
FACTA UNIVERSITATIS

Series: Electronics and Energetics Vol. 32, No 1, March 2019, pp. 1-23

https://doi.org/10.2298/FUEE1901001P

APPLICATION OF PYTHON PROGRAMMING LANGUAGE

IN MEASUREMENTS

Predrag Pejović

University of Belgrade, School of Electrical Engineering, Belgrade, Serbia

Abstract. Application of Python programming language in automation of measurement

systems and creating virtual instruments is discussed in this paper. Requirements imposed

to the software in order to perform these tasks are listed, and Python modules that support

them are presented. Application of proposed techniques are illustrated in seven examples

in different application areas. Analysis of software evolution, as well as the evolution of

professional education yields conclusion that application of Python in automating

measurement systems is promising.

Key words: computerized instrumentation, electric variables measurement, impedance

measurement, measurements, measurement techniques, software measurement.

1. INTRODUCTION

Over the years it exists, software evolved. At the beginning of computers, the program

was not stored in the machine, instead the functionality had been hard wired for each

application. A great step forward occurred with stored programs, at first written in a machine

language. Such languages are considered as the first generation of programming languages.

The second generation of programming languages involves assembly languages, somewhat

more readable than the machine languages, but still heavily dependent on particular

instruction set architecture. Finally, the third generation of programming languages, a

prominent example of which was FORTRAN, which appeared among the first in this

generation and gained huge popularity, provided abstraction that separated programmer

from the machine instruction set architecture, enabling code portability. With portable code,

software libraries appeared, accumulating knowledge and programming experience, and

programming became a social activity. High level libraries, like libraries for numeric

computation, are nowadays very rich and complete, and it is the most likely that an everyday

problem a programmer faces is already solved and included in a library. In this manner,

programming became a social activity: a programmer relies on program development tools,

such as compilers and integrated development environments, developed by other programmers,

Received November 12, 2018

Corresponding author: Predrag Pejović

University of Belgrade, School of Electrical Engineering, 73 Kralj Aleksandar Blvd, 11000 Belgrade, Serbia

(E-mail: peja@etf.rs)

2 P. PEJOVIĆ

as well as software libraries, if he or she wants to program efficiently. This focused

programming to solving specific tasks, while general, frequently encountered problems,

already have readily available library solutions. This led to ―gluing‖ languages, designed to

provide efficient inclusion of library solutions, and to glue them together to solve a specific

problem. Evolution of software libraries, growing in size and capabilities on daily basis,

further supported this concept.

A prominent example of a programming language that supports ―gluing‖ concept is

Python [1]. Designed to be readable, with simple and clear syntax, while highly extensible

by inclusion of software libraries, named modules, which can be used comfortably using a

convenient namespace system. Python modules can be written in Python, but also in C or

C++. Furthermore, it is possible to link FORTRAN libraries to Python modules. In this

manner, a wast software heritage could be efficiently used in Python applications. A huge

list of useful modules are included in Python Standard Library [2]. The modules used in

applications focused in this paper are [3–6]. However, real power of Python is in the fact

that it enables easy and straightforward inclusion of user contributed modules, outside the

Python Standard Library. Application of Python in measurements relies on these modules

and their flexibility to adjust to current trends in development of electronics measurement

equipment. Review of such external modules [7–17] needed for automating electrical

measurements and for creating virtual instruments is presented in this paper. Furthermore,

the author of this paper contributed some modules [18–20].

Along with the evolution of computers and computer languages, the people who use

computers evolved, too. In Serbia, the last generations that did not learn programming in

their high school are getting retired nowadays, and the first generations that learned

machine languages, assembly languages, FORTRAN, COBOL, and BASIC in their high

school (―Programmer‖ high school specialization in Serbian high school curricula, lasted

from 1977 to 1989) are about 10 years to retirement. Python is about to start to be taught

in the sixth grade in elementary schools, and many schools and universities worldwide use

Python as the first programming language. Very soon we might expect every professional

in any of the technical or science disciplines to be proficient in programming, and the

most likely, in Python programming language, which is rapidly becoming a standard

language for high level programming.

Many social obstacles are present in automating measurement processes and creating

virtual instruments at the time this article is being written. The driving force of this

impediment are particular human interests, the process common to automation of any

kind. Effects of such temporary impediment are expected to vanish, as they vanished in

any other automation process. For example, nowadays simple electrical measurements are

performed by a digital multimeter, which contains a microcontroller to process the data.

Another example involves building construction, where distance measurements just a few

years ago were dominated by measuring tape, while nowadays almost everyone uses

digital laser distance meter, being a digital device. On the other end of the process, the

measured data are processed by a computer. Who connects the two? In some cases, still a

human, collecting the data, writing it down to a notebook, typing it back to a computer.

Such jobs are likely to disappear, since computer connectivity enabled multimeters are

already available. Common and standardized communication protocols, preferably

wireless, and standardized data processing software are still needed, but they are likely to

appear, since there are no technological obstacles to provide them. Another option

 Application of Python Programming Language in Measurements 3

provided by computer supported measurements is creation of virtual instruments. As an

example, consider a digital oscilloscope which is a common piece of equipment in any lab

and provides signal samples. By acquiring these samples and by processing them on a

computer, power, apparent power, reactive power, power factor, displacement power

factor, and total harmonic distortion could be measured, which creates virtual instruments

that can measure quantities the oscilloscope initially could not measure.

