ENUMERATION AND CODING METHODS FOR A CLASS OF PERMUTATIONS AND REVERSIBLE LOGICAL GATES*

Costas Karanikas ${ }^{1}$, Nikolaos Atreas ${ }^{2}$
${ }^{1}$ School of Informatics, Aristotle University of Thessaloniki, Greece
${ }^{2}$ School of Electrical and Computer Engineering, Faculty of Engineering, Aristotle University of Thessaloniki, Greece

Abstract

We introduce a great variety of coding methods for boolean sparse invertible matrices and we use these methods to create a variety of bijections on the permutation group $P(m)$ of the set $\{1,2, \ldots, m\}$. Also, we propose methods for coding, enumerating and shuffling the set $\{0, \ldots, 2 m-1\}$, i.e. the set of all m-bit binary arrays. Moreover we show that several well known reversible logic gates/circuits (on m-bit binary arrays) can be coded by sparse matrices.

Key words: Permutations, Reversible Logical Gates.

1 Introduction

Let $m \geq 2$ be a natural number and $P(m)$ be the group of permutations of the set $\{1, \ldots, m\}$. In this work we introduce a variety of shuffling methods. More precisely, each shuffling method is a bijective map of a set onto itself, i.e. different inputs yield different outputs and the number of inputs and outputs are equal.

Our main theorem 2 in section 3 or its "binary" version (see theorem 3 in section 4), states that any pair (ρ, s) of permutations in $P(m)$ determines a bijective map

$$
T_{\rho, s}:\left\{0,1, \ldots ., 2^{m}-1\right\} \rightarrow\left\{0,1, \ldots ., 2^{m}-1\right\} .
$$

[^0]Since every non negative integer $n \in\left\{0,1, \ldots, 2^{m}-1\right\}$ can be expressed either as an m-bit binary array

$$
\mathbf{e}_{n}=\left(\varepsilon_{0}(n), \varepsilon_{1}(n), \ldots, \varepsilon_{m-1}(n)\right), \varepsilon_{j} \in\{0,1\}
$$

or by its dyadic expansion

$$
n=\sum_{j=1}^{m} \varepsilon_{j}(n) 2^{j-1}
$$

the above map $T_{\rho, s}$ can be considered as a reversible map on the set of all m-bit binary arrays. In a different terminology, we can say that in theorem 3 we introduce reversible logic gates, i.e bijective maps on the set of m-bit binary arrays, (see [1]). An example of a reversible gate is the NOT gate, whereas the AND, OR, XOR gates are irreversible (not reversible), because they map $4=2^{2}$ input states into $2=2^{1}$ output states, so information is lost in the merging of paths.

A second target of this work is to enumerate and code permutations in $P(m)$ of large length (note that the cardinality of the set $P(m)$ is $m!$). Therefore, a reversible map $T_{\rho, s}$ associated with the pair (ρ, s) can be coded either by the pair (ρ, s) or by an enumeration of $P(m) \times P(m)$ as in section 2 . This coding method is associated with a particular class of sparse boolean invertible matrices introduced in [2] (see also [3-6]). Notice that sparse matrices are very useful for fast processing/transmission of data and they have been effectively used in [6] for detecting specific characteristics on finite data.

The paper is organized in the following sections:
In section 2 we introduce our main tool, the invertible map $P(m) \rightarrow S(m)$ (see (2) and (3)) and in Proposition 1, we see that this map induces the lexicographic order of the enumeration of $P(m)$. Moreover we consider the cartesian product $R(m)=P(1) \times P(2) \times \ldots \times P(m)$ of permutations to show in theorem 1 that each fixed element of $R(m)$ provides an enumeration of $P(m)$.

In section 3 we define a class of sparse $m \times m$ boolean invertible matrices \mathbf{Z}_{m} identified by a pair $(\rho, s) \in P(m) \times S(m)$ and we use this class of matrices to produce a class of non-linear bijection maps

$$
T_{q, \rho, s}:\left\{0, \ldots, q^{m}-1\right\} \rightarrow\left\{0, \ldots, q^{m}-1\right\},
$$

see our main theorem 2 .

In section 4 we show that any triple (ρ, s, τ) of permutations in $P(m)$ provides a variety of maps from $\left\{0, \ldots, 2^{m}-1\right\}$ onto $\left\{0, \ldots, 2^{m}-1\right\}$ and we see that several reversible logic gates can be determined by this triple.

