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Abstract: A digital device is called reversible if it realizes a reversible mapping, i.e.,

the one for which there exist a unique inverse. The field of reversible computing is

devoted to studying all aspects of using and designing reversible devices. During last

15 years this field has been developing very intensively due to its applications in quan-

tum computing, nanotechnology and reducing power consumption of digital devices.

We present an analysis of the Reversible Finite State Machines (RFSM) with respect

to three well known sequences used in the testability analysis of the classical Finite

State Machines (FSM). The homing, distinguishing and synchronizing sequences are

applied to two types of reversible FSMs: the converging FSM (CRFSM) and the non-

converging FSM (NCRFSM) and the effect is studied and analyzed. We show that

while only certain classical FSMs possess all three sequences, CRFSMs and NCRF-

SMs have properties allowing to directly determine what type of sequences these ma-

chines possess.
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1 INTRODUCTION

One of the problems when designing sequential logic is the ability to efficiently

generate tests, apply them to the circuit under test and design an easily testable cir-

cuit (Design for test - DFT). In classical Finite State Machines (FSMs) this issue
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Abstract. In an overview of Horizontal Current Bipolar Transistor (HCBT) 
technology, the state-of-the-art integrated silicon bipolar transistors are described 
which exhibit fT and fmax of 51 GHz and 61 GHz and fTBVCEO product of 173 GHzV that 
are among the highest-performance implanted-base, silicon bipolar transistors. HBCT 
is integrated with CMOS in a considerably lower-cost fabrication sequence as 
compared to standard vertical-current bipolar transistors with only 2 or 3 additional 
masks and fewer process steps. Due to its specific structure, the charge sharing effect 
can be employed to increase BVCEO without sacrificing fT and fmax. Moreover, the 
electric field can be engineered just by manipulating the lithography masks achieving 
the high-voltage HCBTs with breakdowns up to 36 V integrated in the same process 
flow with high-speed devices, i.e. at zero additional costs. Double-balanced active 
mixer circuit is designed and fabricated in HCBT technology. The maximum IIP3 of 
17.7 dBm at mixer current of 9.2 mA and conversion gain of -5 dB are achieved. 

Key words: BiCMOS technology, Bipolar transistors, Horizontal Current Bipolar 
Transistor, Radio frequency integrated circuits, Mixer, High-voltage 
bipolar transistors. 

1. INtRODUctION 

In the highly competitive wireless communication markets, the RF circuits and 
systems are fabricated in the technologies that are very cost-sensitive. In order to 
minimize the fabrication costs, the sub-10 GHz applications can be processed by using the 
high-volume silicon technologies. It has been identified that the optimum solution might 
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is well studied and various techniques exist to determine FSM’s testability [1–11].

Among the desired characteristics of a testable FSM is the identification of an un-

known current state and the ability to bring the FSM to a known state. These

properties are verified by the homing, synchronizing and distinguishing input se-

quences. Using these sequences it is possible to establish whether a classical FSM

• possesses a transition path from the initial to the final state,

• possesses a transition path from any state to any another state and

• allows by only observing the machine’s output sequence, to reach an arbitrary

state from a different arbitrary state.

The motivation for the construction of automata possessing a particular set of se-

quences can be appreciated by observing the advantages of each of the sequences

separately. The homing sequences have been successfully used in hardware fault

detection [12] and in machine learning [13, 14]. The synchronizing sequence has

been successfully used in various designs where the existence of the synchroniz-

ing sequence allows to simplify the circuit implementation and testing. Finally,

the distinguishing sequence is used to build a checking sequence used to verify if

an implementation of an FSM is consistent with its specification [2, 10]. Conse-

quently, an FSM that possesses the desired sequences would be highly testable and

thus both practical in industrial applications and useful for theoretical research.

The general area of sequential reversible circuits and automata has been ex-

plored several traditional approaches. In [15,16], optimized D and JK latches have

been proposed. In [17] proposed to build reversible components for sequential

circuits based on Toffoli reversible gates and in [18] the elements of sequen-

tial reversible circuits were implemented using conservative Fredkin logic gates.

In [19] the reversible T-flip-flop was proposed to be built using custom gates.

In [20] the authors proposed to build a memory cell from two Toffoli gates in

standard CMOS. In [21] a reversible double-edge triggered flip-flop was build on

FPGA. Testable sequential devices based on Quantum Cellular Automata have been

explored in [22, 23]. Reversible sequential circuits have also been designed in

multiple-valued logic such as in [24]. In the construction of Reversible FSMs

(RFSMs), the reversible computation imposes the reversibility constraints and thus

limits the construction [25, 26]. This makes the RFSMs harder to construct and

more expensive because ancilla bits and additional logic are required to preserve or

achieve the reversibility [27–30].

Consequently, applying methods based on the established classical FSMs to

RFSMs, can determine if the established classical FSMs methods are sufficient,
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3

need to be improved or if unique new methods must be designed when dealing

with the reversible computational paradigm.

RFSMs have been studied for their properties of universality [25] and further-

more extensive studies have been conducted in the area of reversible cellular au-

tomata (RCA) [31–35]. An RCA can be seen as a RFSMs with spatial constraints.

An RCA maps input states to next states using local rules. A local rule is a func-

tion of k spatially closest inputs that is repeatedly applied to all n inputs. While

RCA have been studied for their effective implementation and powerful computa-

tion abilities [36] no study on the testability of RCA has been done.

