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1 Introduction

Heat transfer in electronics and microelectronics has become an important
topic. The reason is quite simple: the heat dissipation in electronic compo-
nents is increasing. Integrated circuits dissipating 100 Watts are no longer
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exceptional. If you buy a pentium processor, you will receive the processor
already mounted on a printed circuit board with the cooling fin and the
fan. Otherwise the company cannot guarantee that the device will work at
all. Some textbooks on heat transfer even include a chapter on ”electronics
cooling” [1].

The most obvious way to cool electronic components is to mount them
on a cooling fin which is cooled either by natural convection or by forced
convection if a fan is blowing. Normally, at first an electronic design is made
and once this has been finished the cooling problems have to be solved. A few
years ago, designers seem to be convinced that one should take the cooling
problem into account from the beginning, i.e. during the electronic design
phase. Let us give a simple example: you are designing a printed circuit
board and one component on this board is dissipating a lot of heat. The
cooling fan is blowing from the left. Do you put this component on the left,
on the right, or somewhere in the middle? If you put this component on the
left the cooling with be quite efficient due to the close presence of the fan.
But furtheron, the air behind this component, the so called wake, will be
warmed up. So, the other components will be warmed up by the warm air
blowing. This can give rise to malfunctioning of the circuit if temperature
sensitive components are involved. Alternatively you may decide to put the
heat dissipating component on the right side of the printed circuit board.
But the cooling air coming from the fan has first to cross over the printed
circuit board before reaching the heat source. This gives rise to friction and
hence a reduction of the air speed in the surroundings of the PCB. So the
component will not be cooled so effectively. If you put the heat source in the
middle you have a mix of the problems just mentioned. There is no simple
answer to that simple question. The only solution is to make an electro-
thermal design from the very beginning. A network simulator like SPICE
should not only calculate voltages and currents but also temperatures and
power dissipations.

In this paper we will deal with a simple problem depicted in fig.1. It
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Fig. 1: Linear layout of integrated circuits.

shows a printed circuit board with 6 integrated circuit, in a linear array. The
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circuits dissipate powers P1; P2, ... giving rise to a temperature distribution
T1, T2,... The fan is at the left side and provides a uniform flow over the
circuit. If only the first circuit dissipates heat, not only will T1 rise, but
the downstream airflow (thermal wake) will be heated up so that the other
components will be also heated even when P2 = ...P6 = 0. When only the
rightmost component dissipates power (P6 �= 0), the 5 other components
will not be warmed up as they are in an upstream position. By using a
mathematical approximation for the wake function, i.e. the temperature
rise caused by one heat dissipating component in all the other components
located downstream, an integral equation will be set up for the temperature
distribution. This equation will be solved by fractional calculus as will be
outlined further on in this paper.

2 A short introduction to fractional calculus

Fractional calculus is not so well known at the moment. Therefore a very
short introduction will be given here. What is a semi derivative of a function.
In simple words, it is a mathematical operator and if you apply twice a
semiderivative, you get a well known classical derivative.

In the last decennia, it has been found that several physical phenomena
can be described by differential equations involving fractional derivatives [2].
Also thermal diffusion problems can give rise to equations using fractional
derivatives [3].

Mostly used is the so called semi derivative in the time domain defined
by:

(

d

dt

)1/2

f(t) = 0D
1/2

t f(t) =
1√
π

d

dt

∫ t

0

f(t′)dt′√
t − t′

. (1)

Applying two times the semiderivative (1), is nothing else than the clas-
sical derivative d/dt. The most straightforward way to interpret (1) is to
transform (1) into the Laplace domain. One gets:

L[ 0D
1/2

t f(t)] =
√

sF (s). (2)

where s is the Laplace variable and F (s) = L[f(t)]. A semiderivative is
just a multiplication by

√
s. Hence, two consecutive semiderivations are

then represented by a multiplication by
√

s
√

s = s, which corresponds to a
time derivative in the Laplace domain. A fractional derivative of order α
(0 < α < 1) corresponds to a multiplication by sα in the Laplace domain.
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The second notation used in (1) is preferred because the subscript ”0”
in front of the operator D indicates that the integration should start from
t = 0, which is common for the analysis of time dependent problems.

Generally, a fractional derivative of order α is then defined by:

(

d

dt

)α

f(t) = 0D
α
t f(t) =

1

Γ(1 − α)

d

dt

∫ t

0

f(t′)dt′

(t − t′)α
. (3)

where Γ is the Euler gamma function. In the Laplace domain this corre-
sponds to a multiplication by sα. Integrating (3) with respect to time gives:

(

d

dt

)

−1+α

f(t) = 0D
−1+α
t f(t) =

1

Γ(1 − α)

∫ t

0

f(t′)dt′

(t − t′)α
. (4)

For α < 1, (4) can be considered as a fractional integration of order 1 − α.
In the Laplace domain this is equivalent to a multiplication by 1/s1−α.