Finally, in section 5 we apply theorems 1 and 2 , to see with an example that for any pair $(\rho, s) \in P(m) \times S(m)$ and any fixed $r \in R\left(2^{m}\right)$ we shuffle the elements of the set $\left\{0, \ldots, 2^{m}-1\right\}$ and we discus the random permutation generation problem.

2 Enumeration methods for $P(m)$

Let $m \geq 2$ be a natural number. First we review the lexicographical order of the set

$$
\begin{equation*}
S(m)=\left\{s=\left(s_{1}, \ldots, s_{m}\right): s_{i} \in\{1,2, \ldots, i\}\right\} . \tag{1}
\end{equation*}
$$

Obviously, the map

$$
\begin{equation*}
U: S(m) \rightarrow\{0, \ldots, m!-1\}: U(s)=m!\sum_{i=1}^{m} \frac{s_{i}-1}{i!} \tag{2}
\end{equation*}
$$

is a bijection and the elements $s_{i} \in\{1, \ldots, i\}$ can be thought of digits of the number $U(s)$ with respect to the factorial number system. Inversely, for any $n \in\{0, \ldots, m!-1\}$, its digits $s_{i}(n), i=1, \ldots, m$ are computed by the formula

$$
s_{i}(n)=\operatorname{Mod}\left(\left[\frac{n i!}{m!}\right], i\right)+1
$$

describing the inverse map U^{-1}. Here, $[x]$ is the floor of x. From now on we say that U provides the lexicographical order of $S(m)$. Using the lexicographical order of $S(m)$ we may obtain an enumeration of the group of permutations $P(m)$ of the set $\{1, \ldots, m\}$ as well. In fact, let us define the map

$$
\begin{equation*}
Q: P(m) \rightarrow S(m): Q(\rho)=s=\left(s_{1}, \ldots, s_{m}\right), \tag{3}
\end{equation*}
$$

where each element $s_{i} \in S(m)$ is defined by using the following iteration scheme:

For the above selection of m and the initial permutation ρ in (3), we store the position of the biggest element in ρ, i.e. we define

$$
s_{m}=\rho^{-1}(m)
$$

and at the same time we delete this element $\rho\left(s_{m}\right)=m$ from ρ and so we form a new permutation $\rho_{(m-1)} \in P(m-1)$ by

$$
\rho_{(m-1)}(j)=\left\{\begin{array}{cc}
\rho(j) & \text { if } j<s_{m} \\
\rho(j+1) & \text { if } j \geq s_{m}
\end{array}, j=1, \ldots, m-1 .\right.
$$

Then we follow the previous step for the permutation $\rho_{(m-1)}$, i.e. we store the position of its biggest element by defining

$$
s_{m-1}=\rho_{(m-1)}^{-1}(m-1)
$$

and at the same time we delete the element $m-1$ from $\rho_{(m-1)}$ and we form a new permutation $\rho_{(m-2)} \in P(m-2)$ by

$$
\rho_{(m-2)}(j)=\left\{\begin{array}{cc}
\rho_{(m-1)}(j) & \text { if } j<s_{m-1} \\
\rho_{(m-1)}(j+1) & \text { if } j \geq s_{m-1}
\end{array}, j=1, \ldots, m-2 .\right.
$$

We continue in the same spirit until S is completely determined.
Example 1 Let $\rho=(2,3,4,1)$. In order to determine the set $S=\left\{s_{1}, s_{2}, s_{3}, s_{4}\right\}$ in (3) we are based on the above iteration scheme and so we proceed in the following way:
(i) Define $s_{4}=\rho^{-1}(4)=3$ and $\rho_{(3)}=(2,3,1)$.
(ii) Define $s_{3}=\rho_{(3)}^{-1}(3)=2$ and $\rho_{(2)}=(2,1)$.
(iii) Define $s_{2}=\rho_{(2)}^{-1}(2)=1$ and $\rho_{(1)}=(1)$.
(iv) Define $s_{1}=\rho_{(1)}^{-1}(1)=1$ and $\rho_{(4)}=\emptyset$.

Now we have the following:
Proposition 1 [2] Let U and Q be two maps as in (2) and (3) respectively. Then Q is a bijection and so the composition map

$$
U Q: P(m) \rightarrow\{0, \ldots, m!-1\}
$$

provides an enumeration of $P(m)$.