Similarly, up to now there have been no serious efforts to explore the general

testability of RFSMs from the point of view of the well established testing tech-

niques such as those used in testing of classical irreversible FSMs. Specifically,

the impact of the three above introduced sequences has not been studied at all for

RFSMs and for the FSMs embedded in RFSMs. Some studies into testability have

been performed from the classical point of view such as in [37].

In this paper the constraints of the reversible-permutative and unitary matrices

used to specify FSMs are studied with respect to the three above introduced se-

quences. We assume that an RFSM is specified by a permutation matrix and our

analysis is limited to such permutative and discrete RFSMs. We apply the three

types of sequences to RFSMs and determine their power when used on reversible

sequential devices. The main contributions of this paper are:

1. the analysis of the homing, synchronizing and distinguishing sequences for

RFSMs,

2. criteria for RFSMs in order to have the homing, distinguishing, or synchro-

nizing sequences.

The paper is organized as follows. First, background on the classical and reversible

FSMs is given in Section 2. Section 3 describes and defines the terms and concepts

necessary for the understanding of the three considered sequences and Section 4

shows the application and analysis of the sequences related to both the converg-

ing and non-converging finite state machines CRFSMs/NCRFSMs. Section 5 con-

cludes the paper by summarizing our results.

2 BACKGROUND

Let A and B be finite non-empty sets.

Definition 1 (Balanced Logic Function). A function f : A → B is balanced if
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for every value b ∈ B there is the same number of combinations of input variable

values in its domain A.

Definition 2 (Reversible Logic Function). A function f : A → B is reversible if

it is one-to-one and onto. In other words, f(Xa) = f(Xb) =⇒ Xa = Xb and

f(x) = y for x ∈ X and y ∈ Y .

Table 1: Example of (a) an irreversible logic function F , (b) a reversible logic

function FR.

AB A’B’

00 01

01 11

10 00

11 11

F

(a)

AB A’B’

00 00

01 11

10 01

11 10

FR

(b)

Table 1a shows example of an irreversible logic function and Table 1b an

example of a reversible function.

Definition 3 (Permutative Matrix). A permutative matrix for n input variables, is a

sparse matrix with binary coefficients performing a reversible function f : Bn →
Bn.

Reversible functions in this paper will be represented by truth tables and per-

mutative matrices. Table 1a and 1b show examples of irreversible and reversible

functions respectively. The corresponding matrices are shown in eq. (1) and (2).









0 0 1 0
1 0 0 0
0 0 0 0
0 1 0 1









(1)









1 0 0 0
0 0 1 0
0 0 0 1
0 1 0 0









(2)

Definition 4 (Indexing Variable). The indexing variable of a block diagonal matrix

is the input variable that allows to separate a block diagonal matrix to independent

reversible matrices.

Definition 5 (Reversible Logic Gate). A reversible logic gate (or circuit) on n-

variables realizes a n× n reversible function F : I → O.
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5

Definition 6 (Controlled Reversible Logic Gate). A k-controlled reversible logic

gate on k + 1 variables performs a logic function on target variable ik+1 while

leaving all control variables i1, . . . , ik unchanged such that

Fk+1(i1, . . . , ik, ik+1) =

{

1⊕ ik+1 if for all j = 1, . . . , k, ij = 1

ik+1 otherwise
(3)

That is, it realizes a one variable balanced function on a target variable if all k
control variables have value 1.

A k-controlled reversible logic gate on k + 1 variables uses k control variables

and one target variable such that k variables remain unchanged after the application

of the reversible logic gate on the target variable ik+1.

Definition 7 (Positive and Negative Control). A positive (negative) control is a

variable i that must be 1 (0) in order to activate the function on target variable.

1 2

A

B f1 = A⊕B

f0 = B

Fig. 1: Example of realization of a reversible function

Reversible circuits are built from reversible gates. For instance, consider the

realization of an reversible function shown in Figure 1. Gates 1 and 2 are both two

variable gates, called CNOT. A CNOT gate is a single variable positive controlled

NOT gate implementing the function f = A⊕B. Observe gate labelled 1 in circuit

from Figure 1: the control variable A controls the NOT operation on variable B.

The CNOT gate labelled 2, applies the NOT gate on variable A and is controlled

by B. Therefore the CNOT gate 1 in Figure 1 implements function f1 = A ⊕ B
and CNOT gate 2 implements f0 = A⊕B ⊕A = B.

Definition 8 (Finite State Machine). A finite state machine (FSM) is a sequential

device defined by a septuple M = (I,O, S, Si, Sf , F,G) where I is the input al-

phabet (a finite, non-empty ordered set of input symbols), O is the output alphabet

(a finite, non-empty ordered set of output symbols), S is a finite, non-empty ordered

set of states, Si ⊂ S is the set of initial states, Sf ⊂ S is the set of final states, F is

the next state function given by the mapping F : I × S → S′ and G is the output

function given by the mapping G : I × S → O.
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Table 2: Example of an irreversible FSM

S
I

0 1

A B/0 A/1

B A/0 D/0

C A/1 D/1

D C/0 B/1

Table 2 shows an example of an FSM. In Table 2 first column shows in every

row one possible current state of the FSM. The second and third columns show the

the next sate and output assignments for input values I = 0 and I = 1 respectively.

Definition 9 (Reversible Finite State Machine (RFSM)). A RFSM is a state ma-

chine M = (I,O, S, Si, Sf , F,G) with state transition function F : I × S → S′

and output function G : I × S → O are balanced logic functions and such that

I × S → O × S′ is a reversible function.

