;

• the step from (8) to (9) requires that the function h(xb,xc0,xi) is linear in xi.
This property enables or prohibits the whole transformation;

• the step from (9) to (10) moves the variable xi to the other decomposition
function of the XOR-bi-decomposition;

226 B. STEINBACH, C. POSTHOFF Compact XOR-Bi-Decomposition for Lattices of Boolean Functions 227

6 B. Steinbach and C. Posthoff:

• the step from (10) to (11) includes the variable xi into the new decompo-
sition function g′(xa0,xi,xc0). This transformation is possible without any
restriction;

• the step from (11) to (12) emphasizes that xi does not belong to the com-
monly used variables xc0, because h′(xb,xc0) does not depend on xi; hence,
xi extends the dedicated set of variables xa0 to xa = (xa,xi).

The only condition for the transformation from (7) to (12) is that the lattice
L
〈
hq(xb,xc),hr(xb,xc)

〉
contains at least one function that satisfies:

∂h(x1,xi)

∂xi
= 1 .

Theorem 1 (Linear Separation of a Variable for a Function of a Lattice)
A lattice L

〈
hq(xb,xc),hr(xb,xc)

〉
contains at least one function h(x1,xi) that can

be represented by
h(x1,xi) = xi ⊕h′(x1) (13)

if and only if the condition
h∂xi

r (x1) = 0 (14)

is satisfied.

Proof 1

necessary: Due to Condition (14) the lattice L
〈
hq(xb,xc),hr(xb,xc)

〉
contains at

least one function that satisfies

∂h(x1,xi)

∂xi
= 1 . (15)

It is well-known that (15) is satisfied if the function h(x1,xi) is linear
with regard to the variable xi as shown in (13). Hence, we have Theo-
rem 1 in the direction (14) ⇒ (13).

sufficient: Function h(x1,xi) (13) belongs to the lattice L
〈
hq(xb,xc),hr(xb,xc)

〉
so that it holds:

hq(xb,xc)≤ h(x1,xi)≤ hr(xb,xc) . (16)

Using (13), the inequality (16) can be split into the two inequalities

hq(xb,xc)≤ h(x1,xi) = xi ⊕h′(x1)

hq(xb,xc)≤ (xi ∨h′(x1))(xi ∨h′(x1)) , (17)

228 B. STEINBACH, C. POSTHOFF Compact XOR-Bi-Decomposition for Lattices of Boolean Functions 229

6 B. Steinbach and C. Posthoff:

• the step from (10) to (11) includes the variable xi into the new decompo-
sition function g′(xa0,xi,xc0). This transformation is possible without any
restriction;

• the step from (11) to (12) emphasizes that xi does not belong to the com-
monly used variables xc0, because h′(xb,xc0) does not depend on xi; hence,
xi extends the dedicated set of variables xa0 to xa = (xa,xi).

The only condition for the transformation from (7) to (12) is that the lattice
L
〈
hq(xb,xc),hr(xb,xc)

〉
contains at least one function that satisfies:

∂h(x1,xi)

∂xi
= 1 .

Theorem 1 (Linear Separation of a Variable for a Function of a Lattice)
A lattice L

〈
hq(xb,xc),hr(xb,xc)

〉
contains at least one function h(x1,xi) that can

be represented by
h(x1,xi) = xi ⊕h′(x1) (13)

if and only if the condition
h∂xi

r (x1) = 0 (14)

is satisfied.

Proof 1

necessary: Due to Condition (14) the lattice L
〈
hq(xb,xc),hr(xb,xc)

〉
contains at

least one function that satisfies

∂h(x1,xi)

∂xi
= 1 . (15)

It is well-known that (15) is satisfied if the function h(x1,xi) is linear
with regard to the variable xi as shown in (13). Hence, we have Theo-
rem 1 in the direction (14) ⇒ (13).

sufficient: Function h(x1,xi) (13) belongs to the lattice L
〈
hq(xb,xc),hr(xb,xc)

〉
so that it holds:

hq(xb,xc)≤ h(x1,xi)≤ hr(xb,xc) . (16)

Using (13), the inequality (16) can be split into the two inequalities

hq(xb,xc)≤ h(x1,xi) = xi ⊕h′(x1)

hq(xb,xc)≤ (xi ∨h′(x1))(xi ∨h′(x1)) , (17)

Compact XOR-Bi-Decomposition for Lattices of Boolean Functions 7

and

hr(xb,xc)≥ h(x1,xi) = xi ⊕h′(x1)

hr(xb,xc)≤ h(x1,xi) = xi ⊕h′(x1)

hr(xb,xc)≤ (xi ∨h′(x1))(xi ∨h′(x1)) . (18)

The right-hand-side functions of (17) and (18) are equal to or larger
than the mark functions hq(xb,xc) and hr(xb,xc). The mark function
h∂xi

r (x1) of Condition (14) is defined by:

h∂xi
r (x1) = min

xi
hq(xi,x1)∨min

xi
hr(xi,x1) . (19)

Now, we substitute the function h(x1,xi) of (17) for hq(xb,xc) and the
function h(x1,xi) of (18) for hr(xb,xc) into (19). These functions are
equal to or larger than the replaced functions. So we get:

h∂xi
r (x1) = min

xi

(
(xi ∨h′(x1))∧ (xi ∨h′(x1))

)
∨

min
xi

(
(xi ∨h′(x1))∧ (xi ∨h′(x1))

)

= min
xi

(xi ∨h′(x1))∧min
xi

(xi ∨h′(x1))∨

min
xi

(xi ∨h′(x1))∧min
xi

(xi ∨h′(x1))

=

(
h′(x1)∨min

xi
(xi)

)
∧
(

h′(x1)∨min
xi

(xi)

)
∨

(
h′(x1)∨min

xi
(xi)

)
∧
(

h′(x1)∨min
xi

(xi)

)

=
(
h′(x1)∨0

)
∧
(

h′(x1)∨0
)
∨
(
h′(x1)∨0

)
∧
(

h′(x1)∨0
)

= h′(x1)∧h′(x1)∨h′(x1)∧h′(x1)

= 0∨0

= 0 .