Current state in evolution of measurement equipment, computers, and the people who

operate both is such that one might expect that most of the measurements in future would

be electronics based, and that the measurement results would be presented in a digital

form. Furthermore, all the data are already processed by computers. Connectivity between

instruments (which are computers in their construction, microcontrollers), and data

processing computers is likely to increase to the level when it becomes an assumed part of

any instrument. Some knowledge of programming is already assumed, and it is likely that

in a decade every professional would be proficient in Python, limiting the need for

graphical programming languages in measurement applications, enabling all the necessary

programming tasks to be performed in a general purpose programming language, not

requiring any specialized knowledge nor training. All these facts suggest that Python is a

convenient choice for a programming language to support measurement automation and

virtual instruments. Such conclusion spontaneously and independently appeared in many

places, resulting in significant amount of available literature, like [21–27]. According to

available literature, it seems that at the moment application of Python in measurements is

the most popular in advanced scientific experiments. Examples of applications which

might find approach proposed in this paper useful are [28–32].

This paper is written at the tenth anniversary of the author's use of Python in electrical

measurements for measurement automation and creation of virtual instruments. All

measurements for the experimental results in [33] and all the papers aggregated in it are

performed using virtual instruments that post-process the data collected using a digital

oscilloscope. The software is ported to Python, as presented in [34]. Furthermore, the

same technology is used to create different instruments and systems in [35–40]. This

paper aggregates gained experiences and lists all the modules and techniques necessary to

design automated measurement systems and virtual instruments, providing some

examples. The choice of tools is made to minimize requirements to application specific

knowledge, and such that all the tools are free software.

2. REQUIREMENTS IMPOSED BY AUTOMATED MEASUREMENT SYSTEMS

AND VIRTUAL INSTRUMENTS

At first, let us review functionality required by the design of automated measurement

systems and virtual instruments. At first, communication with instruments should be

provided in full duplex, proving computers with an ability to send commands to

instruments as well as to receive data containing measurement results. The idea is not

new, it originated in late 1960s [41], emerging with HP-IB, later renamed to GPIB after a

wide acceptance, finally standardized as IEE 488 and IEEE 488.2. Thus, about half a

century ago it had been evident that measurements are time consuming and boring, and

that these processes should be automated connecting instruments to a computer.

4 P. PEJOVIĆ

Standardization of commands followed, resulting in SCPI commands in 1990 [42, 43],

almost three decades ago. Nowadays GPIB still exists, however the interface is somewhat

outdated, being expensive, requiring expensive cables, thus being replaced by general purpose

higher bandwidth standard interfaces like USB and Ethernet, where highly applicable

communication hardware is available at low prices due to high production volume.

The second task to be performed is data processing and storage. Computers are efficient

in that, and many libraries to perform these tasks exist, as well as database utilities which

may be required in the case huge datasets are being processed. The third task is data

visualization, since providing graphical representation of measurement results is frequently

required. The fourth group of tasks which are always required covers timestamping and time

control, like providing necessary delays for the system to reach the steady state or providing

timed measurements at required time instants, like in climate parameters monitoring. Also, in

free software, which is in the focus of this paper, it is common practice to use other general

purpose tools to provide specific functionality of the designed system. In an example which

will be covered in this text, for automatic report generation a text processing system LaTeX

is used. To provide such functionality, communication to the operating system should be

provided, to start other programs and to control their execution. In some cases, graphical

user interface is needed, especially in cases when the designed system is going to be used by

less qualified personnel or by many people, so tools for providing this functionality should

be available. For all of the listed tasks, appropriate Python modules are already available as

free software.

In some cases, experimental hardware should be reconfigured during the measurement

process, like in the cases where devices under test should be switched or a reference value

should be changed. An inexpensive way to do that is to use the Arduino platform [44],

which could be easily controlled by a python program using [17]. Arduino Mega [45]

board is of special interest, since it provides a huge number of 54 digital inputs and

outputs at a moderate price.

3. PYTHON MODULES USEFUL FOR AUTOMATED MEASUREMENTS AND VIRTUAL INSTRUMENTS

3.1. Communication with Instruments

As already discussed, communication with instruments reduces to exchange of ASCII

strings when the instruments support SCPI [42, 43] commands. Thus, while considering

instrument purchase, support of SCPI should be an important issue, since it enables the

user to create his or her own programs to control the instrument. Nowadays, the most

popular means to communicate to instruments are by USB and by Ethernet, which is also

an issue in instrument selection.

Communication over the USB interface is provided using usbtmc protocol [46].

Python support for this protocol is provided by python-usbtmc module [7]. In [47], a

script to install python-usbtmc on GNU/Linux Debian-based systems (tested on Ubuntu

and Linux Mint distributions) is provided. The module provided effective communication

to Agilent 33220A signal generator [48], Tektronix TBS 1052B-EDU oscilloscope [49],

which is in everyday use in Laboratory for Electronics at the School of Electrical

Engineering, University of Belgrade, in Electrical Measurements class [50], as well as the

 Application of Python Programming Language in Measurements 5

multimeter [51]. A Python module used to support communication and control of the

oscilloscope [49] is given in [18].