In this paper we will distinguish two types of RFSMs: the convergent RFSM

(CRFSM) and its special case the non-convergent RFSM (NCRFSM). The differ-

ence is in the fact that for any NCRFSM and for a given input value, every next

state assignment is unique. This difference is illustrated in Table 3; Table 3(a)

shows an NCRFSM and 3(b) and CRFSM in the so called reversible specification

table.

Table 3: Example of (a) non-converging ΛN and (b) converging ΛC specifications.

S
I

0 1

A D/1 A/1

B A/0 C/1

C C/0 D/0

D B/1 B/0

S
I

0 1

A D/1 C/0

B A/0 C/1

C A/1 D/0

D B/1 B/0

(a) (b)

Definition 10 (NCRFSM Evolution). The input-state-output mapping ΛN (F×G) :
I × S → S′ × O. The evolution function ΛN is a bijection with constraint that

when I is used as input variable(s), each output state occurs once at most: ∀i ∈
I, ∀s ∈ S, F (i, s) �= F (i, s′).

Example of a NCRFSM is shown in Table 3(a).
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Definition 11 (CRFSM Evolution). The input-state-output mapping ΛC(F ×G) :
I × S → S′ ×O. The evolution function ΛC is a bijection with the only constraint

being that each pair {S′, O} occurs only once in ΛC .

Example of CRFSM is shown in Table 3(b). In this paper the reference RFSM

will be used to address any of the CRFSM/NCRFSM unless specifically indicated.

Note two major differences between the definition of the RFSM and FSM:

1. A RFSM must preserve reversibility

2. it has to be specified for all the combinations of the input-state {I, S} values

3. all state-outputs {S′O} combinations must occur only once in the reversible

specification table.

Definition 12 (State-Output Set θ). Given a RFSM MR, the state-output set θ is

the set of all combinations of s ∈ S and o ∈ O. The size of θ is |S| ∗ |O|, with

element indices i = 1, . . . , |S| ∗ |O|. Let k = 0, . . . , |S|−1 and j = 0, . . . , |O|−1
then the indices of elements in θ are calculated as i = k + |O| ∗ j.

Definition 13 (Don’t Care). The Don’t Care ∗ is used to represent unknown or

unconsidered values of states, output or input values.

In the analysis of an RFSM the input sequence uncertainty is used to describe

the knowledge about the current state of the RFSM. To understand the concept

of input sequence uncertainty, first the concepts of partition and cover need to be

defined and explained. The following concepts are adapted to the CRFSMs and

NCRFSMs from the original ones defined in [11].

Definition 14 (Ordered State Partition). Given a CRFSM/NCRFSM M , the Or-

dered State Partition π of states S of M , is a collection of disjoint subsets of states

whose set union is S and an ordering ≺i−1,i. The order ≺i of states S ∈ πi is given

by the order ≺i−1 of S ∈ πi−1 of the direct predecessor state.

Let the CRFSM from Table 3(a), π1 = {A/∗, B/∗, C/∗, D/∗} and I = 0 then

the ordered partition is π2 = {D/1, A/0, C/0, B/1}. Using this notation it can be

easily determined that the predecessor to B/1 was the state D.

Note that the original definition of state partition [38] breaks the states into

groups such that each group contains states with same output. In the Definition 14

these groups are broken visually but still exists if grouped by variable values. Thus

an unordered partition π2 = (AC)(BD).
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Definition 15 (Ordered State Cover). An ordered cover is a collection φ of subsets

of states S (with their associated outputs O) whose union is S, such that no subset

is contained in another subset in the collection [11]. Additionally, the order of

states in the cover is given ≺i−1,i.

Let the CRFSM from Table 3(b), π = {A/∗, B/∗, C/∗, D/∗} and I = 0 then

the ordered cover is φ = {D/1, A/0, A/1, B/1}. Using this notation it can be

easily determined that the predecessor to B/1 was the state D/∗.

Definition 16 (Ordered Input Sequence Uncertainty). The uncertainty ∆(x) of an

input sequence x = x1, . . . , xk of an RFSM is a cover φ of S where two distinct

states F (xt, sh) = si and F (xt, sj) = sk are ordered according to ≺i−1,i.

The input sequence uncertainty is highest when the machine is in an unknown

state given by π = {A/∗, B/∗, C/∗, D/∗, }; all states are indistinguishable by

their outputs. The lowest uncertainty is either when the cover of machine states

is a singleton state or when each group of states is a singleton state such as π =
{A/0, C/1}.

The uncertainty of input sequence can be complemented by the amount of in-

formation computed from various states present in the block.

Definition 17 (Information Content of Uncertainty). Information Content of Un-

certainty is given by E(φ) = −
∑

i pilog(pi) where the pi coefficient represents

the multiplicity of the state si in the cover φ of the states resulting from an input

value.

For instance E({A/∗, B/∗, C/∗, D/∗}) = −
∑

4
0.25 ∗ log(0.25) = 1.3863

and E({D/∗, A/∗, A/∗, A/∗}) = −(0.25 ∗ log(0.25) +
∑

3
0.75 ∗ log(0.75)) =

0.9939.