Example 2 For $m=4$, we demonstrate the enumeration of the elements of $P(4)$ derived from Proposition (1) and the lexicographical order of the elements of $S(4)$ derived from (2).

$$
\begin{aligned}
P(4)= & \{(4,3,2,1),(3,4,2,1),(3,2,4,1),(3,2,1,4), \\
& (4,2,3,1),(2,4,3,1),(2,3,4,1),(2,3,1,4) \\
& (4,2,1,3),(2,4,1,3),(2,1,4,3),(2,1,3,4) \\
& (4,3,1,2),(3,4,1,2),(3,1,4,2),(3,1,2,4), \\
& (4,1,3,2),(1,4,3,2),(1,3,4,2),(1,3,2,4), \\
& (4,1,2,3),(1,4,2,3),(1,2,4,3),(1,2,3,4)\}
\end{aligned}
$$

$$
\begin{aligned}
S(4)= & \{(1,1,1,1),(1,1,1,2),(1,1,1,3),(1,1,1,4), \\
& (1,1,2,1),(1,1,2,2),(1,1,2,3),(1,1,2,4) \\
& (1,1,3,1),(1,1,3,2),(1,1,3,3),(1,1,3,4) \\
& (1,2,1,1),(1,2,1,2),(1,2,1,3),(1,2,1,4) \\
& (1,2,2,1),(1,2,2,2),(1,2,2,3),(1,2,2,4) \\
& (1,2,3,1),(1,2,3,2),(1,2,3,3),(1,2,3,4)\}
\end{aligned}
$$

For instance, the permutation $\rho=(4,3,2,1)$ is uniquely associated with the set

$$
Q(\rho)=(1,1,1,1)
$$

(apply example 1) and then

$$
U Q(\rho)=0
$$

by (2). In the same spirit, the permutation $\rho=(3,4,2,1)$ is uniquely associated with the set

$$
Q(\rho)=(1,1,1,2)
$$

(apply example 1) and then

$$
U Q(\rho)=1
$$

by (2).
Remark 1 The set $S(m)$ in (1) seems to be similar with a Lehmer code [7], but our approach seems to be more efficient for the purpose of obtaining a great variety of enumerating methods for $P(m)$, see theorem (1) below. We notice that the Lehmer code of a permutation $\rho=\left(\rho_{1}, \ldots . \rho_{m}\right)$ is a sequence of natural numbers $\left(L_{1}, \ldots, L_{m}\right)$ such that L_{i} is the number of all elements $\rho_{1}, \ldots, \rho_{i-1}$ which are less than $\rho_{i}, i=1, \ldots, m$.

We may obtain various enumerations of the elements of $S(m)$ (and hence $P(m)$ as well). Indeed, let us fix any element

$$
\begin{equation*}
r=\left(r_{1}, r_{2}, \ldots, r_{m}\right) \in R(m)=P(1) \times P(2) \times \ldots \times P(m) \tag{4}
\end{equation*}
$$

where

$$
r_{i}=\left(r_{i, 1}, \ldots r_{i, i}\right) \in P(i), i=1, \ldots, m
$$

Then we have:
Theorem 1 Let $S(m)$ be defined in (1) and r be a fixed element of $R(m)$ as in (4). For any $s \in S(m)$ we define

$$
W_{r, m}(s)=\left(r_{1, s_{1}}, r_{2, s_{2}}, \ldots, r_{m, s_{m}}\right)
$$

Then the map $W_{r, m}$ is onto $S(m)$.
Proof: Let us fix an element $r \in R(m)$. Since $r_{i, s_{i}} \leq i$ (due to the fact that $r_{i} \in P(i)$), we deduce that $W_{r, m}(s) \in S(m)$. Also, the fact that $r_{i, j} \leq i$ for any $j=1, \ldots, i$ implies that $W_{r, m}$ is onto $S(m)$, because any element s_{i} of $s=\left(s_{1}, \ldots, s_{m}\right)$ can be written by $s_{i}=r_{i, a(i)}$ for some index $a(i) \leq i$ and so by defining $a=\{a(i): i=1, \ldots, m\}$ we have $W_{r, m}(a)=s$.