Communication over Ethernet is provided using VXI-11 protocol [52], implemented

in python-vxi11 module [8]. The module has been successfully used in [38] in

communication with [48] and [53], and is in everyday use in [50, 54].

Another popular communication interface used with older equipment is the RS-232

interface. Communication over that interface is supported by python-serial [9] module. Besides,

this module supports communication over USB to some devices, like the Arduino boards [44].

A Python class that supports communication to Tektronix oscilloscope is provided at [19], and

it had been used successfully with TDS 210, TDS 220, TDS 1000, and TPS 2024

oscilloscopes.

Providing communication to measurement equipment is the most specific part of the

measurement automation and the design of virtual instruments as proposed in this paper.

After the communication has been established, everything else is common general-

purpose programming. Communication to instruments according to SCPI [42, 43] reduces

to exchange of ASCII strings, and conversion of such strings is readily available in

Python even with built in functions, which might be supported with string module of the

Python Standard Library if some more complex string operations are needed.

3.2. Data Processing

Data processing required by measurement methods is readily provided in Python using

numpy module [10], primarily. The module provides numerically efficient array objects

and operations over these objects, including basic linear algebra and FFT, among other

numerical methods. In the case some advanced numerical algorithms are needed, scipy

library [11] is available, although most of the tasks are performed by numpy. It is worth to

mention that PyLab programming environment with namespaces set to provide user

friendly numerical programming environment is available [12], although recently

deprecated for encouraging old fashioned programming styles. In the case excessive data

analysis is necessary, Pandas module is available [13].

3.3. Data Visualization

To provide data visualization in Python matplotlib [14] seems to be the best known tool.

It provides data plotting, both 2D and 3D, and saving the diagrams in a plethora formats. It

should be noted that there are other, both well known and mature tools available.

3.4. Timestamping and Time Control

Access to the system clock is provided by time module of the Python Standard Library

[3]. The module is intuitive and comfortable to program with. In both of the Python

versions, 2 and 3, modules with the same names are available for the tasks required by

applications considered in this paper, and only versions of modules for Python 2 are cited

in this document, assuming equivalent module availability for version 3.

6 P. PEJOVIĆ

3.5. Access to Other Programs

In some case, like the automated report generation, it is necessary to access other

programs, like LaTeX [55] or convert [56] for image data format conversion. Such

functionality is provided by sys [4] and os [5] modules of the Python Standard Library [2].

3.6. Graphical User Interface Design

In the case designed system is intended for specific use, with a limited number of

experienced users, it is not likely that creating a graphical user interface (GUI) would be an

interesting option. However, if the audience that uses the program is wider, a GUI is required.

Fortunately, there are many GUI development tools and modules available for Python,

including rapid application development tools. In an example presented in this paper, taken

from [38], the GUI had been created using tkinter [6] module, being the simplest and already

included in the Python Standard Library. Other very popular and advanced tools are available,

like PyQt [15] and wxPython [16], which might be of interest in more complex designs.

4. SUPPORTING PROGRAMS

The use of Python programming language in GNU/Linux environment provides an

option of a simple interfacing with other free software tools. Only two of such programs

would be mentioned: LaTeX [55] which was used for automatic report generation in [34],

resulting in [57], and convert used to convert image data formats provided by the digital

oscilloscope, as used in [18]. Any other program could easily be invoked from python,

and its output used in further processing.

5. THE USE OF ARDUINO PLATFORM

Arduino [44] is a very popular prototyping platform, characterized by free software

and open hardware, which greatly fueled its popularity. The platform itself can be utilized

as an instrument, either using its built-in AD converters, either connecting external high

precision converters. However, a different application would be suggested here, based

upon availability of a large number of digital ports which could be configured either as an

input or as an output: for reconfiguration of the measurement system, and in some cases to

facilitate indication of the system state. Easy and direct interfacing with Python might be

provided using [17], and with [45] up to 54 digital signals could easily be controlled.

Relays operated by Arduino digital output voltage and current levels are readily available,

so reconfiguration of measurement system could be easily provided.

6. APPLICATION EXAMPLES

6.1. Applications in Power Electronics and Electric Power

Power electronics is a principal research area of the author, and he started to use

virtual instrumentation in power electronics, to support research in three phase rectifiers

that resulted in a number of papers aggregated in [33]. The measurements required to

 Application of Python Programming Language in Measurements 7

support the research included measurement of power, apparent power, reactive power,

power factor, displacement power factor, total harmonic distortion, and efficiency.