The difference between the information content and the uncertainty is: the un-

certainty ∆(x) of input sequence x represents the partition/cover of states given

their observable outputs and the information content E(φ) is given by the mixture

of individual unique states (or states/output combinations) present in the partition

or cover. For instance the lowest uncertainty ∆(x) = 0 represents the fact that each

output represents one unique state, independently of how many such states are in

the block. The lowest possible information content E(φ) = 0 is such ordered

partition that contains exactly one state (i.e., {A/∗, A/∗, A/∗, A/∗})

Let MR be a RFSM (Definition 9) and x = x1, . . . , xj , s = s1, . . . , sj and

o = o1, . . . , oj be an input, state and output sequences, correspondingly, each of

them of length j.
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Definition 15 (Ordered State Cover). An ordered cover is a collection φ of subsets

of states S (with their associated outputs O) whose union is S, such that no subset

is contained in another subset in the collection [11]. Additionally, the order of

states in the cover is given ≺i−1,i.

Let the CRFSM from Table 3(b), π = {A/∗, B/∗, C/∗, D/∗} and I = 0 then

the ordered cover is φ = {D/1, A/0, A/1, B/1}. Using this notation it can be

easily determined that the predecessor to B/1 was the state D/∗.

Definition 16 (Ordered Input Sequence Uncertainty). The uncertainty ∆(x) of an

input sequence x = x1, . . . , xk of an RFSM is a cover φ of S where two distinct

states F (xt, sh) = si and F (xt, sj) = sk are ordered according to ≺i−1,i.

The input sequence uncertainty is highest when the machine is in an unknown

state given by π = {A/∗, B/∗, C/∗, D/∗, }; all states are indistinguishable by

their outputs. The lowest uncertainty is either when the cover of machine states

is a singleton state or when each group of states is a singleton state such as π =
{A/0, C/1}.

The uncertainty of input sequence can be complemented by the amount of in-

formation computed from various states present in the block.

Definition 17 (Information Content of Uncertainty). Information Content of Un-

certainty is given by E(φ) = −
∑

i pilog(pi) where the pi coefficient represents

the multiplicity of the state si in the cover φ of the states resulting from an input

value.

For instance E({A/∗, B/∗, C/∗, D/∗}) = −
∑

4
0.25 ∗ log(0.25) = 1.3863

and E({D/∗, A/∗, A/∗, A/∗}) = −(0.25 ∗ log(0.25) +
∑

3
0.75 ∗ log(0.75)) =

0.9939.

The difference between the information content and the uncertainty is: the un-

certainty ∆(x) of input sequence x represents the partition/cover of states given

their observable outputs and the information content E(φ) is given by the mixture

of individual unique states (or states/output combinations) present in the partition

or cover. For instance the lowest uncertainty ∆(x) = 0 represents the fact that each

output represents one unique state, independently of how many such states are in

the block. The lowest possible information content E(φ) = 0 is such ordered

partition that contains exactly one state (i.e., {A/∗, A/∗, A/∗, A/∗})

Let MR be a RFSM (Definition 9) and x = x1, . . . , xj , s = s1, . . . , sj and

o = o1, . . . , oj be an input, state and output sequences, correspondingly, each of

them of length j.
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Definition 18 (Transition Cycle). A transition cycle τj = so|x, is the sequence of

length j of elements of state-output so ∈ θ combinations obtained as a result of

applying the sequence x to a machine MR in some initial state θ1 = s1 and such

that the FR(x1s1) = FR(xj , sj).

The transition cycle defines the shortest sequence of input values x that would

starting from arbitrary initial state si and ending in the same state si.

Definition 19 (Maximal Transition Cycle). If the transition cycle τi reaches all

available states in S, then the transition cycle is called maximal and is denoted

τmax.

For instance, the machine from Table 3(b) starting from IS = 0/A has τ4 =
D/1B/1C/1A/1|0010. Note that τ4 is also a maximal transition cycle and thus

for MR, τ4 = τmax.

Theorem 1. Any RFSM that does not possess τmax must have p transition cycles

such that ∪p
l=1

τl = θ and
∑p

l=1
|τl| = |S| and ∩p

l=1
τl = ∅.

Proof. Every RFSM is specified by a set of unique mappings {I, S} → {S′, O}.

Additionally the evolution operator ΛC is a one-to-one bijection and thus every

single {S′, O} ∈ θ can be reached from exactly one distinct {I, S}. This implies

that each state can be reached from at maximum |I| different cycles. Therefore,

any existing {S′, O} is accessed by at maximum one existing cycle in ΛC . Conse-

quently, at maximum there are |O × S × I|/2 independent cycles. The content of

each transition cycle implies that
∑p

l=1
|τl| = |S| and ∩p

l=1
τl = ∅.

Definition 20 (Reversible Successor Tree (RST)). A reversible successor tree is a

rooted DAG RST = {V,E} where: (1) each edge E corresponds to a transition

between two states given an input I value, and (2) node V represents a block of

states with the associated output [11].

The RST of the FSM shown in Table 3(a) is shown in Figure 2. Notice that

unlike in classical successor tree [11], the RST preserves the order of the states

between two successor nodes as shown in Figure 2. For instance, at node 0 the

state cover is φ = {A/∗, B/∗, C/∗, D/∗} because it represents the current state,

no output was yet generated and therefore the machine could be in any possible

state. For the input value of 0, node 1 transforms the changed ordered cover φ =
{D/1, A/0, C/0, B/1}. Thus a state with output at jth position in a parent node

will generate the state with output at the jth position in every child node.

