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Abstract. Demand response (DR) could serve as an effective tool to further balance the 

electricity demand and supply in smart grids. It is also defined as the changes in 

normal electricity usage by end-use customers in response to pricing and incentive 

payments. Electric cars (EVs) are potentially distributed energy sources, which support 

the grid-to-vehicle (G2V) and vehicle-to-grid (V2G) modes, and their participation in 

time-based (e.g., time of use) and incentive-based (e.g., regulation services) DR 

programs helps improve the stability and reduce the potential risks to the grid. 

Moreover, the smart scheduling of EV charging and discharging activities supports the 

high penetration of renewable energies with volatile energy generation. This article 

was focused on DR in the presence of EVs to assess the effects of transmission line 

congestion on a 33-bit grid. A random model from the standpoint of an independent 

system operator was used to manage the risk and participation of EVs in the DR of 

smart grids. The main risk factors were those caused by the uncertainties in renewable 

energies (e.g., wind and solar), imbalance between demand and renewable energy 

sources, and transmission line congestion. The effectiveness of the model in a 33-bit 

grid in response to various settings (e.g., penetration rate of EVs and risk level) was 

evaluated based on the transmission line congestion and system exploitation costs. 

According to the results, the use of services such as time-based DR programs was 

effective in the reduction of the electricity costs for independent system operators and 

aggregators. In addition, the results demonstrated that the participation of EVs in 

incentive-based DR programs with the park model was particularly effective in this 

regard. 
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1. INTRODUCTION 

Electric vehicle (EV) sales are growing rapidly worldwide [1,2], with the amount 

exceeding one million. Several factors have been involved in this growing trend in the 

past few years, including the ability to replace fossil fuel vehicles with EVs, which results 

in the preservation of natural reservoirs. However, the increased number of EVs leads to 

increased grid demand. With the growth of domestic, industrial, and commercial demands, 

the power network must be capable of responding to all types of demands. The current 

power grids used in most countries are unable to fully respond to the large volume of 

EVs. In this regard, the simplest solution is to increase transmission lines and various 

power plants to supply the electricity required by the grid. Nonetheless, this solution 

requires unjustified large operating and economic costs. As such, the proper management 

of various parameters such as EVs, wind and solar power plants and new energies, programs 

to reduce consumption, increased grid sustainability and customer satisfaction, and 

operational costs of the system is of paramount importance.  

In this context, one of the important topics is the transmission line congestion and 

management of grid demand response (DR) using EVs since the lack of management of 

EV charging may lead to issues such as increased grid demand, power loss, and voltage 

fluctuations [3].This article was focused on the management and participation of EVs in 

smart grid DR considering the impact of transmission line congestion in the form of time-

based and incentive-based programs. To obtain our goals, we have first introduced EVs, 

their types, and DR in this field.  

2. OVERVIEW OF EVS AND RENEWABLE ENERGY SOURCES AND DR  

2.1. Evs [4-9]  

There are different types of EVs, some of which use the electronic grid to supply their 

required energy, which increases the energy received from the grid, thereby causing more 

problems for the grid. In general, EVs are able to operate in frequency regulation, voltage 

regulation, spinning and non-spinning reserves, subsidiary services, and demand profile 

adjustment [4]. Compared to common vehicles (e.g., fossil fuel cars), EVs have a different 

propellant. The electric power required for EVs is provided by three main sources, 

including power plants, generators, and energy savers; however, most EVs are of the third 

type. In recent years, special attention has been paid to plug-in EVs (PEVs; especially 

battery EVs and hybrid PEVs) in the industrial and university sectors.  

2.1.1. Battery EVs  

Battery EVs encompass three parts, including an electronic engine, a battery, and a 

controller. The electronic motor uses the battery as the driving force. The two-input 

controller is only able to manage the power provided to the electric motor, which provides 

the driving force for the vehicle to move backward or forward. Simultaneously, a four-input 

controller supports the brake as well. Another important part of battery EVs is the power 

inverter, which is responsible for the conversion of the stored electrical energy in the 

battery from the DC into the AC mode. This is mainly due to the fact that most EVs have 

an AC engine, which has a simple, low-cost structure.  
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2.1.2. Hybrid PEVs  

Hybrid EVs are classified into three categories of parallel, series, and two-part hybrids 

based on their engine type. The first category is recognized as the most common engines of 

such vehicles. PEVs often have two electronic and internal combustion engines as the 

propellant, which enables the vehicle to move in the no-charge and full-charge modes. 