Additionally, characterization of components, like recording magnetizing curves and

analyzing component constitutive relations and losses were required. Specific equipment

to perform these tasks are nowadays available, but being narrow in application and highly

expensive. For the research purposes, virtual instruments had been created, performing

digital post-processing of recorded waveforms. After the Python based instrumentation

had been introduced, being entirely based on free software, the methods had been ported

to education, to laboratory exercises in Power Electronics 2 [34]. To illustrate automation

of measurement process, a 92-page measurement report is automatically generated during

a lab exercise that lasts for only two hours, an example being available at [57]. As an

example, in Fig. 1 waweforms of voltages and currents at the 6-pulse three-phase rectifier

inputs are presented, and their spectra are given in Fig. 2. Effects caused by commutation

of the diodes, like the notches in the input voltages and limited slope in the input currents

are observable. In the spectra, absence of harmonic components at triples of the line

frequency is observable, that matches analytical results. To improve the input current

spectra and to reduce the harmonic pollution, 12-pulse rectifiers are applied, and

waveforms that correspond to this rectifier are presented in Fig. 3, while corresponding

spectra are given in Fig. 4. Reduced distortion is readily available. Collected samples are

used to determine input power, output power, efficiency, power factor, displacement

power factor and total harmonic distortions (THD) of the input currents and voltages.

Signal processing is simplified by the fact that the system frequency is the line frequency,

known in advance, and taking an appropriate number of samples spectral leakage is

avoided. In systems with variable frequency this issue should be considered, and it will be

discussed in this paper in the section that covers frequency response measurement.

Fig. 1 Waveforms of the input currents and voltages, 6-pulse rectifier

8 P. PEJOVIĆ

Fig. 2 Spectra of the input currents and voltages, 6-pulse rectifier

Fig. 3 Waveforms of the input currents and voltages, 12-pulse rectifier

 Application of Python Programming Language in Measurements 9

Fig. 4 Spectra of the input currents and voltages, 12-pulse rectifier

A direct application of the same technology, with minor extension to provide timed

measurement and timestamping, is presented in [35], where long lasting measurements,

over a week, of the line voltage and its total harmonic distortion (THD) were provided. A

diagram presenting measured THD values is presented in Fig. 5, indicating periodic

behavior during working days, while having a specific pattern during weekends. To

provide the diagram of Fig. 5 measurements were made every minute over a week, and

10080 data points are collected and presented.

To illustrate daily variations of the THD, the waveform of Fig. 5 in the part that

corresponds to workdays is plotted in Fig. 6 such that the curves are plotted for each day one

atop another. Close to periodic behavior could be observed, illustrating effects of human

daily activities on the voltage THD. On the other hand, the THD exposes a different pattern

during weekends. To illustrate that, the same methodology as for the workdays, presented in

Fig. 6 is applied, and the results is presented in Fig. 7. Significant reduction of the bump

from 08 to 16 hours could be readily observed, corresponding to the reduction of business

activity during weekends. For the rest of the day, the THD profile remained about the same.

10 P. PEJOVIĆ

Furthermore, the software based virtual instrument is able to record root-mean-square

(RMS) value of the phase voltage at every point. Measurements are made over a week every

minute, and the resulting phase voltage histogram is presented in Fig. 8. In this manner,

registration of the phase voltage is obtained applying general purpose instruments and some

controlling software that provides measurement automation and timestamping.

Fig. 5 THD of the phase voltage

Fig. 6 THD of the phase voltage, workdays

 Application of Python Programming Language in Measurements 11

Fig. 7 THD of the phase voltage, weekend

Fig. 8 Hystogram of the phase voltage RMS value

Proposed measurement methods were extended to cover both measurement and

control of a solar power generator, aiming maximum power point tracking of the solar

panel [36]. Rapid prototyping is achieved using general purpose instruments and a

personal computer to close the loop, which was possible due to the low frequency

dynamics in the loop. As a part of the same project, a solar power harvester is designed as

12 P. PEJOVIĆ

presented in [37], where the solar panel is kept at the maximum power point by an

adjustable resistive load, and harvested power is measured in order to estimate average,

minimum and maximum power that could be harvested in the specified location as it

depends on weather conditions.

6.2. DC Voltage Calibrator

A different application of the proposed methods is presented in [38] where design of a

special instrument is approached using the software tools. A DC voltage calibrator was

needed, being an expensive instrument, narrow in application, not worth purchasing for

the particular application. A substitution is created closing a loop that included two

general purpose instruments, a programmable signal generator [48] and a highly precise

multimeter [53]. The system is presented in Fig. 9. The voltage assigned to the signal

generator is adjusted in order to generate required voltage, and improvement in accuracy

of two orders of magnitude is achieved, placing the generated voltage error within about

500 V limit, as depicted in Fig. 10. The data of Fig. 11 contain 20001 data points,

obtained using an automated system which loops the required calibrator output voltage

over all possible values in the available range. Just assuming 30 seconds of manual work

per data point, which is fairly optimistic, the measurement process would last for more

than 165 man hours.

Since the instrument was intended for use by less qualified personnel, a graphical user

interface (GUI) is built using tkinter [6] module. The choice is made considering the

application as low demanding, not requiring rapid application development tools, and

having in mind that tkinter module is a part of the Python Standard Library [2]. A

screenshot of the resulting GUI is shown in Fig. 11, and it presents assigned voltage,

measured voltage, and the voltage assigned to the generator, which is an intermediate step

governed by the feedback loop. In the example of Fig. 11 an offset of 23 mV had to be

added to compensate for the signal generator error and to locate the calibrator error within