Definition 21 (Impulse Response (IR)). Impulse response of a machine M is the

vector of output values vi = {ois1 , . . . , o
i
sn} for all possible states sj |sj ∈ S gener-

ated to an input value xi.
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Fig. 2: Partially expanded successor tree of the NCRFSM defined in Table 3(a)

Definition 22 (Response Sequence (RS)). For a CRFSM/NCRFSM M starting

from a state si and an input sequence x = x1, . . . , xn, the sequence of IRs vxi =
{ox1

si , . . . , o
xn
si } of obtained output values is called Response Sequence (RS).

Definition 23 (Machine Signature). Combining IR and RS of a machine M into

a matrix which columns are labeled by output values given a state oS/O and rows

by input values from sequence x = x1, . . . , xn results in the so called machine

signature ms.

Example of machine signature ms of CRFSM from Table 3(b) obtained as a

result of the input sequence x = 00101 is shown in Table 4. Columns in Table 4

represent, the index of the input variables, the input variable, the next state and

output, and the impulse response respectively. For instance, in second row, k = 0
indicating the input variable is x0 = 0. The third column indicates that given the

state and output A/∗, the next state output is D/1. The outputs generated for input

x0 are all gathered in v0 = 1011.

Table 4: Response matrix of the CRFSM from Table 3(b)

k x oA/∗ oB/∗ oC/∗ oD/∗ ms

0 x0 = 0 D/1 A/0 A/1 B/1 v0 = 1011
1 x1 = 0 B/1 D/1 D/1 A/0 v1 = 1110
2 x2 = 1 C/1 B/0 B/0 C/0 v2 = 1000
3 x3 = 0 A/1 A/0 A/0 A/1 v3 = 1001
4 x4 = 1 C/0 C/0 C/0 C/0 v4 = 0000
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Example of machine signature ms of CRFSM from Table 3(b) obtained as a
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indicating the input variable is x0 = 0. The third column indicates that given the

state and output A/∗, the next state output is D/1. The outputs generated for input

x0 are all gathered in v0 = 1011.
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k x oA/∗ oB/∗ oC/∗ oD/∗ ms

0 x0 = 0 D/1 A/0 A/1 B/1 v0 = 1011
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3 SEQUENCES FOR THE ANALYSIS OF FSMS

In this section we present adapted definitions of testing sequences originally intro-

duced for irreversible FSMs [38] to the models of NCRFSM and CRFSM intro-

duced in this paper.
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Fig. 3: Partially expanded successor tree of the CRFSM defined in Table 3(b)

3.1 Homing Sequence

Definition 24 (Homing Sequence). A homing sequence is a sequence of inputs x
that independently on the initial state si and by observing the output sequence o
allows to bring the machine to a distinct final state sf .

We look to Figure 2 for homing sequence. Starting from the initial cover φ
(node 0) the input sequence 01 leads to B, A, D and C for o = 10, o = 01, o = 00
and o = 11 respectively.

To obtain a Homing sequence, start from the top node with index 0 and expand

the node into successor nodes by analyzing the state change from each state in the

current node for input value 1 and 0. The expansion stops when each state is a

singleton or if all states in a node are the same.

3.2 Distinguishing Sequence

Definition 25 (Distinguishing Sequence). A sequence x of inputs that creates a

unique sequence of outputs o starting from any unknown initial state sj of the state

machine. Such output sequence permits to determine the unknown initial state of

the machine.
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Let’s again use the successor tree from Fig. 2. The sequence x = 01 shows

that for each of the possible current state a unique output sequence is be generated.

Starting from node 0, the output sequences o = 10, o = 01, o = 00, and o = 11
for the initial states A, B, C and D respectively.

3.3 Synchronizing Sequence

Definition 26 (Synchronizing Sequence). The sequence x of inputs to create a

path from any initial state si to the same specific final state sf independently of the

output sequence o. The synchronizing sequence is in fact a more powerful type of

the homing sequence and thus if a sequence is synchronizing it is also a homing

sequence.

Let’s consider the successor tree from Figure 3. Similarly to the homing se-

quence, starting from the root node (with index 0) and sequentially feeding the state

machine a sequence of input values the machine will end up in the same state. For

instance, the input sequence 010 leads the machine through the nodes 1, 4, and 5

and in node 5 all states are A/0. Thus independently of the output and of the initial

state, the machine will be end up in the state A.

4 ANALYZING REVERSIBLE FINITE STATE MACHINES

CRFSMs and NCRFSMs used here are all reduced and thus do not contain any

compatible states. Consequently, most of trivial models of state devices are not

discussed.

4.1 NCRFSM

o

s′1

s′0s1

s0

i

Fig. 4: Circuit realization of the NCRFSM defined in Table 3(a).

For the analysis of the NCRFSM we use the NCRFSM from Table 3(a) that

has the RST shown in Figure 2. Figure 4 shows one possible realization of the
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For the analysis of the NCRFSM we use the NCRFSM from Table 3(a) that

has the RST shown in Figure 2. Figure 4 shows one possible realization of the
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NCRFSM defined by Table 3(a) using the encoding of the states A = (s0 =
0, s1 = 0), B = (s0 = 0, s1 = 1), C = (s0 = 1, s1 = 0) and D = (s0 = 1, s1 =
1).