Hence, Condition (14) is not only satisfied for the two mark functions
hq(xb,xc) and hr(xb,xc), but also for the function (13) which is linear
with regard to xi and belongs to the evaluated lattice. That shows the
implication (13) ⇒ (14) and completes Theorem 1.

Consequence 1 An XOR-bi-decomposition is compact, if the set of variables xb is
as large as possible (verified by Condition (3)), and within an iterative procedure

228 B. STEINBACH, C. POSTHOFF Compact XOR-Bi-Decomposition for Lattices of Boolean Functions 229

8 B. Steinbach and C. Posthoff:

all variables xi of the initial set xc that satisfy Condition (14) are used to transform
g(xa0,xc0,xi) to g′(xa,xc0) by

g′(xa,xc0) = xi ⊕g(xa0,xc0,xi) (20)

and the associated new lattice L
〈
h′q(xb,xc0),h′r(xb,xc0)

〉
is adjusted by

h′q(xb,xc0) = max
xi

(xi hq(xb,xc0,xi)∨ xi hr(xb,xc0,xi)) , (21)

h′r(xb,xc0) = max
xi

(xi hr(xb,xc0,xi)∨ xi hq(xb,xc0,xi)) . (22)

A precondition for a compact XOR-bi-decomposition is the existence of two
variables xa and xb for which the given lattice L

〈
fq(x), fr(x)

〉
contains at least one

function which has a strong XOR-bi-decomposition with regard to these variables.
Algorithm 1 analyzes whether there is an XOR-bi-decomposition for the given lat-
tice with regard to one pair of variables xa and xb. Algorithm 1 determines these
variables if they exist.

Algorithm 1 Initial XOR-bi-decomposition of the lattice L
〈

fq(x), fr(x)
〉

with re-
gard to the variables xa and xb

Require: TVLs of fq(x)and fr(x) in ODA-form
Ensure: Boolean variable hasXORbd: it is true if the given lattice contains at least

one XOR-bi-decomposable function and f alse otherwise
Ensure: set of variables (SV) of xa and xb: variables for which the lattice contains

at least one function with a strong XOR-bi-decomposition
1: all var ← SV UNI(fq, fr)
2: hasXORbd ← f alse
3: xa ← /0
4: while hasXORbd ∧SV NEXT(all var,xa,xa) do
5: xb ← xa

6: f ∂xa
q ← ISC(MAXK(fq,xa),MAXK(fr,xa))

7: f ∂xa
r ← UNI(MINK(fq,xa),MINK(fr,xa))

8: while hasXORbd ∧SV NEXT(all var,xb,xb) do
9: if TE ISC(MAXK(f ∂xa

q ,xb), f ∂xa
r) then

10: hasXORbd ← true
11: end if
12: end while
13: end while
14: return (hasXORbd,xa,xb)

230 B. STEINBACH, C. POSTHOFF Compact XOR-Bi-Decomposition for Lattices of Boolean Functions 231

8 B. Steinbach and C. Posthoff:

all variables xi of the initial set xc that satisfy Condition (14) are used to transform
g(xa0,xc0,xi) to g′(xa,xc0) by

g′(xa,xc0) = xi ⊕g(xa0,xc0,xi) (20)

and the associated new lattice L
〈
h′q(xb,xc0),h′r(xb,xc0)

〉
is adjusted by

h′q(xb,xc0) = max
xi

(xi hq(xb,xc0,xi)∨ xi hr(xb,xc0,xi)) , (21)

h′r(xb,xc0) = max
xi

(xi hr(xb,xc0,xi)∨ xi hq(xb,xc0,xi)) . (22)

A precondition for a compact XOR-bi-decomposition is the existence of two
variables xa and xb for which the given lattice L

〈
fq(x), fr(x)

〉
contains at least one

function which has a strong XOR-bi-decomposition with regard to these variables.
Algorithm 1 analyzes whether there is an XOR-bi-decomposition for the given lat-
tice with regard to one pair of variables xa and xb. Algorithm 1 determines these
variables if they exist.