500 V limit.

Fig. 9 The calibrator system

 Application of Python Programming Language in Measurements 13

Fig. 10 Voltage error, closed loop calibrator

Fig. 11 Graphical user interface of the calibrator

6.3. Applications in Education

Developed techniques proved to be successful in education, since free access to all of

the source codes is available, the code could be analyzed in classes and shared to

students, and the time spent in the laboratory, limited due to the huge lab burden, could be

effectively utilized, illustrating key concepts instead of spending time on trivial repetitive

tasks. The first application of the proposed methods in education is made in Power

Electronics 2 [34], where lab exercises were introduced to illustrate the theory presented

in the course, as shown here by Figs. 1–4. After this successful implementation, course of

Electrical Measurements [50] is reformed, as reported in [39]. After a year, the course is

further updated, since new oscilloscopes were obtained, providing much faster data

acquisition, enabling introduction of even more experiments since the intellectually and

educationally idle processing time had been reduced further. A set of nine new laboratory

exercises is created [54]. According to student questionnaires, they enjoyed the concept

which reduced hard work and increased the number of experiments, focusing to the

essence instead to the trivia.

14 P. PEJOVIĆ

6.4. Measurement of Frequency Response

Another application example of the proposed techniques, used both in education [39,

50] and in practice is an automated system for frequency response measurement [40]. The

system is intended to measure frequency response of transmittance and immittance, and a

numerically intensive technique is used to measure amplitude and phase, extracting the

first harmonic. Such approach is applied to remove influence of noise in the amplitude

and phase measurements, which is going to be illustrated as significantly present in

measurements encountered in practice. In this manner, precise measurements are

obtained, since all of the collected samples affect the result, filtering the noise out.

The algorithm starts with selecting the time scale such that the the minimal number of

signal periods is covered by the oscilloscope time frame. The frequency is assigned to the

signal generator, being an independent variable, thus the signal period is known. Time

span of the oscilloscope screen belongs to a discrete set of values achievable by the given

oscilloscope, and the span that includes the lowest number of whole signal periods is

selected, determining the oscilloscope time scale. For the oscilloscope applied [49] the

number of periods covered by a screen is either one or two, depending on the signal

frequency, as depicted in Fig. 12.

Fig. 12 Number of periods covered by the oscilloscope screen

After the time scale has been selected, the number of samples taken into account is

computed by rounding spanper TTn 02500 , where 2500 is the number of samples per

time frame for the given oscilloscope, nper is the number of signal periods per time frame,

shown in Fig. 12, T0 is the signal period, and Tspan is the time span covered by the time

frame. The number of samples is solely dependent on the signal frequency, and the

diagram is shown in Fig. 13. In [40], an older version of the algorithm is presented,

reducing the scope to only one signal period, but in cases when more than one signal

period is covered by the oscilloscope screen, due to the limitations imposed by the

discrete set of available time scale values, better results are obtained by taking two

periods into account, and the improved algorithm is presented in this paper.

 Application of Python Programming Language in Measurements 15

Fig. 13 The number of considered samples

The algorithm assumes that the number of considered samples ns is known, and that

samples of signals x(t) and y(t) are available as xk and yk for k {0, ... ns 1}. Waiting

functions are computed next, according to

S

perk
n

k
nc 2cos2 (1)

and

S

perk
n

k
ns 2sin2 (2)

According to the Fourier analysis, for signal tx cosine component is obtained as

1

0

1 Sn

k

kk

S

C cx
n

X (3)

while the sine component is

1

0

1 Sn

k

kk

S

S sx
n

X . (4)

After the cosine and sine components are determined applying the Fourier analysis,

effectively filtering the noise out, the signal amplitude is obtained as

 22

SCm XXX (5)

and the phase is obtained as

 atan 2(,)x S CX X (6)

16 P. PEJOVIĆ

using the 2atan function that takes two arguments and provides the result in the range

(,] .

The same signal processing is performed over signal y(t), resulting in values of YC, YS,

Ym, and y . Finally, the transfer function magnitude is obtained as

 0() m

m

Y
H j

X
 (7)

and the phase is obtained as

 xyH 0 (8)

The value 0H is named ―raw phase‖ since it takes value in the range 22 0 H

since yx , . The value is correct, due to the phase periodicity over 2 , but it

is convenient to provide the phase value in the range H . In this aim, phase

adjustment by appropriate shifting for 2 is performed according to

.2

2

00

00

00

HH

HH

HH

H (9)

This concludes the algorithm for the one point, for the specified frequency value. The

algorithm is repeated for specified frequency range and the specified number of data

points.

As the first example, consider a circuit of Fig. 14, used to illustrate frequency

response effects caused by the capacitor, to identify frequency range where it behaves

approximately as an open circuit and the range where it behaves approximately as a short

circuit. The program is run, and the frequency response is obtained as presented in the

diagram of Fig. 15, clearly indicating areas of flat frequency response where the capacitor

could be considered either as open circuit, bellow 1 kHz in the considered case, or as

short circuit, which occurs above 100 kHz in the considered case.

Fig. 14 The circuit, k121 RR , nF101 C

 Application of Python Programming Language in Measurements 17

Fig. 15 Frequency response of the circuit

The same system could be used for immittance measurements, for impedance and

admittance, using the circuit of Fig. 16. In the circuit of Fig. 16 R is used as a reference

resistor, and the current through the measured impedance is computed as

R

vv
i 21 (10)

The same data processing algorithm as for the transfer functions is applied, taking signals

v2(t) and i(t) as y(t) and x(t) if impedance computation is the goal.