Table 5: Encoding of the NCRFSM from Table 3(a)

S
I

0 1

s0 s1 s0 s1 o s0 s1 o

0 0 1 1 1 0 0 1

0 1 0 0 0 1 0 1

1 0 1 0 0 1 1 0

1 1 0 1 1 0 1 0

Table 5 shows the individual bits for nest state and output assignments. Ta-

ble 5 allows us to generate a set of equations describing the individual variable

assignment:

s′0 = s̄1 ⊕ is̄0 = s̄1 ⊕ is̄′1 (4)

s′1 = s0 ⊕ īs̄1 (5)

o = s̄0 ⊕ īs1 = i⊕ s′1 (6)

However because we are dealing with reversible circuits, we cannot simply assign,

but rather we have to use the equations 4∼6 to change one of the state, input or

ancilla bit variables. Here we decide to use the following variable mapping: i → o,

s0 → s′1 and s1 → s′0 and we use one ancilla bit.

The permutative matrix representing ΛN of the NCRFSM from Table 3(a) is

shown in eq. (7). The variables indicated at the top of the matrix are the input I ,

the state S and the output O variable respectively.

ΛN =

























0/A 0/B 0/C 0/D 1/A 1/B 1/C 1/D

A/0 0 1 0 0 0 0 0 0
B/0 0 0 0 0 0 0 0 1
C/0 0 0 1 0 0 0 0 0
D/0 0 0 0 0 0 0 1 0
A/1 0 0 0 0 1 0 0 0
B/1 0 0 0 1 0 0 0 0
C/1 0 0 0 0 0 1 0 0
D/1 1 0 0 0 0 0 0 0

























(7)

Lemma 1. An function ΛN does not changes the information content of the input

uncertainty in an NCRFSM.
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Proof. The information content of the input uncertainty ∆(x) is changed only

when for a given input value xj the number of distinct successor states is increased

or decreased with respect to the number of distinct states in the predecessor state

partition. The evolution function ΛN ≡ F × G (Definition 10) preserves for each

input value i the number of unique states. Therefore, starting from an initial par-

tition π = {s1/i1, . . . , s1/ik, . . . , sn/i1, . . . , sn/ik} each vertex of the successor

tree will lead to a partition that contains exactly the same states permuted according

to function ΛN . Consequently, there is no input sequence that would modify the in-

formation content E(φ) in state partitions of the successor tree of an NCRFSM.

For instance, observe that every node in the RST shown in Figure 2 contains

all states in every node of the tree.

Theorem 2. An NCRFSM always possesses a homing sequence.

Proof. The assignment of states and output values for each input using ΛN means

that all states of the NCRFSM appear at every node of the successor tree (lemma 1).

Additionally, ΛN for an altering sequence of input values such as 0, 1, 0, etc. at ev-

ery node all available states will be having output 1 or 0. Finally, NCRFSM always

contains a τmax: there exists at least one sequence of inputs that will traverse the

τmax and thus generating a unique sequence for each initial state and consequently

identifying the final state distinctively.

Theorem 3. An NCRFSM always possesses a distinguishing sequence.

Proof. This is a direct consequence of Theorem 2. NCRFSM can always identify a

final state by a unique output sequence. ΛN is specified by a reversible matrix and

ΛN is a bijection. Starting from an arbitrary final state with an associated sequence

of outputs will lead backward to a unique and distinctive initial state.

The successor tree shown in Figure 2 shows that one of the available homing

sequences for this machine is 10, with output sequences o = 11, o = 10, o = 01
and o = 00, the resulting states are D, C, B and A respectively. The distinguishing

sequence can be directly seen in the tree from Figure 2 because the input sequence

11 generates unique output sequences and thus confirms Theorems 2 and 3 (for the

outputs refer to the state-output mapping shown in Table 3(b)).

Theorem 4. An NCRFSM cannot possess a synchronizing sequence

Proof. This is a natural consequence of Lemma 1: if an NCRFSM generates a

balanced distribution of states and outputs and does not modify the information
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content of input sequence uncertainty, it cannot converge to a single unique state.

4.2 CRFSM

Now that we showed properties of the special case of the reversible NCRFSM, we

extend these results to the general model of CRFSM. The CRFSM is a relaxed

type of NCRFSM and can be obtained from NCRFSM by simply changing output

states between different columns of the state transition function specified in a state-

transition table. For instance the Table 3(b) shows a state transition function of a

CRFSM that is obtained by changing the state assignment from the Table 3(a).

The matrix corresponding ΛC to Table 3(b) is shown in Eq. (8).

ΛC =

























0/A 0/B 0/C 0/D 1/A 1/B 1/C 1/D

A/0 0 1 0 0 0 0 0 0
B/0 0 0 0 0 0 0 0 1
C/0 0 0 0 0 1 0 0 0
D/0 0 0 0 0 0 0 1 0
A/1 0 0 1 0 0 0 0 0
B/1 0 0 0 1 0 0 0 0
C/1 0 0 0 0 0 1 0 0
D/1 1 0 0 0 0 0 0 0

























(8)

For illustration the circuit realizing the CRFSM from Table 3(b) is shown in

Figure 5. The encoding used for this realization is the same as in the case of the

NCRFSM shown in Figure 4, which is A = 0 and B = 1. For the analysis of the

o

s′0

s′1s0

s1

i

Fig. 5: Compact circuit realization of the CRFSM defined in Table 3(b).

CRFSM we use the CRFSM from Table 3(a) that has the RST shown in Figure 2.