Algorithm 1 Initial XOR-bi-decomposition of the lattice L
〈

fq(x), fr(x)
〉

with re-
gard to the variables xa and xb

Require: TVLs of fq(x)and fr(x) in ODA-form
Ensure: Boolean variable hasXORbd: it is true if the given lattice contains at least

one XOR-bi-decomposable function and f alse otherwise
Ensure: set of variables (SV) of xa and xb: variables for which the lattice contains

at least one function with a strong XOR-bi-decomposition
1: all var ← SV UNI(fq, fr)
2: hasXORbd ← f alse
3: xa ← /0
4: while hasXORbd ∧SV NEXT(all var,xa,xa) do
5: xb ← xa

6: f ∂xa
q ← ISC(MAXK(fq,xa),MAXK(fr,xa))

7: f ∂xa
r ← UNI(MINK(fq,xa),MINK(fr,xa))

8: while hasXORbd ∧SV NEXT(all var,xb,xb) do
9: if TE ISC(MAXK(f ∂xa

q ,xb), f ∂xa
r) then

10: hasXORbd ← true
11: end if
12: end while
13: end while
14: return (hasXORbd,xa,xb)

Compact XOR-Bi-Decomposition for Lattices of Boolean Functions 9

Algorithm 1 uses two nested while-loops for the selection of the variables xa

and xb. The basic set of all variables is prepared in line 1 using the XBOOLE-
function SV UNI (set of variables - union). The sequential selection of the variables
xa and xb is realized by two XBOOLE-functions SV NEXT (set of variables - next
variable) that control these while-loops. The variable hasXORbd is used to indicate
the Boolean result whether the lattice contains at least one function with a strong
XOR-bi-decomposition. This variable is also used to terminate both while-loops if
a strong XOR-bi-decomposition is detected.

XBOOLE-functions ISC (intersection), UNI (union), MAXK (k-fold maxi-
mum), and MINK (k-fold minimum) calculate in lines 6 and 7 the mark functions of
the derivative of the given lattice with regard to the single variables xa. XBOOLE-
function TE ISC (test empty - intersection) checks in line 9 Condition (3) for the
strong XOR-bi-decomposition with regard to the actually selected variables xa and
xb. In the case that this condition is satisfied, the control variable hasXORbd is
changed to the value true in line 10.

Algorithm 2 extends a found initial XOR-bi-decomposition to a compact one.
Initial steps determine all variables (line 1), the basic sets of commonly used vari-
ables xc (line 2) and dedicated variables xb (line 3), and the precondition (line 4)
for the selection of variables xb by means of the XBOOLE-function SV NEXT in
line 8.

The mark functions of the derivative of the given lattice with regard to the single
variables xa are needed in Condition (3) to decide about the possibility to extend the
set xb; they are calculated in lines 5 and 6 based on (1) and (2). The help-function
h0 stores the intermediate result of the k-fold maximum with regard to the already
known variables of the set xb (line 7).

The while-loop in lines 8 to 13 extends the set xb to the maximal possible num-
ber of variables of a strong XOR-bi-decomposition for the given lattice. Condition
(3) is verified in line 9 for the temporally extended set xb. If this condition is satis-
fied for the set of variables xb ∪ xb, the set of variables xb is permanently extended
in line 10 and the help-function h0 is adjusted in line 11.

Knowing the maximal set of variables xb, basic versions of the wanted functions
can be calculated:

• g(xa,xc) based on (4) in line 14;

• hq(xb,xc) based on (5) in line 15; and

• hr(xb,xc) based on (6) in line 16.

In a second while-loop (lines 20 to 28) the set of variables xa is extended. Initial
steps determine the new set of commonly used variables xc (line 17), the basic set

230 B. STEINBACH, C. POSTHOFF Compact XOR-Bi-Decomposition for Lattices of Boolean Functions 231

10 B. Steinbach and C. Posthoff:

Algorithm 2 Compact strong XOR-bi-decomposition of the lattice L
〈

fq(x), fr(x)
〉

Require: TVLs of fq(x) and fr(x); initial SVs of xa and xb

Ensure: TVL of g(xa,xc): decomposition function
Ensure: TVLs of hq(xb,xc) and hr(xb,xc): decomposition lattice
Ensure: SVs of xa, xb, and xc: disjoint sets of variables

1: all var ← SV UNI(fq, fr)
2: xc ← SV DIF(SV DIF(all var,xa),xb))
3: xb ← xb
4: xb ← /0
5: f ∂xa

q ← ISC(MAXK(fq,xa),MAXK(fr,xa))

6: f ∂xa
r ← UNI(MINK(fq,xa),MINK(fr,xa))

7: h0 ← MAXK(f ∂xa
q ,xb)

8: while SV NEXT(xc,xb,xb) do
9: if TE ISC(MAXK(h0,xb), f ∂xa

r) then
10: xb ← SV UNI(xb,xb)
11: h0 ← MAXK(f ∂xa

q ,xb)
12: end if
13: end while
14: g ← ISC(SV GET(xa),h0)
15: hq ← MAXK(UNI(ISC(g, fq), ISC(g, fr)),xa)
16: hr ← MAXK(UNI(ISC(g, fr), ISC(g, fq)),xa)
17: xc ← SV DIF(SV DIF(all var,xa),xb))
18: xa ← xa

19: xi ← /0
20: while SV NEXT(xc,xi,xi) do
21: if TE UNI(MINK(hq,xi),MINK(hr,xi)) then
22: xa ← SV UNI(xa,xi)
23: xi ← SV GET(xi)
24: g ← SYD(xi,g)
25: hq ← MAXK(UNI(ISC(xi,hq), ISC(xi,hr)),xi)
26: hr ← MAXK(UNI(ISC(xi,hr), ISC(xi,hq)),xi)
27: end if
28: end while
29: xc ← SV DIF(xc,xa)
30: return (g,hq,hr,xa,xb,xc)

of variables xa (line 18), and the selection variable xi (line 19) needed to evaluate
the possibility of the extension of xa.