Application of the method to analyze electronic components provides insight in their

operation and suggest suitable modeling strategies. As an example, in Fig. 17 frequency

response of a capacitor C = 1 nF impedance is presented. The result matches expectations,

and barely noticeable deviations of measured phase from 90
o
 at the beginning and at the

end of the diagram are caused by a huge difference of the capacitor impedance at

considered frequency and the impedance reference of R = 20 k. This is expected, since

measured impedance varies for four decades, i.e. 10
4
 times over the considered frequency

range, and a constant reference impedance is used. To improve the result, suggested

approach that uses Arduino to reconfigure the circuit by adapting the reference impedance

value to the measured impedance should be applied.

Fig. 16 Circuit structure for impedance measurement; R is the impedance reference value

18 P. PEJOVIĆ

Fig. 17 Frequency response of a capacitor impedance, nF1C

In contrast to the capacitor impedance frequency response, which follows the ideal

model, impedance of an inductor is presented in Fig. 18. The inductor has rated

inductance of 10 mH, but it exposes inductive behavior only in the frequency range from

about 1 kHz to about 200 kHz. At low frequencies, parasitic resistance of the winding

dominates the impedance, while at high frequencies parasitic capacitance of the winding

dominates the response, resulting in capacitor-like frequency response above the resonant

frequency of about 400 kHz. The results are obtained using a reference resistor of 500 .

Fig. 18 Frequency response of an inductor impedance, mH10L

 Application of Python Programming Language in Measurements 19

As a final example that covers impedance measurements, consider frequency response

of an electrolytic capacitor impedance, presented in Fig. 19. To measure impedance of the

electrolytic capacitor, a DC offset of 2 V has been applied, and the measurements are

made with 0.5 V amplitude of the signal generator AC component. The capacitor shows

dominantly capacitive behavior only at frequencies lower than 300 Hz, and in the

frequency range from 300 Hz to about 300 kHz equivalent series resistance slightly above

1 dominates the impedance. Above 300 kHz, equivalent series inductance starts to

dominate the impedance behavior.

To illustrate waveforms captured during the measurement process and noise filtering,

the waveforms recorded while measuring the electrolytic capacitor impedance at the

frequency of 289.087 Hz are presented in Fig. 20. Red trace corresponds to the capacitor

current, while the yellow trace is the capacitor voltage. The cyan trace is the input voltage

AC component. Significant presence of noise in the capacitor voltage waveform could be

readily observed. Similar situation occurs in the frequency range from 300 Hz to 300 kHz,

when the capacitor voltage is low. Regardless the noise, consistent measurements of

amplitude and phase are presented in Fig. 19, indicating that the noise is successfully

removed by the signal processing, not affecting the measurement result.

Fig. 19 Frequency response of an electrolytic capacitor impedance, μF470C

20 P. PEJOVIĆ

Fig. 20 Waweforms recorded during the electrolytic capacitor impedance measurement:

yellow — capacitor voltage; red — signal proportional to the capacitor current;

cyan — voltage of the signal generator

In educational application of [39, 50], measurements of a transmission line transfer

function is an experiment that attracts lots of student attention, and has an educational

value of connecting courses that cover circuit theory to engineering practice. Due to the

nature of the problem, linear frequency scale is appropriate, and the transfer function of

an open transmission line is presented in Fig. 21. Resonances and nonlinear phase

response could be readily observed. Repeating the experiment with properly terminated

transmission line, results of Fig. 22 are obtained, indicating flat amplitude response and

linear phase response, corresponding to close-an-ideal transmission system.

Fig. 21 Frequency response of an open transmission line

 Application of Python Programming Language in Measurements 21

Fig. 22 Fequency response of properly terminated transmission line

7. CONCLUSIONS

In this paper, application of Python programming language in creating automated

measurement systems and virtual instruments is discussed. It is shown that to create such

systems a set of specific tasks should be performed, not frequent in common application

programming. The tasks are listed, and the Python modules that support performing them

are looked for. It is shown that for all of the specific tasks there are Python modules

readily available, either from the Python Standard Library, either from external sources,

some of them highly specialized to support communication with instruments. Effective

methods of including modules and arranging them in separate namespaces turned out to

be useful in considered application. It is also shown that other programs, like LaTeX for

text processing might be useful in creating automated measurement tools, to provide

automatic report generation, which might be of use in certifying laboratories. The use of

Arduino platform is proposed to provide measurement system controlled automatic

reconfiguration and indication of the system state and performance. Tools for controlling

Arduino platforms directly from Python are identified.

Application of the proposed methods is illustrated in four different areas, as reported

by the author in seven papers. Applications started in power electronics, and positive

experiences spread to metrology, to the design of a DC voltage calibrator, to education,

where the methods were used in modernizing two courses, and in measurements of system

frequency response, as applied in electronics, acoustics, and control system design. In

some of these applications, selection of the time scale and the number of considered

samples in the case of variable signal frequency is controlled by an updated algorithm

presented in this paper.