Hybrid PEVs supply their propulsion energy from batteries. When the battery power levels 

are lower than a certain amount in the no-charge mode, the vehicle changes its status and 

switches to the use of the internal combustion engine as the propellant. In the full-charge 

mode, the vehicle uses a combination of electric engine and internal combustion engine for 

maximum efficiency in propulsion. Simultaneously, the controller controls the battery 

charge level and maintains it at a certain level.  

2.2. Renewable energy sources   

The increased awareness of environmental crises and reduction of fossil fuel use are 

leading to new directions for energy production and consumption. One of these issues is 

renewable energy sources with eco-friendly features, including the wind energy and solar 

energy.  

2.3. Response demand  

The necessity to define new electronic energy sources with quick response ability in the 

emergency situations of power network is ever-increasing due to the growing load of power 

networks, especially the increased loads sensitive to the changes in the power supply 

parameters by the network. Therefore, it is essential to address consumer management 

issues. Structural changes in the electricity industry have led to the emergence of new 

paradigms alongside consumer management. DR is one of these paradigms, which 

encompasses the consumer management methods that lead to changes in the consumption 

level of costumers caused by the changes in electricity prices in the market. According to 

the United States Department of Energy, DR is defined as the empowerment of industrial, 

commercial, and residential users to improve electronic energy consumption, so that 

appropriate costs could be established and the network exploitation conditions could be 

improved [10]. In other words, DR could change the form of electronic energy consumption, 

so that the maximum system demand would reduce and consumptions would be transferred 

to non-peak hours. The US Energy Regulatory Commission divides DR programs into two 

main groups of motivation-based and time-based DR [11]. In each classification, the DR 

programs are divided into several subcategories, which have been discussed in the 

following section [12]:   

Incentive-based DR programs  

1) Direct demand control programs  

2) Demand reduction/cessation programs  

3) Repurchase/demand sales programs  

4) Emergency DR programs  

5) Market capacity programs  

6) Subsidiary service market programs  
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Time-based DR programs 

1) Application-time pricing plans 

2) Actual-time pricing plans 

3) Critical peak-time pricing plans  

3. PROBLEM STATEMENT AND MODEL PRESENTATION  

With the increased prevalence of EVs and their use worldwide, there has been growing 

demand for attention and planning to exploit these vehicles. Owing to their numerous 

benefits, fuel fossil vehicles are being rapidly replaced by EVs. However, the increased 

number of EVs has resulted in higher demands in this regard. On the other hand, the 

electricity network must be able to respond to all types of demands with the ever-increasing 

growth of housing, industrial, and commercial demands. To this end, the simplest solution 

is to increase transmission lines and various power plants to supply the required electricity 

level. Nonetheless, this solution requires substantial operating and economic costs, which 

may not be economical. Therefore, the proper management of various network parameters 

such as EVs, wind and solar power plants, and new energies, various programs to reduce 

consumption, increased network stability, customer satisfaction, and system operating costs 

is of paramount importance.  

One of the key topics in this regard is the discussion of transmission line congestion, 

grid demand response, and management using EVs. As such, the present study aimed to 

evaluate the management and participation of EVs in the demand response of smart grids, 

while considering transmission line congestion and its impact in time-based and motivation-

based programs.  

3.1. Time-based programs  

These programs involve the use of global networks by consumers and grid demands. By 

pricing electricity at different hours (load peak, mean load, and low load), the consumption 

peak is divided into non-peak hours and may reduce. Therefore, there would be no 

transmission line congestion, and electricity purchase level would decrease significantly.  

3.2. Motivation-based programs  

Focusing on regulatory services and supplying the reserve amount are essential to the 

states of G2V and V2G, leading to demand-response balance and reduction of global 

network costs. Moreover, it results in increased profitability for customers and higher use 

of EVs. In this program, EVs are connected to the grid in the two states of G2V and V2G, 

experiencing smart discharging in addition to smart charging [13-15].  