232 B. STEINBACH, C. POSTHOFF Compact XOR-Bi-Decomposition for Lattices of Boolean Functions 233

10 B. Steinbach and C. Posthoff:

Algorithm 2 Compact strong XOR-bi-decomposition of the lattice L
〈

fq(x), fr(x)
〉

Require: TVLs of fq(x) and fr(x); initial SVs of xa and xb

Ensure: TVL of g(xa,xc): decomposition function
Ensure: TVLs of hq(xb,xc) and hr(xb,xc): decomposition lattice
Ensure: SVs of xa, xb, and xc: disjoint sets of variables

1: all var ← SV UNI(fq, fr)
2: xc ← SV DIF(SV DIF(all var,xa),xb))
3: xb ← xb
4: xb ← /0
5: f ∂xa

q ← ISC(MAXK(fq,xa),MAXK(fr,xa))

6: f ∂xa
r ← UNI(MINK(fq,xa),MINK(fr,xa))

7: h0 ← MAXK(f ∂xa
q ,xb)

8: while SV NEXT(xc,xb,xb) do
9: if TE ISC(MAXK(h0,xb), f ∂xa

r) then
10: xb ← SV UNI(xb,xb)
11: h0 ← MAXK(f ∂xa

q ,xb)
12: end if
13: end while
14: g ← ISC(SV GET(xa),h0)
15: hq ← MAXK(UNI(ISC(g, fq), ISC(g, fr)),xa)
16: hr ← MAXK(UNI(ISC(g, fr), ISC(g, fq)),xa)
17: xc ← SV DIF(SV DIF(all var,xa),xb))
18: xa ← xa

19: xi ← /0
20: while SV NEXT(xc,xi,xi) do
21: if TE UNI(MINK(hq,xi),MINK(hr,xi)) then
22: xa ← SV UNI(xa,xi)
23: xi ← SV GET(xi)
24: g ← SYD(xi,g)
25: hq ← MAXK(UNI(ISC(xi,hq), ISC(xi,hr)),xi)
26: hr ← MAXK(UNI(ISC(xi,hr), ISC(xi,hq)),xi)
27: end if
28: end while
29: xc ← SV DIF(xc,xa)
30: return (g,hq,hr,xa,xb,xc)

of variables xa (line 18), and the selection variable xi (line 19) needed to evaluate
the possibility of the extension of xa.

Compact XOR-Bi-Decomposition for Lattices of Boolean Functions 11

Condition (14) of Theorem 1 is verified in line 21 using the formula (2) to
determine the OFF-set of the derivative of a lattice with regard to the single variable
xi. If this condition is satisfied:

• the set of variables xa is extended by xi in line 22 using the XBOOLE-
function SV UNI (set of variables - union);

• xi is transformed in line 23 from a set of variables into the TVL representing
x1 = 1 using the XBOOLE-function SV GET (set of variables - get);

• the new function g is calculated in line 24 based on (20) using the XBOOLE-
function SYD (symmetric difference);

• the new ON-set function hq(x) is calculated in line 25 based on (21); and

• the new OFF-set function hr(x) is calculated in line 26 based on (22).

The restriction of the set of commonly used variables xc is realized in line 29 out-
side of the loop, because the unchanged basic set xc is needed in the XBOOLE-
function SV NEXT in line 20 to select the next variable xi. The complement oper-
ations in lines 15, 16, 24, and 25 are realized using the XBOOLE-function CPL.

5 EXAMPLE

5.1 The Chosen Lattice and Conditions for the Synthesis

0 0 0 1 0 1 0 1 0 1
0 1 1 1 0 0 1 1 0
1 1 0 1 0 1 1 0 0 1
1 0 1 0 0 0 0 0

0 1 1 0 0 1 1 0 x3
0 0 1 1 1 1 0 0 x2
0 0 0 0 1 1 1 1 x1

Φ

Φ Φ

x4 x5 L
〈

fq(x), fr(x)
〉

(a)

0 0 0 1 0 1 0 1 0 1
0 1 1 1 0 0 1 1 0 0
1 1 0 1 0 1 1 0 0 1
1 0 1 1 0 0 0 0 0 0

0 1 1 0 0 1 1 0 x3
0 0 1 1 1 1 0 0 x2
0 0 0 0 1 1 1 1 x1

x4 x5 y = f (x)

(b)

Fig. 1. Karnaugh-maps of (a) the given lattice, and (b) chosen function of both bi-decompositions.

Figure 1 (a) shows the Karnaugh-map of a lattice of eight Boolean functions.
The simplest multi-level circuit structure for one of these functions must be found
using AND-, OR-, and XOR-gates of two inputs where these inputs arbitrary can

232 B. STEINBACH, C. POSTHOFF Compact XOR-Bi-Decomposition for Lattices of Boolean Functions 233

12 B. Steinbach and C. Posthoff:

be negated. The gates can be reused to simplify the circuit. As basis for com-
parison serves a minimal disjunctive form, calculated by means of the well known
Quine McCluskey algorithm. The synthesis of the given lattice of functions by
bi-decompositions has been realized using both the know non-compact XOR-bi-
decomposition and the new compact XOR-bi-decomposition. Using conditions
given in [3, 4, 11] it can be verified that this lattice does not contain any function
which has a strong bi-decomposition with regard to any dedicated sets of variables
xa and xb for an AND- or an OR-gate. Figure 1 (b) shows the function chosen
by both the known and the new bi-decomposition approach. Two don’t-cares are
assigned to 0 and the other to 1. The simplest minimal disjunctive form realizes the
function fq(x) of the lattice where all don’t-cares are assigned to 0.