Figure 4 shows one possible realization of the CRFSM defined by Table 3(a)

using the encoding of the states A = (s0 = 0, s1 = 0), B = (s0 = 0, s1 = 1),
C = (s0 = 1, s1 = 0) and D = (s0 = 1, s1 = 1).

Again Table 6 shows the individual bits encoding. From Table 6 we can
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Table 6: Encoding of the CRFSM from Table 3(b)

S
I

0 1

s0 s1 s0 s1 o s0 s1 o

0 0 1 1 1 1 0 0

0 1 0 0 0 1 0 1

1 0 0 0 1 1 1 0

1 1 0 1 1 0 1 0

generate a set of equations describing the individual variable assignment:

s′0 = is̄0 ⊕ is̄1 ⊕ s̄0s̄1 = s1 ⊕ s′1 ⊕ ōs̄′1 (9)

s′1 = s0 ⊕ īs̄1 (10)

o = ī⊕ s0s̄1 = ī⊕ s1s̄2 (11)

Lemma 2. Let ΛC be defined by a reversible matrix (Definition 2), then ΛC reduces

the information content of input uncertainty in an CRFSM.

Proof. A CRFSM defined by reversible ΛC with the only restriction that for at

least one ijsk combination of the input and state values, the ΛC(ijsk) results in

snop such that sk = sn. This implies that for each step resulting by the application

of ΛC , at least one state will be assigned twice. This has for consequence that

information content E(φ) reduces (Definition 17).

Theorem 5. A CRFSM always possesses a homing sequence

Proof. The CRFSM specified by ΛC is not guaranteed to possess τmax and multiple

cycles τj may exist. Because ΛC is reversible and ΛC reduces the information

content, there is at least one input sequence x that leads to either a single final

state (due to information reduction in the input uncertainty) or to a partition φ with

distinct output sequences (due to reversibility of ΛC).

Before proceeding to the next step we introduce two sub-categories of CRF-

SMs: non-restricting CRFMS (NRCRFSM) and restricting CRFSM (RCRFSM).

Consider the two CRFSMs shown in Table 7. The NRCRFSM from Table 7(a)

is an example of machine that reduces the information content of the state parti-

tion. That is for a particular input value the E(πj) ≤ E(πj+1). The RCRFSM

from Table 7(b) is also a CRFSM because it reduces the information content of

the initial unknown partition only once and then E(pij) = E(pij+1). Note that the

RCRFSM from Table 7(b) is halfway between a CRFSM and NCRFSM: NCRFSM
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Table 6: Encoding of the CRFSM from Table 3(b)

S
I

0 1

s0 s1 s0 s1 o s0 s1 o

0 0 1 1 1 1 0 0

0 1 0 0 0 1 0 1

1 0 0 0 1 1 1 0

1 1 0 1 1 0 1 0

generate a set of equations describing the individual variable assignment:

s′0 = is̄0 ⊕ is̄1 ⊕ s̄0s̄1 = s1 ⊕ s′1 ⊕ ōs̄′1 (9)

s′1 = s0 ⊕ īs̄1 (10)

o = ī⊕ s0s̄1 = ī⊕ s1s̄2 (11)

Lemma 2. Let ΛC be defined by a reversible matrix (Definition 2), then ΛC reduces

the information content of input uncertainty in an CRFSM.

Proof. A CRFSM defined by reversible ΛC with the only restriction that for at

least one ijsk combination of the input and state values, the ΛC(ijsk) results in

snop such that sk = sn. This implies that for each step resulting by the application

of ΛC , at least one state will be assigned twice. This has for consequence that

information content E(φ) reduces (Definition 17).

Theorem 5. A CRFSM always possesses a homing sequence

Proof. The CRFSM specified by ΛC is not guaranteed to possess τmax and multiple

cycles τj may exist. Because ΛC is reversible and ΛC reduces the information

content, there is at least one input sequence x that leads to either a single final

state (due to information reduction in the input uncertainty) or to a partition φ with

distinct output sequences (due to reversibility of ΛC).

Before proceeding to the next step we introduce two sub-categories of CRF-

SMs: non-restricting CRFMS (NRCRFSM) and restricting CRFSM (RCRFSM).

Consider the two CRFSMs shown in Table 7. The NRCRFSM from Table 7(a)

is an example of machine that reduces the information content of the state parti-

tion. That is for a particular input value the E(πj) ≤ E(πj+1). The RCRFSM

from Table 7(b) is also a CRFSM because it reduces the information content of

the initial unknown partition only once and then E(pij) = E(pij+1). Note that the

RCRFSM from Table 7(b) is halfway between a CRFSM and NCRFSM: NCRFSM
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Table 7: Example of (a) the NRCRFSM and (b) the RCRFSM

S
I

0 1

A A/1 D/0

B C/0 B/0

C C/1 A/0

D B/1 D/1

S
I

0 1

A A/1 D/0

B A/0 B/0

C C/0 B/1

D C/1 D/1

(a) (b)

does not reduces E(πi) while RCRFSM reduces only E(π0) and then it behaves as

NCRFSM.

Lemma 3. A CRFSM always possess a distinguishing sequence.

Proof. The proof is separated into two special cases:

1. if the CRFSM does not reduce the input sequence uncertainty information

content then it is a NCRFSM.

