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Abstract: Z-TLM based compact modeling approach for dispersive media exhibiting 

magnetoelectric coupling is presented in this paper. Scattering parameters based 

representation of considered medium is created in a form of compact model by 

extracting effective electromagnetic parameters using a retrieval method, and 

implementing them into a non-uniform TLM grid. Proposed approach is illustrated 

here on the example of dispersive isotropic chiral medium modeling. 
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1. INTRODUCTION

Numerical modeling techniques nowadays represent important tools in a research 

process of complex materials especially when it is not possible or worthwhile to solve a 

problem with analytical approach. Two most used discrete time domain numerical 

techniques, the Finite Difference Time Domain (FD-TD) method [1] and Transmission 

Line Matrix (TLM) method [2] are very suitable for solving problems of electromagnetic 

(EM) wave propagation through complex structures and media. Even though the FD-TD 

method is often favored by researchers, the TLM method offers in some cases a more 

straightforward approach for describing and modeling different discontinuities, internal 

boundaries, propagation in dispersive media etc. This is a result of TLM feature that both 

electric and magnetic field components are solved in center of the TLM cell simultaneously 

without a need for temporal and spatial averaging.  

Modifying and extending TLM method with Z transformation techniques create 

valuable means for an efficient time domain modeling of linear isotropic and anisotropic, 

bi-isotropic, nonlinear, quantum, chiral materials and metamaterials [3-7]. This so-called 
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Z-TLM method supports implementation of the Debye, Drude, Lorentz and other 

dispersion models along with specific methods which allow for describing materials with 

complex frequency dependencies.  

Compact models allow for complex structure, artificial or multilayered material to be 

represented as one effective material block via scattering parameters which to some degree 

simplifies numerical analysis and modeling process. In addition, compact models can be 

also used to reduce computational and time costs of the simulation by using a much coarser 

mesh for modeling of thin material panel, where instead of direct modeling by a fine mesh 

the material is replaced with single interface between two TLM cells [8,9]. 

In this paper, a formulation based on nonlinear constitutive relations and discretization 

of Maxwell’s equations which allows implementation of most general properties of 

dispersive and anisotropic materials into the Z-TLM non-linear grid, is described. 

Procedures for applying TLM method in modeling of dispersive and general anisotropic 

media inside of non-uniform mesh are given in [9-11]. Z-TLM based approach presented in 

[12,13] is here expanded to allow modeling of dispersive materials with magnetoelectric 

coupling characteristics while preserving the advantage of including the arbitrary frequency 

dependencies of modeled material EM parameters, i.e. these dependences do not have to 

necessarily follow some of the known dispersion models. Effective EM parameters which 

are used to characterize materials with magnetoelectric coupling are extracted from S 

parameters through retrieval procedure [14-16], approximated through the vector fitting 

(VF) method [17-19] and then used to form a compact model after applying the bilinear Z 

transforms, which is later included into the TLM scattering algorithm. Created model 

efficiently describes studied material based on provided S parameters and enables analyzing 

and observing EM field propagation throughout the medium. Proposed approach is 

demonstrated by modeling dispersive isotropic chiral material slab exhibiting magnetoelectric 

coupling [20]. 

2. FORMULATION OF MAXWELL’S EQUATIONS FOR NON-UNIFORM MESH  

Non-uniform mesh generally enables a proper resource handling especially while 

modeling materials and structures with nonlinear characteristics. It allows for a usage of 

smaller size cells in areas which are physically small but have a greater EM importance 

and also bigger cells in less complex or less EM important areas of the structure which 

improves an overall efficiency of the simulations. 

In a non-uniform TLM cell (see Fig. 1) one or more directional space steps (x, z 

and z) are not the equal. Relations between incident V 
i and reflected V 

r voltage wave 

components of the twelve-port non uniform hybrid TLM cell [2] can be presented as:  
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where impedance of each link line can be calculated based on link line inductance, time 

and space steps:  

/ ,k kZ L i t    (1,2,...,12)k                                        (2) 

 

Fig. 1 Non-uniform TLM cell 

Using notations for fields, current and flux densities Maxwell’s curl equation can be 

written as 
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After given constitutive relations for electric and magnetic current and flux densities 

, , ,ef mfJ J D B , (3) can be written as: 
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where sign   denotes time domain convolution, ,e m  and ,e m   are electric and 

magnetic conductivity and susceptibility matrices respectively, 0, 0 are free space 

permittivity and permeability, respectively, and 
,r r 

 are dimensionless matrices describing 

magnetoelectric coupling coefficients given as  
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Formulation (4) is extended further with transformations and introduced additional 

compact notations to create normalized form of Maxwell’s equations (6): 
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with 
1

, , ,b A C



 representing background susceptibility matrix, matrix of inverse cell 

areas, normalized curl matrix and matrix of inverse cell length, respectively [9]. 

Previous form can be further transformed into the traveling wave format by using 

following relation where vector iV  represents sum of appropriate incident wave intensities 

[9]:  
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This leads to: 
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If reflected voltage wave 
rV and reflected free current 

ri  are introduced as in [9], 

and matrix P  is defined: 
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while

 

1b P   , (8) can be written as: 
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3. MATERIAL MODELING BASED ON EXTRACTED EFFECTIVE PARAMETERS 

Modeling process based on proposed approach (see Fig. 2) begins by applying 

appropriate retrieval method [14-16] on the scattering matrix parameters of considered 

material, obtained either analytically, numerically or experimentally, in order to acquire 

effective permittivity, permeability and magnetoelectric coupling coefficients in the 

frequency range of interest.  
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In order to calculate effective parameters from S parameters the index of refraction n
 and characteristic impedance of considered medium zred need to be first determined [15]. 