3.3. Studied system  

The system assessed in the present study is illustrated in Figure 1 [16].The independent 

system operator plays a pivotal role in this system, managing the market by collecting and 

exporting information among the market members, such as power plants, demand centers, 

and EV aggregators. The independent system operator aims to reduce the operational costs 

of the system. However, the balance between supply and demand remains constant at all 

times. The power system encompasses the energy distribution of various manufacturing 
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units, such as conventional power generators and renewable energy systems (wind and solar 

power). Considering the limited capacity of electric car batteries, the contribution of each 

battery separately to the grid is negligible. Previous studies have indicated the inefficiency 

of planning for small-scale consumer participation in wholesale electricity market [11]. 

Therefore, it is essential to control the charging and discharging of numerous EVs by an 

aggregator to participate in tenders and coordinate the charging and discharging activities of 

EVs. Notably, the aggregator units cover both V2G and G2V models. Vehicle owners 

announce their battery capacity and traffic route to the aggregator units by considering the 

additional time and distance and possible parameters for the proper and accurate planning 

of EVs. On the other hand, the aggregator units inform the independent system operator on 

the available and anticipated capacity of the state of charge (SOC) in order to participate in 

the demand level and frequency tuning services. 

 

Fig. 1 An Overview of studied system [16] 

The aggregators support both the time-based and motivation-based states in demand 

response programs. In this article, the time of use was selected as the time-based program 

to supply the demand service provision. The vehicles participating in the program were 

required with different costs at various times (e.g., load peak or low load) [17-20]. 

The aggregators often participate in the motivation-based programs of the demand 

response to supply the required V2G and G2V for regulatory services. These services 

have two classifications in terms of the costs for the independent system operator, which 

involve paying the reserving capacity costs and energy costs to the aggregators [21-

22].The reserve capacity costs are equal to the maximum capacity supplied by each 

aggregator during the contract. The energy costs are associated with the costs of energy 

transfer from the V2G state to the G2V state. In addition, a specific number of EVs is 

required for the rapid responding to the demand, as well as saving the excess energy or 

compensating for its shortage. The level of emergency storage must also be set correctly. 

Moreover, the decision-makings in this regard are mainly focused on the charging and 

discharging of electric cars, and the plan of producing electricity from various sources 

often has to be precise. Decisions should be made by considering various risk factors for 
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the possible future scenarios. In this regard, the risk in the mentioned conditions is the 

possible imbalance between demand and power supplies (supply and demand). In the 

current research, the model presented for the management of the participation of EVs in 

demand response programs was based on the DC OPF model.  
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Equations 1-5 show the main formula of OPF, which minimizes the costs associated 

with various generating units and the current load in terms of the technical limitations of the 

electricity grid. In addition, Equations 2 and 3 demonstrate the load balance per bus and 

power flux per line. The heat flux limit and generator capacity are shown in Equations 4 

and 5. The OPF model presented above has been corrected for the integration of dynamic 

issues into our model. In this respect, the main goal was to manage the level of necessary 

reservation for the V2G and G2V states, as well as the anticipated costs in the future system 

vision. The modified model was presented for the management of the cooperation of EVs in 

Equations 5 and 6. The first part of the target function shown in Equation 6 is related to the 

reservation capacity costs of EVs to conclude the V2G and G2V service contracts.  

The second part includes the expected operating costs of the independent system 

operators for the actual energy payments sent for regulatory services. The next part of the 

production costs of conventional generators is the costs of the current load and decreased 

costs of renewable energies. In addition, the energy outage costs are considered in the 

model because when the surplus energy is generated by renewable sources, ISO should 

be allocated to others to receive the additional energy [23]. 

 

Equation 7 is similar to Equation 2 in terms of showing the power balance per bus.  

The overall energy flux to the bus (generating electricity) through conventional 

generators, renewable energy sources, and energy discharge from the aggregators is equal 

to the total overall energy output from the bus (base demand, charged energy of the 

aggregators, reduction of renewable energies).  
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shows the charge of the remaining battery capacity of the aggregators. The improvement 

of the charge/discharge pattern affects the remaining battery capacity (RBC) of an EV 

after arriving at the parking lot. Moreover, the RBC is affected by the SOC of the input 

and output vehicles.  
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Equations 10-12 show a method similar to Equations 3-5. However, the flux constraint 

was not presented for the lines with error (        ).  