Overall conclusion is that Python is an adequate tool for creating automated

measurement systems and virtual instruments, due to its modular structure and openness

for contribution of modules. In the choice of programming tools, the attention has been

22 P. PEJOVIĆ

made to favorize general purpose tools and techniques, to minimize specific knowledge

requirements. Having in mind evolution of software and the people who work in

metrology, it is likely to expect wide application of the proposed approach and methods,

which already started in several places independently.

REFERENCES

[1] Python Programming Language — Official Website, [online] Available: http://www.python.org/

[2] The Python Standard Library, [online] Available: https://docs.python.org/3/library/

[3] time — Time access and conversions, [online] Available: https://docs.python.org/2/library/time.html

[4] sys — System-specific parameters and functions, [online] Available: https://docs.python.org/2/library/sys.html

[5] os — Miscellaneous operating system interfaces, [online] Available: https://docs.python.org/2/library/os.html

[6] Graphical User Interfaces with Tk, [online] Available: https://docs.python.org/2/library/tk.html

[7] python-usbtmc, [online] Available: https://github.com/python-ivi/python-usbtmc

[8] Python VXI-11, [online] Available: https://github.com/python-ivi/python-vxi11

[9] pyserial, [online] Available: https://pythonhosted.org/pyserial/

[10] NumPy, [online] Available: http://www.numpy.org/

[11] SciPy, [online] Available: https://www.scipy.org/

[12] SciPy: PyLab, [online] Available: https://scipy.github.io/old-wiki/pages/PyLab

[13] Pandas, [online] Available: https://pandas.pydata.org/

[14] matplotlib, [online] Available: https://matplotlib.org/

[15] PyQt's Modules, [online] Available: http://pyqt.sourceforge.net/Docs/PyQt4/modules.html

[16] wxPython, [online] Available: https://wxpython.org/

[17] Python-Arduino-Proto-API-v2, [online] Available: https://github.com/vascop/Python-Arduino-Proto-API-v2

[18] P. Pejović, oscusb, Python module to support communication with oscilloscopes over USB, [online]

Available: http://tnt.etf.bg.ac.rs/~oe2em/oscusb.py

[19] P. Pejović, oscusb, Python module to support communication with oscilloscopes over RS-232, [online]

Available: http://tnt.etf.bg.ac.rs/~oe2em/oscrs232.py

[20] Pr. Pejović, oscusb, Python module to support presentation of numbers in engineering notation, [online]

Available: http://tnt.etf.bg.ac.rs/~oe2em/engineeringnotation.py

[21] J. M. Hughes, Real World Instrumentation with Python: Automated Data Acquisition and Control

Systems. O'Reilly Media, Inc., 2010

[22] G. Real, L. Raviola, M. F. Jauré, and A. O. Vitali, ―Data acquisition system for didactic laboratories based on

open-source hardware and free software,‖ In Proceedings of the 2015 XVI IEEE Workshop on Information

Processing and Control (RPIC), 2015, pp. 1-6.

[23] J. L. Johnson, H. T. Wörden, and K. V. Wijk, ―PLACE: an open-source python package for laboratory

automation, control, and experimentation,‖ Journal of laboratory automation, vol. 20, no. 1, pp. 10-16, 2015.

[24] I. J. Koenka, J. Sáiz, and P. C. Hauser. ―Instrumentino: an open-source software for scientific instruments,‖

CHIMIA International Journal for Chemistry, vol. 69, no. 4, pp. 172-175, 2015.

[25] I. J. Koenka, J. Sáiz, and P. C. Hauser. ―Instrumentino: An open-source modular Python framework for

controlling Arduino based experimental instruments,‖ Computer Physics Communications, vol. 185, no. 10 pp.

2724-2729, 2014.

[26] F. J. F. Martín, M. V. Llopis, J. C. C. Rodríguez, J. R. B. González, and J. M. Blanco, ―Low-cost open-source

multifunction data acquisition system for accurate measurements,‖ Measurement, vol. 55, pp. 265-271, 2014.

[27] A. J. Lewis, M. Campbell, and P. Stavroulakis, ―Performance evaluation of a cheap, open source, digital

environmental monitor based on the Raspberry Pi,‖ Measurement, vol. 87, pp. 228-235, 2016.

[28] V. Davidović, D. Danković, S. Golubović, S. Djoric-Veljkovic, I. Manić, Z. Prijić, A. Prijić, N. Stojadinović, and

S. Stanković, ―NBT Stress and Radiation Related Degradation and Underlying Mechanisms in Power

VDMOSFETS,‖ Facta Universitatis, Series: Electronics and Energetics, vol 31, no. 3, pp. 367-388, 2018.

[29] S. K. Mohapatra, K. P. Pradhan, and P. K. Sahu, ―Resolving the bias point for wide range of temperature

applications in high-k/metal gate nanoscale DG-MOSFET,‖ Facta Universitatis, Series: Electronics and

Energetics, vol. 27, no. 4, pp. 613-619, 2014.

[30] S. K. Mohapatra, K. P. Pradhan, and P. K. Sahu, ―ZTC bias point of advanced fin based device: The

importance and exploration,‖ Facta Universitatis, Series: Electronics and Energetics, vol. 28, no. 3 pp.

393-405, 2015.