2. if the CRFSM is RCRFSM, then once it reduced E(π0) is behaves like

NCRFSM and therefore will also posses the distinguishing sequence

3. if the CRFSM is NRCRFSM, it reduces the input sequence uncertainty in-

formation. In order not to have a distinguishing sequence, for at least two

initial states a and b any response sequences vxa and vxb must be exactly the

same given any input sequence x. This is only possible (a) if two states lead

to a same successor state in which case it is not an RFSM, (b) if vxa = vxb for

different state sequences sa and sb and for any input sequence x in such case

the CRFSM is not properly reduced as it will contain redundant states.

Table 8: Example of the distinguishing sequence of the CRFSM from Table 3(b)

x A/∗ B/∗ C/∗ D/∗ vk
1 C/0 C/1 D/0 B/0 vk = 0100
0 A/1 A/1 B/1 A/0 vk = 1110
0 D/1 D/1 A/0 D/1 vk = 1101
1 B/0 B/0 C/0 B/0 vk = 0000
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Lemma 4. For a function ΛC defined by a permutative matrix (Definition 2) that

reduces the information content of input uncertainty for τj (NRCRFSM), there is at

least one specific input sequence xred that leads to a single final state sf in τj .

Proof. In order to prove Lemma 4 it is enough to show that starting from an arbi-

trary cover φ there is a sequence xred that reduces the information content of the

input sequence. In order to prove this, we assume that all states sj ∈ π can be

reached within τj and ΛC must either reduce or preserve the information content

of π. Then the proof is shown using the following steps:

1. Let π = {τ0, . . . , τj} be the initial ordered partition π and the initial input

sequence uncertainty.

2. Let ij ∈ I be such that ΛC reduces the information content of the input

sequence uncertainty by performing mapping MR : π
ij
−→ φ. This means

∃so, sp ∈ φ|so = sp (two states are equal in φ after applying ΛC with ij to

π).

3. For any two states sj �= sk ∈ φ there must be a sequence of inputs xred,j,k =
{i0, . . . , ir} such that ΛC(ir, sj , ∗) = ΛC(ij , sk, ∗).

Theorem 6. A RFSM possesses a synchronizing sequence if it reduces the infor-

mation content of uncertainty and possesses maximal sequence τmax.

Proof. If an RFSM with evolution function ΛC reduces the information of the input

uncertainty, it can with finite sequence reach a common final state (Lemma 4).

Additionally if the machine MR contains τmax this common final state is reachable

from arbitrary initial state: If a CRFSM does not have τmax then there are at least

two smaller τj cycles (Theorem 1) that under any input sequence will end up in at

least two different states. If a CRFSM is RCRFSM it can still have τmax but it will

never converge to a single state.

Table 10(a) and 10(b) show an example of two RFSMs without and with

synchronizing sequences respectively.

Note that one can observe the existence of the synchronizing sequence very

quickly. The CRFSM from Table 10(a) is an RCRFSM and thus from an initial

partition π1 = {A,B,C,D,E, F} it reduces the partition information content to

−
∑

6

i=1
1

3
log(1

3
). Then any next step will preserve the information content the

same. Therefore, the RCRFSM cannot have a synchronizing sequence.
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Table 9: Example of (a) RCRFSM without synchronizing and (b) NRCRFSM with

a synchronizing sequence 001011 leading to a single state B.

S
I

0 1

A A/0 E/1

B F/0 B/1

C C/1 D/1

D A/1 D/0

E C/0 E/0

F F/1 B/0

S
I

0 1

A A/0 F/1

B F/0 C/0

C D/1 B/0

D E/0 C/1

E D/0 E/1

F A/1 B/1

(a) (b)

CRFSM from Table 10(b) has a duplicate state in both columns; for I = 0
{A}, {F} and {C}, {E} lead to same state A and D respectively. For I = 1
{B}, {D} and {C}, {F} provide the information content reduction necessary for

possessing a synchronizing sequence (Theorem 6).

Table 10: Example of a synchronizing input sequence in CRFSM from Table 3(b).

Notice that every column ends with the same state and thus shows the existence of

the synchronizing sequence 1101.

x A/∗ B/∗ C/∗ D/∗

1 C C D B
1 D D B C
0 B B A A
1 C C C C

Conjecture 1. If a CRFSM possesses a distinguishing (synchronizing) sequence

that contains all possible input values it cannot at the same time possess the syn-

chronizing (distinguishing) sequence as well.

Proof. If an CRFSM possesses a distinguishing sequence it means that in each

column of the RST there exists only unique combinations of S × O. If that would

not be the case, some of the columns in the RST of the RFSM would be reducing the

input uncertainty. This also means that there exist at least two output sequences that

have identical outputs and thus a distinguishing sequence cannot exist. However, if

the distinguishing sequence exists, it means that each column does not reduce the

state uncertainty and each element of S × O is present only once in each column.

In such a case the RFSM cannot have the synchronizing sequence.
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5 CONCLUSIONS

In this paper we presented an analysis of the reversible finite state machines and

proved a set of exact results concerning RFSMs being tested using the three testing

sequences. We proved that because of the reversible requirement the NCRFSMs

cannot have the synchronizing sequence but have a homing and distinguishing se-

quences. We also proved that the CRFSM allows to have all three sequences but at

a cost of longer input sequences and we formulated precise conditions under which

an CRFSM can have all three studied sequences. The obtained results show that

there is a hierarchy of testability between the NCRFSM and CRFSM and the used

methods can be used to study other FSM.

In the future works, we extend this work into a complete method for transform-

ing irreversible FSM to RFSM and give exact cost of ancilla bits required to have

RFSM with all sequences.
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