In addition, Equation 13 guarantees the use of the generator in the allowed range. On 

the other hand, Equation 14 indicates the risk coefficient required for the operator. 

Accordingly, the probability of any mismatch between the power source and demand 

would be less than or equal to the specified error limit   ). In addition, Equations 15 and 

16 guarantee the operation of the aggregator only in one of the V2G or G2V states at any 

moment.  
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 Moreover, Equation 17 demonstrates that discharge is limited by the available 

energy, while Equation 18 guarantees that the level of charge does not exceed the empty 

capacity available to the accumulators.  
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(24) 

Nonetheless, Equations 19 and 22 are boundary constraints. The non-provided load 

and decreased energy are limited by the actual load and renewable energy available in 

Equations 19 and 20. The required storage was determined in the aggregators’ contract 

and limited to their capacities to support the V2G and G2V services, while constraint 21 

shows the limit of this capacity in the G2V state. Similarly, the discharge energy of the 

aggregators is limited by the maximum storage defined for the V2G state in their 

contracts.  
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Equation 23 shows the G2V reservation storage. Moreover, the maximum period 

guarantees the level of G2V reservation required when the generated energy is higher 

than the system’s demand. In such case, EVs are charged, and the G2V reservation level 

is estimated based on their participation in the use of the surplus energy. Equation 24 

shows that the G2V service provided by each aggregator cannot exceed its charge 

amount, and the range of changes in the variables is shown in Equation 25.  
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The aforementioned model is a nonlinear complex number programming problem, 

which could be converted into a linear complex number programming problem. To 

establish linearity, Equation 14 is replaced by Equations 26 and 27. Moreover, the      

binary variable is equal to one if there is incompatibility between the energy sources and 

existing demand; otherwise, it would be zero. In order to make Equation 23 linear, we 

used Equation 28 through Equation 31 to cover all the possible cases.  
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4. MODEL IMPLEMENTATION AND SIMULATION  

In order to evaluate the proposed models, we applied a one-day program on the 

standard 33 bus grid as the case study, the characteristics of which are presented in Table 

1, along with the base load. The maximum generating capacity was 700 kw, and the 

minimum production value for the conventional generators was not set. The transmission 

capacity of each 2 MW line with equal susceptance risk was estimated at 10 p.u. The 

charging of EVs imposes an additional load to the system, which does not include the 

base load.  

The Parking pattern in Figure 2 was considered for the evaluation of the number of 

the EV inputs and outputs each day. Each parking region had the maximum capacity of 

200 vehicles and was managed by an aggregator. Therefore, it was assumed that each EV 

has a battery with a 24 kwh capacity and 99% charge/discharge efficiency. In addition, it 

is expected that 35% of the parked vehicles are EVs. In general, EVs enter the parking 

with 30% charge and prefer to leave the parking with 90% battery charge. Figure 3 shows 

the generated energy by the wind and solar power plants as selected based on the data of 

California ISO wind and solar power plants [24]. 

The cost related to renewable energy decreased, and the reduced load was assumed as 

1.5 and 5$/kw, respectively as shown in Equation 23. Furthermore, the cost related to the 

generation of emergency electricity by a conventional generator was presented as 

0.20 $/kwh. The aggregators cost 0.02 $/kwh for the available capacity to provide the 

V2G and G2V services. The aggregators could benefit from 100% discount if they charge 

when there is the need for energy reduction. In addition, the independent system operator 

deals with the aggregators, high costs of regulation services, and other services. However, 

the different services had various costs, which mostly depend on the electricity market 

cost. For instance, 0.01 $/kwh was considered as the base cost of electricity.  