Let U be as in (2) and $W_{r, m}$ be as in theorem 1 . It is easy to see that the map

$$
U W_{r, m} U^{-1}:\{0, \ldots, m!-1\} \rightarrow\{0, \ldots, m!-1\}
$$

provides a method for shuffling the set $\{0, \ldots, m!-1\}$. By altering the selection of $r \in R(m)$ in (4) we obtain a different shuffling. Finally, it is clear that the class of mappings

$$
\left\{Q W_{r, m} U^{-1}: r \in R(m)\right\}
$$

provides a great variety of enumeration/shuffling methods for the set of permutations $P(m)$.

Example 3 For $m=4$ and $r=\{(1),(2,1),(2,1,3),(4,2,1,3)\}$, then by using theorem 1, the lexicographical order of $S(4)$ (see example 2) is shuffled to:

$$
\begin{aligned}
& \{(1,2,2,4),(1,2,2,2),(1,2,2,1),(1,2,2,3), \\
& (1,2,1,4),(1,2,1,2),(1,2,1,1),(1,2,1,3), \\
& (1,2,3,4),(1,2,3,2),(1,2,3,1),(1,2,3,3), \\
& (1,1,2,4),(1,1,2,2),(1,1,2,1),(1,1,2,3), \\
& (1,1,1,4),(1,1,1,2),(1,1,1,1),(1,1,1,3), \\
& (1,1,3,4),(1,1,3,2),(1,1,3,1),(1,1,3,3)\} .
\end{aligned}
$$

If Q is defined in (3), then by using the composition map

$$
Q^{-1} W_{r, 4} U^{-1}
$$

we obtain the following enumeration of the set $P(4)$:

$$
\begin{aligned}
& \{(1,2,3,4),(1,4,2,3),(4,1,2,3),(1,2,4,3), \\
& (2,3,1,4),(2,4,3,1),(4,2,3,1),(2,3,4,1), \\
& (3,2,1,4),(3,4,2,1),(4,3,2,1),(3,2,4,1), \\
& (2,1,3,4),(2,4,1,3),(4,2,1,3),(2,1,4,3), \\
& (1,3,2,4),(1,4,3,2),(4,1,3,2),(1,3,4,2), \\
& (3,1,2,4),(3,4,1,2),(4,3,1,2),(3,1,4,2)\} .
\end{aligned}
$$

3 A Class of boolean matrices coded by permutations and A CLASS OF BIJECTION MAPS

Before we introduce a class of bijection maps on $\left\{0,1, \ldots, q^{m}-1\right\}$ for any pair of natural numbers $m, q \geq 2$, we present as in [2] a class of sparse boolean matrices and their properties.

Definition 1 For any natural number $m \geq 2$ we define by \mathbf{Z}_{m} the class of all $m \times m$ boolean matrices whose row vectors Z_{i} satisfy

$$
Z_{i} \odot Z_{j}=c_{i j} Z_{\max \{i, j\}}: c_{i j} \in\{0,1\}, i, j=1, \ldots, m,
$$

where \odot is the usual Hadamard product operation.
Then the following result is straightforward:
Lemma 1 [2] Let A be an $m \times m$ boolean matrix and let $1 \leq i<j \leq m$. Then $A \in \mathbf{Z}_{m}$ if and only if supp $\left\{A_{j}\right\} \subset \operatorname{supp}\left\{A_{i}\right\}$ or supp $\left\{A_{i}\right\} \cap \operatorname{supp}\left\{A_{j}\right\}=$ \emptyset. Here, supp $\left\{A_{j}\right\}$ denotes the set of all non zero entries of the row A_{j}.

In [2] we proved the following:
Proposition 2 Let $P(m)$ and $S(m)$ be defined in section 2. Then every matrix in the class \mathbf{Z}_{m} is uniquely identified by a pair $(\rho, s) \in P(m) \times S(m)$.

Using the above observations we may easily construct elements in the above class of \mathbf{Z}_{m} matrices. Indeed, let us fix a pair $(\rho, s) \in P(m) \times S(m)$ which determines a matrix $Z \in \mathbf{Z}_{m}$ in a unique way. From the pair (ρ, s) we may construct Z in the following manner:
(i) First, we use ρ to permute the rows of the identity matrix I_{m} and so we construct an $m \times m$ permutation matrix, say Z_{1}.
(ii) Starting with the above matrix Z_{1}, we construct a sequence $\left\{Z_{i}\right\}_{i=2}^{m}$ of $m \times m$ matrices iteratively, by using $s \in S(m)$. In the $i^{t h}$ step of this iteration, a matrix Z_{i} is constructed from the matrix Z_{i-1} based on the following rule:
(a) If $s_{i}=i$, define $Z_{i}=Z_{i-1}$.
(a) If $s_{i}<i$, define Z_{i} by replacing only the s_{i}-row of Z_{i-1} with the sum of the i-row and s_{i}-row of Z_{i-1}.
(iii) Execute step (ii) for any $i=2, \ldots, m$. Then $Z=Z_{m}$ is a matrix in the class \mathbf{Z}_{m}.