5.2 Synthesis by Covering Using a Minimal Disjunctive Form

The execution of the Quine McCluskey algorithm results in two minimal disjunc-
tive forms of the same complexity. Both of them realize the ON-set function fq(x)
and require the same number of gates and levels in a circuit. The chosen minimal
disjunctive form is:

fq(x) = (x1x2)x3 ∨ (x1x2)(x4x5)∨ (x1x2)(x4x5)∨ (x2x3)(x4x5)∨
(x1x2)(x3x4)∨ (x1x3)(x4x5)∨ (x1(x2x3))(x4x5)∨ (x2(x1x3))(x4x5) . (23)

The parentheses in the conjunctions in (23) emphasize the chosen two-input AND-
gates. Figure 2 shows the associated circuit structure in which as much as possible
AND-gates are reused.

The disjunction of eight conjunctions is realized by a tree of seven OR-gates.
Seven AND-gates could be reused to build another conjunction. In total there are
18 AND-gates. The complete circuit consists of 25 two-input gates on six levels.

5.3 Synthesis Using the Known Non-Compact XOR-Bi-Decomposition

Using Condition (3) it was found that the lattice of Figure 1 (a) contains at least one
function that is XOR-bi-decomposable with regard to the single variable xa = x1
and the dedicated set xb = (x3,x5). Hence, the set of commonly used variables
xc = (x2,x4).

The decomposition function g(xa,xc) of an XOR-bi-decomposition is uniquely
specified by (4), and we get

g1(x1,x2,x4) = x1 ∧ (x2 ∧ x4) . (24)

It can directly be seen that there is a strong AND-bi-decomposition of g1(x1,x2,x4)
into g2 = x1 and h2 = (x2 ∧ x4). No further decomposition is needed for these
functions.

234 B. STEINBACH, C. POSTHOFF Compact XOR-Bi-Decomposition for Lattices of Boolean Functions 235

12 B. Steinbach and C. Posthoff:

be negated. The gates can be reused to simplify the circuit. As basis for com-
parison serves a minimal disjunctive form, calculated by means of the well known
Quine McCluskey algorithm. The synthesis of the given lattice of functions by
bi-decompositions has been realized using both the know non-compact XOR-bi-
decomposition and the new compact XOR-bi-decomposition. Using conditions
given in [3, 4, 11] it can be verified that this lattice does not contain any function
which has a strong bi-decomposition with regard to any dedicated sets of variables
xa and xb for an AND- or an OR-gate. Figure 1 (b) shows the function chosen
by both the known and the new bi-decomposition approach. Two don’t-cares are
assigned to 0 and the other to 1. The simplest minimal disjunctive form realizes the
function fq(x) of the lattice where all don’t-cares are assigned to 0.

5.2 Synthesis by Covering Using a Minimal Disjunctive Form

The execution of the Quine McCluskey algorithm results in two minimal disjunc-
tive forms of the same complexity. Both of them realize the ON-set function fq(x)
and require the same number of gates and levels in a circuit. The chosen minimal
disjunctive form is:

fq(x) = (x1x2)x3 ∨ (x1x2)(x4x5)∨ (x1x2)(x4x5)∨ (x2x3)(x4x5)∨
(x1x2)(x3x4)∨ (x1x3)(x4x5)∨ (x1(x2x3))(x4x5)∨ (x2(x1x3))(x4x5) . (23)

The parentheses in the conjunctions in (23) emphasize the chosen two-input AND-
gates. Figure 2 shows the associated circuit structure in which as much as possible
AND-gates are reused.

The disjunction of eight conjunctions is realized by a tree of seven OR-gates.
Seven AND-gates could be reused to build another conjunction. In total there are
18 AND-gates. The complete circuit consists of 25 two-input gates on six levels.

5.3 Synthesis Using the Known Non-Compact XOR-Bi-Decomposition

Using Condition (3) it was found that the lattice of Figure 1 (a) contains at least one
function that is XOR-bi-decomposable with regard to the single variable xa = x1
and the dedicated set xb = (x3,x5). Hence, the set of commonly used variables
xc = (x2,x4).

The decomposition function g(xa,xc) of an XOR-bi-decomposition is uniquely
specified by (4), and we get

g1(x1,x2,x4) = x1 ∧ (x2 ∧ x4) . (24)

It can directly be seen that there is a strong AND-bi-decomposition of g1(x1,x2,x4)
into g2 = x1 and h2 = (x2 ∧ x4). No further decomposition is needed for these
functions.

Compact XOR-Bi-Decomposition for Lattices of Boolean Functions 13

y = fq(x)x1
x2
x3
x4
x5

Fig. 2. Circuit structure synthesized by Quine-McCluskey and reused two-input gates.

y = f (x)

g1g2

h2

h1

g3

h3

g4

h4

x1
x2
x3
x4
x5

Fig. 3. Circuit structure synthesized using the old non-compact XOR-bi-decomposition.