 Application of Python Programming Language in Measurements 23

[31] I. Manić, D. Danković, V. Davidović, A. Prijić, S. Djorić-Veljković, S. Golubović, Z. Prijić, and N. Stojadinović,

―Effects of pulsed negative bias temperature stressing in p-channel power VDMOSFETs,‖ Facta Universitatis,

Series, Electronics and Energetics, vol. 29, no. 1, pp. 49-60, 2015.

[32] X. Saura, M. Riccio, J. Suñé, A. Irace, and E. Miranda, ―Study on the spatial generation of breakdown

spots in MIM capacitors with different aspect ratios,‖ Facta Universitatis, Series Electronics and

Energetics, vol. 28, no. 2 pp. 177-192, 2015.

[33] P. Pejović, ―Three-Phase Diode Rectifiers with Low Harmonics - Current Injection Methods,‖ Springer, 2007.

[34] P. Pejović, M. Simić, ―Virtual Instruments for Power Electronics Based on Free Software Tools,‖ In Proceedings

of the17th International Symposium on Power Electronics, Ee 2013, Novi Sad, October-November 2013.

[35] P. Pejović, M. Simić, ―A System for Measuring Mains Voltage Parameters and Logging the Data,‖ In

Proceedings of the 18th International Symposium on Power Electronics, Ee 2015, Novi Sad, October

2015.

[36] V. Lazarević, M. Bjelica, P. Pejović, ―Maximum Power Point Tracking Control System of Photovoltaic

Module Using Free Software and Standard Laboratory Equipment,‖ In Proceedings of the 18th

International Symposium on Power Electronics, Ee 2015, Novi Sad, October 2015.

[37] P. Pejović, M. Bjelica, ―A Simple System to Estimate On-Site Solar Energy Harvesting,‖ In Proceedings

of the 18th International Symposium on Power Electronics, Ee 2015, Novi Sad, October 2015.

[38] P. Pejović, A. Zeković, ―Software Supported DC Voltage Calibrator,‖ In Proceedings of the XI

International Symposium Industrial Electronics, INDEL 2016, Banja Luka, November 3-5, 2016.

[39] P. Pejović, ―Electrical Measurements Revisited — Experiences from Modernizing the Course,‖ In

Proceedings of the IEEE EUROCON 2017, Ohrid, Republic of Macedonia, 6-8 July 2017, pp. 838-844.

[40] P. Pejović, ―An Automated System for Frequency Response Measurement Based on Free Software

Tools,‖ In Proceedings of the XII International Symposium Industrial Electronics, INDEL 2018, Banja

Luka, November 1-3, 2018.

[41] Wikipedia contributors, IEEE-488, [online] Available: https://en.wikipedia.org/wiki/IEEE-488

[42] Wikipedia contributors, Standard Commands for Programmable Instruments, [online] Available:

https://en.wikipedia.org/wiki/Standard_Commands_for_Programmable_Instruments

[43] Standard Commands for Programmable Instruments (SCPI), [online] Available: http://www.ivifoundation.

org/docs/scpi-99.pdf

[44] M. Banzi, Getting Started with Arduino, Second Edition, O’Reilly Media, 2011

[45] Arduino Mega 2560 Rev3, [online] Available: https://store.arduino.cc/arduino-mega-2560-rev3

[46] Universal Serial Bus Test and Measurement Class Specification (US-BTMC), Revision 1.0, April 14,

2003, [online] Available: http://sdpha2.ucsd.edu/Lab_Equip_Manuals/USBTMC_1_00.pdf

[47] P. Pejović, usbtmcinstall.zip, [online] Available: http://tnt.etf.bg.ac.rs/~oe2em/usbtmcinstall.zip

[48] Agilent Technologies Agilent 33220A 20 MHz Waveform Generator User’s Guide, [online] Available:

http://cp.literature.agilent.com/litweb/pdf/33220-90002.pdf

[49] TBS1000B-EDU Series Datasheet, [online] Available: https://www.tek.com/datasheet/digital-storage-

oscilloscope-0

[50] P. Pejović, Electrical Measurements, course web site, [online] Available: http://tnt.etf.bg.ac.rs/~oe2em/

[51] Keysight Technologies Digital Multimeters, 34460A Digital Multimeter, 6 (1/2) Digit, Basic Truevolt, [online]

Available: https://literature.cdn.keysight.com/litweb/pdf/5991-1983EN.pdf

[52] VMEbus Extensions for Instrumentation TCP/IP Instrument Protocol Specification VXI-11, Revision 1.0, The

VXIbus Consortium, 1995, [online] Available: http://www.vxibus.org/files/VXI_Specs/VXI-11.zip

[53] Agilent 34410A and 34411A Multimeters, [online] Available: http://cp.literature.agilent.com/litweb/pdf/ 5989-

3738EN.pdf

[54] P. Pejović, ―Laboratorijske vežbe iz električnih merenja‖ [online] Available: https://zenodo.org/record/

1311557/files/prirucnik.pdf?download=1

[55] CTAN Comprehensive TeX Archive Network, [online] Available: https://ctan.org/

[56] ImageMagick convert, [online] Available: https://imagemagick.org/script/convert.php

[57] Twelve Pulse Rectifier - Lab Report Example, [online] Available: http://tnt.etf.bg.ac.rs/~ms1ee2/report-12-pulse-

2.pdf