Example 4 Let $m=5, \rho=(4,1,2,5,3)$ and $s=(1,1,3,1,3)$. Then the element $Z \in \mathbf{Z}_{5}$ associated with the above pair (ρ, s) is the following

$$
Z=\left(\begin{array}{ccccc}
1 & 0 & 0 & 1 & 1 \\
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 & 0
\end{array}\right)
$$

It is remarkable that any matrix Z in the class \mathbf{Z}_{m} (which depends only on a pair $(\rho, s))$ is invertible and the entries of inverse matrix Z^{-1} are immediately computed by the above pair (ρ, s) :

$$
Z_{i, j}^{-1}=\left\{\begin{array}{cc}
1 & i=\rho(j) \tag{5}\\
-1, & i=\rho(s(j)) \text { and } s(j)<j \quad, \quad i, j=1, \ldots, m \\
0 & \text { otherwise }
\end{array}\right.
$$

Example 5 If $Z \in \mathbf{Z}_{5}$ is as in example (4), then the inverse matrix of Z is calculated directly from (5):

$$
Z^{-1}=\left(\begin{array}{ccccc}
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & -1 \\
0 & 0 & 0 & 0 & 1 \\
1 & -1 & 0 & -1 & 0 \\
0 & 0 & 0 & 1 & 0
\end{array}\right)
$$

We consider now a matrix Z^{-1} as above corresponding to a pair $\rho=\left(\rho_{1}, \ldots, \rho_{m}\right) \in$ $P(m)$ and $s=\left(s_{1}, \ldots, s_{m}\right) \in S(m)$. We shall use Z^{-1} to define a new shuffling method. By elementary calculations, for any real row vector $\mathbf{e}=\left(e_{1}, \ldots, e_{m}\right)$ we obtain

$$
\begin{equation*}
\left(\mathbf{e} Z^{-1}\right)_{i}=e_{\rho_{i}}-\left(1-\delta_{i, s_{i}}\right) e_{\rho_{s_{i}}}, \quad i=1, \ldots, m \tag{6}
\end{equation*}
$$

Here, $\delta_{i, j}$ denotes the usual Kronecker's delta symbol. Inspired from (6) we have:

Theorem 2 Let $m, q \geq 2$ be natural numbers, $\rho=\left(\rho_{1}, \ldots, \rho_{m}\right) \in P(m)$ and $s=\left(s_{1}, \ldots, s_{m}\right) \in S(m)$. We define the set

$$
E_{m}^{(q)}=\left\{\mathbf{e}_{n}=\left(e_{n, 1}, \ldots, e_{n, m}\right): n=0, \ldots, q^{m}-1\right\}
$$

where \mathbf{e}_{n} is the sequence of digits of $n \in\left\{0, \ldots, q^{m}-1\right\}$ with respect to its q-adic expansion

$$
n=\sum_{i=1}^{m} e_{n, i} q^{i-1}
$$

Then the map

$$
T_{q, \rho, s}: E_{m}^{(q)} \rightarrow E_{m}^{(q)}
$$

such that for any $i=1, \ldots, m$

$$
T_{q, \rho, s}\left(\mathbf{e}_{n}\right)_{i}=\operatorname{Mod}\left(e_{n, \rho_{i}}-\left(1-\delta_{i, s_{i}}\right) e_{n, \rho_{s_{i}}}, q\right)
$$

is a bijection.
Proof: For any natural numbers $m, q \geq 2$ we fix a pair $(\rho, s) \in P(m) \times S(m)$ and we consider the above operator $T_{q, \rho, s}$. From now on we write

$$
T=T_{q, \rho, s}
$$

for simplicity. let $T\left(\mathbf{e}_{k}\right)$ and $T\left(\mathbf{e}_{n}\right)$ be two sequences for some pair $(k, n) \in$ $\left\{0, \ldots, q^{m}-1\right\}^{2}$. Notice that the elements of \mathbf{e}_{k} and \mathbf{e}_{n} belong in $\{0, \ldots, q-1\}$ by definition. Assume that

$$
\begin{equation*}
T\left(\mathbf{e}_{k}\right)=T\left(\mathbf{e}_{n}\right) \Rightarrow T\left(\mathbf{e}_{k}\right)_{i}=T\left(\mathbf{e}_{n}\right)_{i}, \forall i=1, \ldots, m \tag{7}
\end{equation*}
$$