The lattice of the decomposition function h1 can be calculated by (5) and (6)
and contains in this example the single function

h1(x2,x3,x4,x5) = (x3 ∧ (x4 ⊕ x5))⊕ (x2 ⊕ x3) . (25)

By means of Condition (3) it can be verified that an XOR-bi-decomposition of
L
〈
h1q,h1r

〉
with regard to xa = x2 and xb = (x4,x5) exists. Hence, only the variable

x3 belongs to the set of commonly used variables xc.
The decomposition function g(xa,xc) of this second XOR-bi-decomposition

234 B. STEINBACH, C. POSTHOFF Compact XOR-Bi-Decomposition for Lattices of Boolean Functions 235

14 B. Steinbach and C. Posthoff:

was again calculated by (4):

g3(x2,x3) = x2 ⊕ x3 .

The lattice L
〈
h3q,h3r

〉
contains only the single function

h3(x3,x4,x5) = x3 ∧ (x4 ⊕ x5)

for which a strong AND-bi-decomposition into g4 = x3 and h4 = (x4 ⊕ x5) exists.
No further decomposition is needed for these functions. Figure 3 shows the syn-
thesized circuit consisting of seven gates on four levels.

5.4 Optimized Synthesis Using the New Compact XOR-Bi-Decomposition

For direct comparison we demonstrated the approach of the utilization of a linearly
separable variable to get a compact XOR-bi-decomposition using the same lattice
(shown in Figure 1 (a)) as before.

y = f (x)

g1

g2

h2

h1

g3

h3

x1

x2

x3

x4

x5

Fig. 4. Circuit structure synthesized using the new compact XOR-bi-decomposition.

Using Condition (3) in Algorithm 1 the initial XOR-bi-decomposition with re-
gard to the single variables xa = x1 and xb = x3 is found. In the first part of Al-
gorithm 2 (lines 1 to 13) the dedicated set xb could be extended to (x3,x5) due to
the check of variables x2, x4, and x5 within line 9 embedded in the loop of lines 8
to 13. Hence, the basic set of commonly used variables is xc = (x2,x4) which is
determined in line 17.

Algorithm 2 finds by Condition (14) in line 21 in the while-loop in lines 20
to 28 that the so fare detected lattice of h1 contains a function that is linear with
regard to x2. Hence, x2 is included into the set xa in line 22, the new function g1 is
calculated in lines 23 and 24 using the basic function g′1 (24):

g1(x1,x2,x4) = x2 ⊕g′1(x1,x2,x4)

= x2 ⊕
(

x1 ∧ (x2 ∧ x4)
)

= (x1 ⊕ x2)∨ (x2 ∧ x4) . (26)

236 B. STEINBACH, C. POSTHOFF Compact XOR-Bi-Decomposition for Lattices of Boolean Functions 237

14 B. Steinbach and C. Posthoff:

was again calculated by (4):

g3(x2,x3) = x2 ⊕ x3 .

The lattice L
〈
h3q,h3r

〉
contains only the single function

h3(x3,x4,x5) = x3 ∧ (x4 ⊕ x5)

for which a strong AND-bi-decomposition into g4 = x3 and h4 = (x4 ⊕ x5) exists.
No further decomposition is needed for these functions. Figure 3 shows the syn-
thesized circuit consisting of seven gates on four levels.

5.4 Optimized Synthesis Using the New Compact XOR-Bi-Decomposition

For direct comparison we demonstrated the approach of the utilization of a linearly
separable variable to get a compact XOR-bi-decomposition using the same lattice
(shown in Figure 1 (a)) as before.

y = f (x)

g1

g2

h2

h1

g3

h3

x1

x2

x3

x4

x5

Fig. 4. Circuit structure synthesized using the new compact XOR-bi-decomposition.

Using Condition (3) in Algorithm 1 the initial XOR-bi-decomposition with re-
gard to the single variables xa = x1 and xb = x3 is found. In the first part of Al-
gorithm 2 (lines 1 to 13) the dedicated set xb could be extended to (x3,x5) due to
the check of variables x2, x4, and x5 within line 9 embedded in the loop of lines 8
to 13. Hence, the basic set of commonly used variables is xc = (x2,x4) which is
determined in line 17.

Algorithm 2 finds by Condition (14) in line 21 in the while-loop in lines 20
to 28 that the so fare detected lattice of h1 contains a function that is linear with
regard to x2. Hence, x2 is included into the set xa in line 22, the new function g1 is
calculated in lines 23 and 24 using the basic function g′1 (24):

g1(x1,x2,x4) = x2 ⊕g′1(x1,x2,x4)

= x2 ⊕
(

x1 ∧ (x2 ∧ x4)
)

= (x1 ⊕ x2)∨ (x2 ∧ x4) . (26)

Compact XOR-Bi-Decomposition for Lattices of Boolean Functions 15

Using (21) and (22) the new lattice L
〈
h1q,h1r

〉
is calculated in lines 25 and 26

of Algorithm 2. Due to the special case of the completely specified function h′1 (25)
the result is also a completely specified function that is calculated by (21):

h1(x3,x4,x5) = max
x2

(
x2 ⊕h′1(x2,x3,x4,x5))

)

= max
x2

(x2 ⊕ (x3 ∧ (x4 ⊕ x5))⊕ (x2 ⊕ x3))

= (x3 ∧ (x4 ⊕ x5))⊕ x3

= (x4 ⊕ x5)∨ x3 . (27)

Hence, h1(x3,x4,x5) depends only on three variables, and the comparison with
g1(x1,x2,x4) confirms that only the variable x4 is shared. In this way the single
variable of the dedicated set xa is implicitly extended to xa = (x1,x2). Algorithm 2
explicitly realizes this extension in line 22 using the XBOOLE operation SV UNI
(set of variables - union).