  𝑗 ,𝑡 ,𝑠

𝐽

𝑗=1

+   𝑛 ,𝑡 ,𝑠

𝑁

𝑛=1

   𝑘 ,𝑡 ,𝑠

𝐾

𝑘=1

  𝑑𝑎 ,𝑡 ,𝑠
+

𝐴

𝑎=𝑙

  (1   ′′
𝑡 ,𝑠)           𝑎 ,𝑡 

 𝑏𝑎 ,𝑡 ,𝑠

𝐴

𝑎=1

 (  𝑗 ,𝑡 ,𝑠

𝐽

𝑗=1

+   𝑛 ,𝑡 ,𝑠

𝑁

𝑛=1

   𝑘 ,𝑡 ,𝑠

𝐾

𝑘=1

)   (1   ′′
𝑡 ,𝑠)    ′

𝑡 ,𝑠     𝑡 ,𝑠                  

 𝑏𝑎 ,𝑡 ,𝑠

𝐴

𝑎=1

  𝑑𝑎 ,𝑡 ,𝑠
+

𝐴

𝑎=1

   ′′
𝑡 ,𝑠    ′

𝑡 ,𝑠         𝑡,𝑠 

(29) 

(30) 

(31) 



592 C. BEYZAEE, S. KARIMI MARVI, M. ZARIF 

Table 1 Characteristics of a standard 33 bus grid 

Br.No Rc.Nd Sn.Nd r(ohm) x(ohm) PL(KW) 

1 0 1 0.0922 0.47 100 

2 1 2 0.493 0.2511 90 

3 2 3 0.366 0.1864 120 

4 3 4 0.3811 0.1941 60 

5 4 5 0.819 0.707 60 

6 5 6 0.1872 0.6188 200 

7 6 7 0.7114 0.2351 200 

8 7 8 1.03 0.74 60 

9 8 9 1.044 0.74 60 

10 9 10 0.1966 0.065 45 

11 10 11 0.3744 0.1238 60 

12 11 12 1.468 1.155 60 

13 12 13 0.5416 0.7129 120 

14 13 14 0.591 0.526 60 

15 14 15 0.7463 0.545 60 

16 15 16 1.289 1.721 60 

17 16 17 0.732 0.574 90 

18 1 18 0.164 0.1565 90 

19 18 19 1.5042 1.3554 90 

20 19 20 0.4095 0.4784 90 

21 20 21 0.7089 0.9373 90 

22 2 22 0.4512 0.3083 90 

23 22 23 0.898 0.7091 420 

24 23 24 0.896 0.7011 420 

25 5 25 0.203 0.1034 60 

26 25 26 0.2842 0.1447 60 

27 26 27 1.059 0.9337 60 

28 27 28 0.8042 0.7006 120 

29 28 29 0.5075 0.2585 200 

30 29 30 0.9744 0.963 150 

31 30 31 0.3105 0.3619 210 

32 31 32 0.341 0.5302 60 
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Fig. 2 Parking pattern 

 
Fig. 3  Pattern of electricity generation by wind and solar sources 

This model was developed in MATLAB software and solved by the CPLEX solver in 

the definitive and randomized forms. It is notable that the definitive cases were 

considered as the base case, and no risk range was considered for the definitive cases. 

The model was solved after adjusting the random parameters for their expected values. 

The results regarding the load levels in the definitive cases are shown in Figure 4, where 

the collaboration of EVs was observed to be effective in correcting the available load and 

using renewable energies, while transferring the load charge to off-peak periods. Figure 5 

illustrates the results on the G2V and V2G services in the definitive cases. In this regard, 
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EVs provided the G2V reserve at hours by generating more renewable energy and 

insufficient base load. In addition, the EVs were discharged to provide V2G services at 

the load peak. Conventional generators are applied to generate the necessary electricity in 

periods when the sum of renewable energies and emitted energy by EVs is insufficient to 

reach the base load. 

 

 
Fig. 4  Results of EV participation in base state 

 
Fig. 5 Results of EV participation to provide reservation services in base state 

The capacity of the lines also reduced to observe the effect of transmission line 

congestion on the cost function in the definitive form. The maximum capacity of 

transmission lines was 2 MW, and decreased congestion constraint to 1 MW led to the 

0

500

1000

1500

2000

2500

3000

3500

4000

4500

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

hourly-load EV-load RES

-1000

-500

0

500

1000

1500

2000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

RG2V RV2G



 Risk Management and Participation of Electric Vehicle Considering Transmission Line Congestion... 595 

 

congestion of the lines. As a result, the cost of system operation increased. Figure 6 

illustrates the results of decreased transmission line congestion and the effects on the V2G 

and G2V states. As is observed, the reservation amount decreased in the G2V state with the 

transmission line congestion. In contrast, the reservation amount increased in the V2G state.  