Based on calculated n and zred

 
effective parameters of the material can be determined as: 

red

n

z
  , rednz  , n                                        (12) 

After straightforward conversion of effective permittivity, permeability and 

magnetoelectric coupling coefficients to appropriate effective susceptibilities, (electric–e, 

magnetic–m and magnetoelectric–r which is related to (5)), they are then further 

approximated using the VF method [17-19] in order to represent each susceptibility in 

the form of rational function: 

[ , , ] 1

[ , , ]
[ , , ]

[ , , ]0

( )

e m r

e m r i
e m r

e m r pii

C
s

s s










NP

                                     (13) 

In (13) NP[e,m,r] stands for the number of poles, s[e,m,r]pi represents the set of complex 

pole frequencies, and C[e,m,r]i are the pole residues of VF approximated susceptibilities.  

Next, the bilinear Z-transform is applied: 
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to obtain a discrete-time model: 
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where A[e,m,r]i and B[e,m,r]i are real coefficients and z is time-shift operator. 
 

 

Fig. 2 Z-TLM compact modelling approach  

A and B coefficients are used to define compact model which is incorporated into 

TLM scattering procedure where electric and magnetic fields are calculated as: 
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where 1

0 0 0(4 4 4 )e e e rT g       , 1

0 0 0(4 4 4 )m m m rT r       , 
0 1(4 4 )e e ek g     , 

0 1(4 4 )m m mk r      and 
1 1, ,e m re rmS S S S  represent additional material accumulator 

vectors. For simplicity, it is assumed that electric conductivity and magnetic resistivity 

are not dependent on frequency. 

4. NUMERICAL RESULTS 

Proposed approach is illustrated here for an efficient modeling of dispersive isotropic 

d = 200 mm wide chiral material slab placed between two isotropic free-spaces [20].  

In this case due to isotropic nature of the material slab, magnetoelectric susceptibilities 

have the form  
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By using the retrieval method, effective susceptibilities are first extracted from S 

parameters analytically obtained in [20] (Figs. 3 - 6, marked with triangle). The retrieved 

electric, magnetic and magnetoelectric susceptibilities are shown in Figs. 7, 8 and 9, 

respectively (marked with red triangle). 

 

Fig. 3 Magnitude of scattering parameters S11 and S21 
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Fig. 4 Phase of scattering parameters S11 and S21 

 

Fig. 5 Magnitude of scattering parameters S12 and S22 

 

Fig. 6 Phase of scattering parameters S12 and S22 
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Retrieved susceptibilities are approximated with the VF method [17-19] with fourth 

order rational function (NP = 4) (12). Obtained A’s and B’s coefficients for electric and 

magnetic susceptibility as well as magnetoelectric susceptibility are presented in Table 1. 

Accuracy of approximation is confirmed through perfectly matched comparison of 

retrieved parameters values (red triangles on the graph) and values calculated based on A 

and B coefficients (solid line) (see Figs. 7-9). 

Discrete time-models described by (14) are further incorporated into the Z-TLM 

scattering algorithm in (15) taking into consideration magnetoelectric coupling characteristic 

of isotropic chiral slab. Total of 800 TLM cells are used in x direction, while chiral slab 

itself is modeled with 200 cells and simulation is executed within 2000 time steps. Model 

was excited with initial z polarized Gaussian pulse which propagates along +x direction. 

 

Fig. 7 Real and imaginary parts of effective electric susceptibility of isotropic chiral medium 

 

Fig. 8 Real and imaginary parts of effective magnetic susceptibility of isotropic chiral 

medium 
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Fig. 9 Real and imaginary parts of effective magnetoelectric susceptibility of isotropic 

chiral medium 

Two simulations are performed, first where the chiral medium was not considered 
present inside of the mesh in order to obtain incident field values, and second simulation 
with chiral medium included in the mesh in order to obtain the total field at the first 
interface, free space-chiral slab, and transmitted fields at the second interface, chiral slab-
free space. Reflected field was calculated by deducting incident field from total field values.  

Accuracy of the approach is confirmed through a comparison of magnitudes and phases 
of scattering parameters from [20] and simulated scattering parameters shown with solid 
lines in Figs. 3 - 6. 

4. CONCLUSION 

In this paper, an approach for compact modeling of dispersive media exhibiting 

magnetoelectric coupling, described with effective parameters extracted from scattering 

matrix, is presented. Since there is a wide variety of dispersive media exhibiting 

magnetoelectric coupling the compact models presented here provide efficient tools for 

characterization and inside view of EM waves propagation through these media. In future 

research this approach will be used in the design process of devices based on these media 

because it allows optimization and fine tuning of their characteristics in the frequency range 

of interest. 

Table 1 Coefficients of discrete-time model in (15)  

Coefficient e  m  r = r  

A 

1 1 1 

-3.994898e+00 -1.971846e+00 -3.994897e+00 

5.985618e+00 -2.760262e-02 5.985617e+00 

-3.986539e+00 1.971845e+00 -3.986539e+00 

9.958199e-01 -9.723764e-01 9.958197e-01 

B 

5.471056e-05 -4.988997-01 5.224473e-03 

2.651185e-08 9.860555e-01 -1.044641e-02 

-1.093681e-04 1.174398e-02 -3.898947e-09 

2.649748e-08 -9.860555e-01 1.044641e-02 

5.471051e-05 4.871557e-01 -5.224469e-03 
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