If $i=1$ in (7), then by recalling the definition of $S(m)$ in (1) we have $s_{1}=1$, so

$$
T\left(\mathbf{e}_{k}\right)_{1}=T\left(\mathbf{e}_{n}\right)_{1} \Rightarrow \operatorname{Mod}\left(e_{k, \rho_{1}}, q\right)=\operatorname{Mod}\left(e_{n, \rho_{1}}, q\right)
$$

Hence

$$
e_{k, \rho_{1}}=e_{n, \rho_{1}}
$$

If $i=2$, then $s_{2} \in\{0,1\}$. For $s_{2}=2$ we immediately obtain

$$
e_{k, \rho_{2}}=e_{n, \rho_{2}}
$$

For $s_{2}=1$ we have

$$
\begin{aligned}
& T\left(\mathbf{e}_{k}\right)_{2}=T\left(\mathbf{e}_{n}\right)_{2} \\
\Rightarrow & \operatorname{Mod}\left(e_{k, \rho_{2}}-e_{k, \rho_{s_{2}}}, q\right)=\operatorname{Mod}\left(e_{n, \rho_{2}}-e_{n, \rho_{s_{2}}}, q\right) \\
\Rightarrow & \operatorname{Mod}\left(e_{k, \rho_{2}}-e_{n, \rho_{1}}, q\right)=\operatorname{Mod}\left(e_{n, \rho_{2}}-e_{n, \rho_{1}}, q\right)
\end{aligned}
$$

where the last equality was derived from the fact that $e_{k, \rho_{1}}=e_{n, \rho_{1}}$ as we showed above. Hence, either

$$
e_{k, \rho_{2}}-e_{n, \rho_{1}}=e_{n, \rho_{2}}-e_{n, \rho_{1}} \Rightarrow e_{k, \rho_{2}}=e_{n, \rho_{2}}
$$

or

$$
q-\left(e_{k, \rho_{2}}-e_{n, \rho_{1}}\right)=q-\left(e_{n, \rho_{2}}-e_{n, \rho_{1}}\right) \Rightarrow e_{k, \rho_{2}}=e_{n, \rho_{2}}
$$

Therefore, in any case we obtain

$$
e_{k, \rho_{2}}=e_{n, \rho_{2}}
$$

We proceed in the same manner for the remaining values $i=3, \ldots, m$ obtaining

$$
e_{k, \rho_{i}}=e_{n, \rho_{i}}, \forall i=1, \ldots, m
$$

Since ρ is a permutation, necessarily

$$
e_{k, i}=e_{n, i}, \forall i=1, \ldots, m
$$

and the proof is complete.
It is clear that the above operator $T_{q, \rho, s}$ provides a code for shuffling the elements of the set $\left\{0, \ldots, q^{m}-1\right\}$.

Example 6 Let $q=3, \rho=(2,1), s=(1,2)$ and

$$
E_{2}^{(3)}=\{(0,0),(0,1),(0,2),(1,0),(1,1),(1,2),(2,0),(2,1),(2,2)\}
$$

Then by the above definition of $T_{q, \rho, s}$ we obtain

$$
\begin{gathered}
(0,0) \rightarrow(0,0),(0,1) \rightarrow(1,0),(0,2) \rightarrow(2,0) \\
(1,0) \rightarrow(0,1),(1,1) \rightarrow(1,1),(1,2) \rightarrow(2,1) \\
(2,0) \rightarrow(0,2),(2,1) \rightarrow(1,2) \text { and }(2,2) \rightarrow(2,2)
\end{gathered}
$$

or

$$
T_{q, \rho, s}:\{0,1,2,3,4,5,6,7,8\} \rightarrow\{0,3,6,1,4,7,2,5,8\}
$$

4 On Reversible gates

In this section we see that several of the well known reversible gates can be obtained by the bijection maps of theorem 2. First, we modify theorem 2 as follows:

Theorem 3 For any natural number m, let $(\rho, s) \in P(m) \times S(m)$ be as in theorem 2 and

$$
E_{m}=\left\{\mathbf{e}_{n}:=\left(e_{n, 1}, \ldots, e_{n, m}\right): n=\left\{0, \ldots, 2^{m}-1\right\}\right\}
$$

be the set of all m-bit arrays. Then:
(i) The map

$$
T_{\rho, \sigma}: E_{m} \rightarrow E_{m}
$$

such that for any $j=1, \ldots, m$ we have

$$
T_{\rho, s}\left(\mathbf{e}_{n}\right)_{j}=\left|e_{n, \rho_{j}}-\left(1-\delta_{j, s(j)}\right) e_{n, \rho_{s(j)}}\right|
$$

is a bijection.
(ii) For any permutation $\tau \in P(m)$ we denote by

$$
L_{\tau}\left(\mathbf{e}_{n}\right)=\left(e_{n, \tau(1)}, \ldots, e_{n, \tau(m)}\right)
$$

the element of E_{m} obtained from shuffing \mathbf{e}_{n} by the permutation τ. Then

$$
L_{\tau} T_{\rho, \sigma}: E_{m} \rightarrow E_{m}
$$

is a bijection too.
Proof: (i). It is a direct consequence of theorem 2 for $q=2$.
(ii) It is immediate.

Example 7 The Feynman Gate. It is a 2-bit reversible map such that

$$
\begin{gathered}
(0,0) \rightarrow(0,0),(0,1) \rightarrow(0,1) \\
(1,0) \rightarrow(1,1) \text { and }(1,1) \rightarrow(1,0) .
\end{gathered}
$$

According to theorem 3, this gate corresponds to the map $T_{\rho, \sigma}$, where

$$
\rho=(1,2) \text { and } \sigma=(1,1) \text {. }
$$

In a different notation this gate can be uniquely described by a matrix in the class \mathbf{Z}_{2} associated with the above pair $(\rho, s) \in P(2) \times S(2)$ (see definition 1 or example 4)

$$
Z_{\rho, s}=\left(\begin{array}{cc}
1 & 1 \\
0 & 1
\end{array}\right)
$$

Also, in a different notation this gate can be described by the following 4×4 matrix (by concatenating the corresponding inputs and outputs)

$$
\left(\begin{array}{llll}
0 & 0 & 0 & 0 \\
0 & 1 & 0 & 1 \\
1 & 0 & 1 & 1 \\
1 & 1 & 1 & 0
\end{array}\right)
$$

Example 8 The Double Feynman Gate. It is a reversible map on the 3 bit binary arrays so that

$$
\begin{gathered}
(0,0,0) \rightarrow(0,0,0),(1,0,0) \rightarrow(1,1,1),(0,1,0) \rightarrow(0,1,0) \\
(1,1,0) \rightarrow(1,0,1),(0,0,1) \rightarrow(0,0,1),(1,0,1) \rightarrow(1,1,0) \\
(0,1,1) \rightarrow(0,1,1) \text { and }(1,1,1) \rightarrow(1,0,0)
\end{gathered}
$$

According to theorem 3, this gate corresponds to the map $T_{\rho, \sigma}$, where

$$
\rho=(1,2,3) \text { and } \sigma=(1,1,1)
$$

In a different notation, this gate can be uniquely described by a matrix in the class \mathbf{Z}_{3} associated with the above pair $(\rho, s) \in P(3) \times S(3)$ (see the above definition 1 or example 4)

$$
Z_{\rho, s}=\left(\begin{array}{ccc}
1 & 1 & 1 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

Also, in a different notation this gate can be described by the following 8×6 matrix (by concatenating the corresponding inputs and outputs)

$$
\left(\begin{array}{llllll}
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 & 1 & 0 \\
0 & 1 & 1 & 0 & 1 & 1 \\
1 & 0 & 0 & 1 & 1 & 1 \\
1 & 0 & 1 & 1 & 1 & 0 \\
1 & 1 & 0 & 1 & 0 & 1 \\
1 & 1 & 1 & 1 & 0 & 0
\end{array}\right)
$$

Fig. 1: The set of points $\left\{\left(n, T_{2, \rho, s}(n)\right): n \in I_{8}\right\}$ for the selection of the pair (ρ, s) as in example 9. Recall that the map $T_{2, \rho, s}$ is a bijection on the set I_{8} providing a shuffling method for I_{8}.