 

 
Fig. 6 Effect of transmission line congestion on reservation plans in base state 

In general, the reservation level in the G2V and V2G states increased, which in turn 

led to the increased system operating costs. 

4.1. Charging method  
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and policies. In the first policy, it was assumed that the EVs do not participate in recharge 

programs and are charged once when they arrive in the parking lot. The second policy 

showed that the EVs participated in the time-based program of the demand response, 

which led to the planning of EV charging by the aggregators to reduce the electricity 

costs and eliminate the load peak. When the aggregators attended the time-based programs 

of the demand response, the independent system operator only responded to the charging 

patterns by minimizing its operational costs. Table 2 shows the time spent to manage 

consumer recharge. The total charging cost of the aggregators participating in the time of 

use program was calculated using the ∑ ∑   
  𝑑     

  
   

 
    equation. 

Table 2 Hourly electricity cost 

Hour Price($) Hour Price($)2 

1 0.05 13 0.19 

2 0.05 14 0.19 

3 0.05 15 0.19 

4 0.05 16 0.12 

5 0.05 17 0.12 

6 0.05 18 0.12 

7 0.05 19 0.19 

8 0.12 20 0.19 

9 0.12 21 0.19 

10 0.12 22 0.12 

11 0.19 23 0.12 

12 0.19 24 0.05 

In the third policy, the participation of the EVs in the motivation-based program of 

the demand response was assumed, and the vehicles were motivated to participate in the 

G2V and V2G states. The overall energy cost of the aggregators in this policy was 

estimated using the equation below: 

 

 

In the equation above, the negative values indicated that not only the aggregators did 

not pay the costs, but they also inspire revenue generation in most cases. The results of 

the charging strategy are presented in Table 3.  

 

Table 3 Results of three charging policies of EVs 

DR charging policy 
ISO reserve 

cost ($) 

ISO operation cost 

($) 

Aggregator's 

energy payment ($) 

Generation 

(KWh) 

No participation 0 44500.572 261.791 15812 

time-based 0 37312.752 116.64 14756 

incentive-based 417.89 25804.761 -179.741 13590 

  ( 𝑡
𝑐𝑑𝑎 ,𝑡 ,𝑠

+   𝑡
 𝑒𝑔

𝑏𝑎 ,𝑡 ,𝑠   𝑡
𝐷𝑐𝑑𝑎 ,𝑡 ,𝑠

   𝑎
+𝐴𝑔𝑟

𝑥𝑎 ,𝑡
𝑉2𝐺   𝑎

 𝐴𝑔𝑟
𝑥𝑎 ,𝑡

𝐺2𝑉)

𝐴

𝑎=1

𝑇

𝑡=1

 (32) 
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The conventional power generation and charging patterns of the three policies are 

shown in figures 7 and 8. Participation in the demand response programs decreased the 

costs of the aggregators and independent system operator. Compared to the time-based 

program, the motivation-based program provided more saving in the costs of the 

independent system operator, which was mainly due to the fact that the use of EVs for the 

management of the V2G and G2V states could reduce the costs related to the lost load 

and energy reduction. Participation in the motivation-based programs is often associated 

with positive income generation for the aggregators.  

As is depicted in Figure 7, unplanned charging forced the conventional power systems 

to generate more power during the peak times when the system experienced higher load. 

Motivational programs often cover the need for routine energy generation by entirely 

using renewable sources. The main goal of demand response programs is to decrease the 

load peak. According to the obtained results, participation in the time-based and 

motivation-based programs led to 48% and 51% decrease in the load peak, respectively. 

As is shown in Figure 8, the participation of the aggregators in the demand response 

programs created the motivation for the lack of charging at the peak hours, thereby 

increasing the desire to charge at the non-peak hours.  

 

Fig. 7 Conventional power plant production rates in three different charging policies 

 

Fig. 8 Charging activity of EVs in three different charging policies 
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Figure 9 shows the effect of transmission line congestion on the production of 

conventional power plants in the three charging policies. According to the results, the 

energy produced by conventional power plants significantly reduced in case of 

congestion in the transmission lines. Considering that conventional power plants are used 

to supply part of the system load that is not responsive to renewable energies and electric 

vehicles, the network cannot supply that part of the system load.  