The expressions (26) and (27) show that there are OR-bi-decompositions for
both decomposition functions g1 and h1. Figure 4 shows that the circuit structure,
realized be means of the new method, only needs six gates on three levels.

5.5 Comparison of the Synthesis Results

Table 1 summarizes the results of the synthesis of the given lattice of Boolean
functions realized by:

• the covering method using the Quine McCluskey approach to get a minimal
disjunctive form which has been split into two-input gates that are reused as
much as possible;

• the bi-decomposition method where the known XOR-bi-decomposition of a
lattice is restricted to the assignment of a single variable to the dedicated set
xa;

• the bi-decomposition method using the new XOR-bi-decomposition for a
lattice that is able to realize a compact XOR-bi-decomposition.

Both the needed area and the power consumption are estimated by the number
of gates. The benefit of the bi-decomposition in comparison to the covering method
is evident; the number of gates could be reduced, despite the seven reused gates in
the covering approach, from 25 to seven in case of the known bi-decomposition
and even to six when the new compact XOR-bi-decomposition is used. This is a
reduction to 24% of the needed area as well as the power consumption of the new

236 B. STEINBACH, C. POSTHOFF Compact XOR-Bi-Decomposition for Lattices of Boolean Functions 237

16 B. Steinbach and C. Posthoff:

Table 1. Comparison of needed area, power consumption, and maximal delay

effect
to used count covering

method
used XOR-bi-decomposition ratios

known new compact new compact
covering

new compact
known

area number of
gates 25 7 6 24.0 % 85.7 %

power number of
gates 25 7 6 24.0 % 85.7 %

delay
number of
gates in the
longest path

6 4 3 50.0 % 75.0 %

compact XOR-bi-decomposition in comparison to the covering method or to 85.7%
regarding the so far used non-compact XOR-bi-decomposition.

The maximal delay of the synthesized circuit can be estimated by the number
of gates in the longest path that is equal to the number of gate levels. The bi-
decomposition outperforms the covering method also regarding the maximal delay.
The new compact XOR-bi-decomposition was able to reduce the maximal delay
to one half in comparison to the covering method or 75% according to the known
non-compact XOR-bi-decomposition.

6 CONCLUSIONS

Lattices of Boolean functions provide the possibility to choose the function for
which the circuit needs a small area, a low power consumption, and has a short
delay time. The bi-decomposition is a very powerful method to synthesize circuits
that improve these parameters in comparison to covering methods. The theory to
find compact strong bi-decompositions was so far only known for AND- and OR-
gates. However, strong XOR-bi-decompositions were restricted to a single variable
in the dedicated set xa.

The results of this paper close this gap of a missing compact XOR-bi-decom-
position for lattices of Boolean functions. It provides both the needed new theory
and their application in Algorithms using XBOOLE [19, 20] for the calculation of
compact XOR-bi-decompositions for lattices of Boolean functions.

In a very simple example the gate count (needed area, power consumption)
could be reduced to 24 percent in comparison to an exact covering method and to 85
percent regarding the known bi-decomposition. For the same example the length of
the longest path (maximal delay) could be reduced to one half in comparison to an
exact covering method and to 75 percent according to the known bi-decomposition.

238 B. STEINBACH, C. POSTHOFF Compact XOR-Bi-Decomposition for Lattices of Boolean Functions 239

16 B. Steinbach and C. Posthoff:

Table 1. Comparison of needed area, power consumption, and maximal delay

effect
to used count covering

method
used XOR-bi-decomposition ratios

known new compact new compact
covering

new compact
known

area number of
gates 25 7 6 24.0 % 85.7 %

power number of
gates 25 7 6 24.0 % 85.7 %

delay
number of
gates in the
longest path

6 4 3 50.0 % 75.0 %

compact XOR-bi-decomposition in comparison to the covering method or to 85.7%
regarding the so far used non-compact XOR-bi-decomposition.

The maximal delay of the synthesized circuit can be estimated by the number
of gates in the longest path that is equal to the number of gate levels. The bi-
decomposition outperforms the covering method also regarding the maximal delay.
The new compact XOR-bi-decomposition was able to reduce the maximal delay
to one half in comparison to the covering method or 75% according to the known
non-compact XOR-bi-decomposition.

6 CONCLUSIONS

Lattices of Boolean functions provide the possibility to choose the function for
which the circuit needs a small area, a low power consumption, and has a short
delay time. The bi-decomposition is a very powerful method to synthesize circuits
that improve these parameters in comparison to covering methods. The theory to
find compact strong bi-decompositions was so far only known for AND- and OR-
gates. However, strong XOR-bi-decompositions were restricted to a single variable
in the dedicated set xa.

The results of this paper close this gap of a missing compact XOR-bi-decom-
position for lattices of Boolean functions. It provides both the needed new theory
and their application in Algorithms using XBOOLE [19, 20] for the calculation of
compact XOR-bi-decompositions for lattices of Boolean functions.