3 Integral equation for the thermal wake problem

In present day electronic and microelectronic components, the power density
is such that the temperatures can attain quite high values, affecting seriously
the overall circuit reliabilities [4,5]. Designing a circuit is no longer possible
if the heat removal from chip to the ambient is not taken into account. Not
only the heat transfer by conduction from the semiconductor chip to the
package, but also the convective heat transfer is modelled. The latter one
is done by solving the Navier Stokes equations in order to model the flow
around the packages and cooling fins [6–8].

On electronic substrates components are usually placed according to reg-
ular arrays. As a consequence, in case the substrate is cooled by forced con-
vection caused by fan blowing, a component located in x′ will heat the air
used to cool all the remaining components located downstream x > x′ (fig.2).
In case the components have different power dissipations, interchanging com-
ponents can give rise to a more uniform temperature distribution without
excessive hot spots. It should be mentioned here that a high operating tem-
perature of just one single component will reduce the reliability of the whole
circuit.

Such a problem can be attacked by computational fluid dynamics mod-
elling. This requires the numerical solution of the Navier Stokes equations
which is a difficult task from a numerical point of view. Any time some com-
ponents interchange their positions a new CFD simulation has to be carried
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Fig. 2: Temperature profile downstream a heating component (thermal wake
function)

out. This has to be repeated till the optimum layout has been obtained. It
is quite obvious that this method requires a huge amount of computing time
so that it is no longer of practical use during the design phase of a circuit.

In this contribution the thermal wake function approach will be pre-
sented. It gives rise to a one dimensional integral equation which can be
solved with a minimum of computational effort. Finding the optimal po-
sition of the individual components can be quickly performed during the
design phase of a circuit.

By definition, the thermal wake function G is the temperature distribu-
tion of the downstream components caused by single component having a
unit heat dissipation. All downstream component should not have any heat
production then. Several authors have studied the thermal wake function
properties [9,10]. From experimental data and the own measurements of the
authors [10], it was found that the thermal wake function G can be very well
approximated by (fig.1):

G(x − x′) =
1

(x − x′)p
if x > x′, G = 0 if x < x′ (5)

If the heat production of a linear array of components can be described by a
continuous function q(x), one gets the following equation for the temperature
distribution:

T (x) =

∫ x

0

q(x′)G(x − x′)dx′ =

∫ x

0

q(x′)dx′

(x − x′)p
(6)

Finding the optimal placement is now finding the optimal function q(x).
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Usually a uniform temperature T (x) = T0 is considered optimal because all
components will then have equal reliability if they are of course identical.

4 Solution with fractional calculus

The integral equation (6) has been solved analytically for a uniform tem-
perature distrbution T0. A rather artificial method was used based on a
particular property of the Euler Beta function [10, 11]. For a non constant
temperature this method cannot be used.

A uniform temperature distribution T (x) = T0 is often considered as
the optimal situation. If all components do not have the same degradation
rate as a function of temperature a non uniform temperature distribution
can then considered as the optimal situation. The problem is now to find
the power q(x) for the given T (x). This problem will be solved now using
fractional calculus.

The equations (3) and (4) being time dependent, the causality principle
is then automatically taken into account. However, the fact that a heat
source can only warm up the downstream part, can be interpreted as the
causality principle in the space domain. Hence, by comparing (4) and (5),
the equation (6) can be rewritten as:

T (x) = Γ(1 − p) 0D
−1+p
x q(x) (7)

If T (x) is given the solution q(x) is immediatly found to be:

q(x) =
1

Γ(1 − p)
0D

1−p
x T (x) =

1

Γ(1 − p)Γ(p)

d

dx

∫ x

0

T (x′)dx′

(x − x′)1−p
(8)

Taking into account that [10]:

Γ(1 − p)Γ(p) =
π

sinπp
(9)

One obtains the general solution:

q(x) =
sinπp

π

d

dx

∫ x

0

T (x′)dx′

(x − x′)1−p
(10)

In case one wants to get a uniform temperature T (x) = T0, the heat
production q(x) turns out to be:

q(x) = T0

sinπp

π

d

dx

∫ x

0

dx′

(x − x′)1−p
= T0

sinπp

π

1

x1−p
(11)
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which is exactly the same solution found by a rather artificial method [9].
The use of fractional calculus offers us a general solution which can be used
for any temperature function T (x).

5 Conclusion

It has been shown that fractional calculus can be succesfully used for some
particular problems in electronics. We treated the placement problem of
components on a one dimensional array, using the prescribed temperature
distribution as the optimisation criterion.

Acknowledgments
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