 

 

 

 

Fig. 9 Effect of transmission line congestion on production of conventional power plants 

0

5000

10000

15000

20000

F_max(l)=2MW F_max(l)=1MW

C
o

n
ve

n
ti

o
n

al
 G

en
er

ti
o

n
s 

Senario1 

0

5000

10000

15000

20000

F_max(l)=2MW F_max(l)=1MW

C
o

n
ve

n
ti

o
n

al
 

ge
n

er
at

io
n

s 

Senario2 

10500

11000

11500

12000

12500

13000

13500

14000

F_max(l)=2MW F_max(l)=1MWC
o

n
ve

n
ti

o
n

al
 g

en
er

at
io

n
s 

senario3 



 Risk Management and Participation of Electric Vehicle Considering Transmission Line Congestion... 599 

 

According to the simulation results, the costs of the independent system operator 

increased with the decreased transmission line congestion. Figure 10 depicts the results in 

the three charging policies. 

 

 

 

 

Fig. 10 Effect of transmission line congestion on costs of independent system operator 
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4.2. Risk Perspective and Random Solutions 

In this section, the model is solved in the random form by the predefined risk level of 

0.01, which indicated that the possibility of mismatch between the load and source must 

be less than 1%. Therefore, it was assumed that the load, renewable energy production, 

behavior of the EV owners, SOC input and output of the aggregators, and line errors were 

uncertain. To reduce the computational time of the random model, the reduction scenario 

presented in was used to construct a tree scenario with 10 scenarios [25-26]. In the 

random model, a higher reserve level was required compared to the definitive status due 

to the uncertainty and risk level parameters. The random model was also solved for 

various risk thresholds, including 0.01, 0.1, and 1. As can be seen in Figure 11, the higher 

risk threshold tolerated the higher probability of mismatch between the source and load, 

thereby requiring less storage. 

 

 

Fig. 11 Effect of imbalance between energy source and demand on reservation programs 

with various risk factors 
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Similar to the definitive form, the reservation level increased in the V2G and G2V 

states by applying line congestion in the random form, which led to the increased cost of 

system operation. However, the amount was lower compared to the definitive form, 

which was due to the presence of a risk coefficient and possible disproportion between 

the load and energy source. The results for 1% risk coefficient are shown in Figure 12. 

 

 

 
  

Fig. 12 Effect of transmission line congestion on reservation level of demand respond 

programs in random form 
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5. CONCLUSION  

In the present study, we applied a new EV participation plan in demand response 

programs and their timing in a smart grid. In addition, we evaluated the effects of 

transmission line congestion on the cost of system operation and level of reservation in the 

definitive and random forms. The applied system was a standard 33-bus system exposed to 

the possible risk of various load levels due to the uncertainty of EVs, production of 

renewable energies, transmission line congestion, and behavior of the EV owners in a group 

manner. We also assessed the participation of EVs in demand response programs in time-

based and motivation-based areas, observing that the participation could be extensively 

effective in the response to the load of the smart grid, thereby providing considerable load 

and reducing the load peak, which led to the reduction of the operational costs of the 

system, aggregators, and EV owners, as well as monetization in some cases. The random 

model enables users to determine the level of risk and costs and their profits considering the 

available factors. The model evaluated in this thesis could be used to improve the storage 

levels required by an independent system operator by considering the profits of the 

aggregators. The independent system operator could reduce operational costs by improving 

the conventional production schedule and renewable energies, as well as the participation of 

EVs. Moreover, the aggregators attempted to reduce the electricity costs by optimizing the 

charge/discharge schedule of EVs in order to receive the maximum discount and revenue 

from participation in the demand response. The definitive and random cases were assessed 

to demonstrate the effects of parameters such as charging policy, level of risk, penetration 

of renewable energies, and residential load pattern. According to the results, services such 

as time-based programs affected the reduction of electricity costs for the independent 

system operator and aggregators. In addition, the participation of EVs in the motivation-

based programs by the park model had a significant impact in this regard.  
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