In a very simple example the gate count (needed area, power consumption)
could be reduced to 24 percent in comparison to an exact covering method and to 85
percent regarding the known bi-decomposition. For the same example the length of
the longest path (maximal delay) could be reduced to one half in comparison to an
exact covering method and to 75 percent according to the known bi-decomposition.

REFERENCES 17

REFERENCES

[1] D. Bochmann, F. Dresig, and B. Steinbach. “A New Decomposition Method
for Multilevel Circuit Design”. In: Proceedings of the Conference on Euro-
pean Design Automation. EDAC ’91. Amsterdam, The Netherlands: IEEE
Computer Society, 1991, pp. 374–377.

[2] T. Le. “Testbarkeit kombinatorischer Schaltungen - Theorie und Entwurf”.
written in German, English title: Testability of Combinational Circuits - The-
ory and Design. PhD thesis. TU Karl-Marx-Stadt, Germany, 1989.

[3] C. Posthoff and B. Steinbach. Logic Functions and Equations – Binary
Models for Computer Science. Dordrecht, The Netherlands: Springer, 2004.

[4] B. Steinbach and C. Posthoff. Boolean Differential Calculus. Synthesis Lec-
turers on Digital Circuits and Systems 52. San Rafael, CA, USA: Morgan &
Claypool, 2017.

[5] A. Mishchenko, B. Steinbach, and M. Perkowski. “An Algorithm for Bi-
decomposition of Logic Functions”. In: Proceedings of the 38th Annual De-
sign Automation Conference. DAC ’01. Las Vegas, Nevada, USA: ACM,
2001, pp. 103–108.

[6] B. Steinbach. “Vectorial Bi-Decompositions of Logic Functions”. In: Pro-
ceedings of the Reed-MullerWorkshop 2015. RM 4. Waterloo, Canada, 2015.

[7] B. Steinbach and C. Posthoff. “Vectorial Bi-Decompositions for Lattices of
Boolean Functions”. In: Proceedings of the 12th International Workshops
on Boolean Problems. IWSBP. Freiberg, Germany: Freiberg University of
Mining and Technology, 2016, pp. 93–104.

[8] A. Thayse. “Boolean Differential Calculus”. In: Philips Research Reports 26
(1971). R 764, pp. 229–246.

[9] M. Davio and A. Thayse. “Boolean Differential Calculus and its Applica-
tion to Switching Theory”. In: IEEE Transactions on Computes 22.4 (1973),
pp. 409–420.

[10] B. Steinbach and C. Posthoff. Logic Functions and Equations - Examples
and Exercises. Springer Science + Business Media B.V., 2009.

[11] B. Steinbach and C. Posthoff. “Boolean Differential Calculus - Theory and
Applications”. In: Journal of Computational and Theoretical Nanoscience
7.6 (2010), pp. 933–981.

238 B. STEINBACH, C. POSTHOFF Compact XOR-Bi-Decomposition for Lattices of Boolean Functions 239

18 REFERENCES

[12] B. Steinbach and C. Posthoff. “Boolean Differential Calculus”. In: Progress
in Applications of Boolean Functions. Synthesis Lecturers on Digital Cir-
cuits and Systems 26. San Rafael, CA, USA: Morgan & Claypool, 2010,
pp. 55–78.

[13] T. Sasao and J. Butler. “On Bi-Decompositions of Logic Functions”. In: 6th
International Workshop on Logic & Synthesis. IWLS. Granlibakken Resort
- Tahoe City, CA, USA, 1997, pp. 1–6.

[14] M. Choudhury and K. Mohanram. “Bi-Decomposition of Large Boolean
Functions Using Blocking Edge Graphs”. In: 2010 IEEE/ACM International
Conference on Computer-Aided Design. ICCAD. 2010, pp. 586–591.

[15] D. Cheng and X. Xu. “Bi-Decomposition of Logical Mappings via Semi-
Tensor Product of Matrices”. In: Automatica 49.7 (2013), pp. 51–76.

[16] B. Steinbach. “Generalized Lattices of Boolean Functions Utilized for Deri-
vative Operations”. In: Materiały konferencyjne KNWS’13. KNWS ’13. Ła-
gów, Poland, 2013, pp. 1–17.

[17] B. Steinbach. “Derivative Operations for Lattices of Boolean Functions”. In:
Proceedings of the Reed-Muller Workshop 2013. RM ’13. Toyama, Japan,
2013, pp. 110–119.

[18] B. Steinbach and A. Wereszczynski. “Synthesis of Multi-Level Circuits Us-
ing EXOR-Gates”. In: IFIP WG 10.5 - Workshop on Applications of the
Reed-Muller Expansion in Circuit Design. Chiba - Makuhari, Japan, 1995,
pp. 161–168.

[19] B. Steinbach. “XBOOLE - A Toolbox for Modelling, Simulation, and Anal-
ysis of Large Digital Systems”. In: Systems Analysis and Modelling Simula-
tion 9.4 (1992), pp. 297–312.

[20] B. Steinbach and M. Werner. “XBOOLE-CUDA - Fast Calculations of Large
Boolean Problems on the GPU”. In: Problems and New Solutions in the
Boolean Domain. Ed. by B. Steinbach. Newcastle upon Tyne, UK: Cam-
bridge Scholars Publishing, 2016, pp. 117–149.

240 B. STEINBACH, C. POSTHOFF Compact XOR-Bi-Decomposition for Lattices of Boolean Functions PB