We mention here that the 2-bit Swap gate can be also implemented by the map $T_{\rho, s}$ by selecting $\rho=(2,1)$ and $s=(1,2)$. However, the 3 -bit Toffoli and Fredkin gates cannot be implemented via $T_{\rho, s}$.

5 CODING PSEUDORANDOM PERMUTATIONS

We apply theorem 2 to give by an example a method to code a pseudorandom permutation in $P\left(2^{m}\right)$. For any $(\rho, s) \in P(m) \times S(m)$ and a fixed random permutation $r \in R\left(2^{m}\right)$ we shuffle the image of $T_{2, \rho, s}$ by the composition map $W_{r, 2} T_{2, \rho, s}$ for some particular selection of $r \in R\left(2^{8}\right)$ (see theorem $1)$ and we obtain a pseudo-random permutation coded by a triple (ρ, s, r).

Example 9 Let $\rho=(5,7,6,3,4,8,1,2)$ and $s=(1,1,1,4,5,2,7,3)$. Figure 1 shows how the bijective map $T_{2, \rho, s}$ of theorem 2 shuffles the elements of the set $I_{8}=\left\{0, \ldots, 2^{8}-1\right\}$. In figure 2 we use a fixed element $r \in R\left(2^{8}\right)$ (see theorem 1) and we shuffle the set I_{8} by means of the composition operator $W_{r, 2} T_{2 \rho, s}$. In this case, the graph appears to be more "randomly" distributed than the graph of figure 1.

In conclusion, we demonstrated a variety of new enumeration/shuffling methods for the group of permutations. We also proposed a class of bijections for sets of natural numbers based on efficient coding methods for

Fig. 2: The set of points $\left\{\left(n, W_{r, 2} T_{2, \rho, s}(n)\right): n \in I_{8}\right\}$ for some $r \in R\left(2^{8}\right)$ and (ρ, s) as in example 9.
sparse boolean matrices. We also discussed possible connections of the shuffling problem with the random permutation generation problem. According to $[8,9]$, any permutation in $P(m)$ can be almost uniformly randomly distributed using $m \log (m) / 2$. This observation may be important for establishing a connection between our shuffling method and the random permutation generation problem in future. We believe that this direction is very promising.

References

[1] K. N. Patel, J. P. Hayes, and I. L. Markov, "Fault testing for reversible circuits," in IEEE VLSI Test Symposium, Napa Valley, California, 2003, pp. 410-417.
[2] N. Atreas and C. Karanikas, "Boolean invertible matrices identified from two permutations and their corresponding haar-type matrices," Linear Algebra Appl., vol. 435, no. 1, pp. 95-105, 2011.
[3] _ , "Multiscale haar unitary matrices with the corresponding riesz products and a characterization of cantor-type languages," J. Fourier Anal. Appl., vol. 13, no. 2, pp. 197-210, 2007.
[4] _ , "Haar-type orthonormal systems, data presentation as riesz products and a recognition on symbolic sequences," Contemporary Math., vol. 451, pp. 1-9, 2008.
[5] -_, "Discrete type riesz products," in Walsh and Dyadic Analysis, 2008, pp. 137-143.
[6] N. Atreas, C. Karanikas, and P. Polychronidou, "A class of sparse unimodular matrices generating multiresolution and sampling analysis for data of any length," SIAM J. Matrix Anal. Appl.,, vol. 30, no. 1, pp. 312-323, 2008.
[7] D. H. Lehmer, "Teaching combinatorial tricks to a computer," in Proc. Symbos. Appl. Math. Combinatorial Analysis, vol. 10, 1960, pp. 179-193.
[8] P. Diaconis, G. Graham, and S. P. Holmes, "Statistical problems involving permutations with restricted positions," in Lecture Notes. Monograph Series, vol. 36, 2001, pp. 195-202.
[9] P. Diaconis and M. Shahshahani, "Generating a random permutation with random transposition," Z. Wahr. verw. Gebeite, vol. 57, no. 2, pp. 159-17, 1981.

[^0]: Received October 22, 2017; received in revised form January 24, 2018
 Corresponding author: Nikolaos Atreas
 School of Electrical and Computer Engineering, Dpt of Telecommunications, Faculty of Engineering,
 Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
 (E-mail: natreas@auth.gr)
 *An earlier version of this paper was presented as an invited address at the Reed-Muller 2017 Workshop, Novi Sad Serbia, May 24-25, 2017

