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Abstract. This article presents the distributed generator (DG) integration in a radial 

distribution system (RDS). The DG penetration changes the single power source to 

multiple power sources and bidirectional load flow which enhances the system reliability 

and reduces system power losses. The particle swarm optimization and gravitational 

search algorithm are implemented for the optimal siting and sizing of one and three DG 

units in the RDS to examine its impact on system reliability and loss reduction. The types 

of DGs considered are Type I (injects real power) and Type IV (injects reactive and real 

power). The constant power is the chosen load model. The reliability indices taken for 

the analysis of system reliability are Average Energy Not Supplied, Total Energy Not 

Supplied and Average System Interruption Duration Index. The efficacy of the proposed 

method is validated on 33-bus in the presence of single and multiple DGs. The significant 

decrease in system power losses with the upgraded bus voltage profile, system reliability 

and remarkable annual loss saving is analyzed for Type IV DG over Type I DG. The 

results determined are compared to other meta-heuristic approaches as well as 

analytical techniques to demonstrate the superiority of the proposed methodology. The 

results are also statistically verified. 

Key words: DG, siting and sizing, PSO, GSA, AENS, ASIDI, TENS, reliability, radial 

distribution system 

1. INTRODUCTION 

The high rate of growing population, industrialization and global economic expansion 

motivates a massive investment in the reliable power supply. The component failure in the 

radial distribution system (RDS) is the primal cause of power interruption which reduces 

system reliability and produces a significant impact on distribution utilities and consumers. 

Hence, the need for a reliable power supply has been very important. Many corrective 

measures such as network reconfiguration have been tried out to restore the power supply 

until the replacement of the failed components using tie and sectionalizing switches. Due 

to the lack of such functionalities, the penetration of distributed generator (DG) in the RDS 
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plays a vital role in providing reliable supply [1-2]. Based on the type of power delivering 

capability the DGs are classified as mentioned [3] 

Type I (injects real power, power factor (PF)=1): Ex. Photovoltaic, battery, fuel cell 

Type II (injects reactive power, PF=0): Ex. synchronous capacitor 

Type III (injects real power, consumes reactive power, PF is leading): Ex. induction generator 

Type IV (injects reactive and real power at lagging PF): Ex. synchronous generator, wind 

power  

The optimal penetration of DG in RDS has many advantages like enhancement in bus 

voltage profile, system reliability and power loss reduction but it may adversely impact the 

system if not integrated optimally. The DG allocation methods are classified as analytical 

and meta-heuristic methods. The analytical technique uses mathematical expressions for 

the computation of the optimal solution. In [4], the authors have proposed an analytical 

expression to find DG size without evaluating cost benefits associated with it. Numerical 

methods such as mixed integer non-linear programming [5] and Kalman filter [6] have 

been utilized to integrate DG optimally in RDS. In [7], the authors have proposed a multi-

objective index-based approach to find the optimum size and site of DG in RDS with 

consideration of voltage deviation at the critical node and tail-end nodes simultaneously. 

A power stability index is developed in [8] to optimally site the DG in RDS but considers 

Type I DG only. Many meta-heuristics approaches such as ant lion optimization algorithm 

[9] and non-dominated sorting genetic algorithm-II [10] have been utilized to solve DG 

installation issues. A new voltage stability index has been developed for optimal integration 

of various types of DGs using analytical and particle swarm optimization (PSO) approach 

to analyse system performance [11].  

The comparison of two surveys conducted between the Canadian and United States 

utilities in regard to service utility data collection and its utilization is presented in [12] to 

show the service continuity statistics. Authors in [13] demonstrate the effect of location 

and numbers of DG units on the reliability indices of the RDS. The assessment of reliability 

indices is demonstrated in [14] under uncertainties but not for the multiple DGs. The 

relationship between DG penetration and power supply reliability of RDS has been analysed 

and presented in [15] but only for the small-scale system. A new methodology is described in 

[16] to estimate the DG impact on the reliability indices in the presence of system constraints. 

The penetration of multiple DG units in RDS may generate an adverse effect on system 

reliability due to excessive power injection as shown in [17]. The effect of installing 

different sizes of DG at different distances from the substation on the reliability indices is 

demonstrated in [18]. In [19], authors have demonstrated the effect of optimal penetration 

of multiple DGs on system power losses and reliability index in the existing RDS. 

It has been observed from the previous work, that very few researchers had worked 

upon the impact of optimal installation of multiple DG units on reliability indicators to 

analyze the distribution system reliability. In this article, as a first step, the optimal 

allocation of multiple types of DG units using PSO and gravitational search algorithm 

(GSA) has been carried out in RDS considering various operational limits. Thereafter, the 

effect of DG placement not only on system power losses and bus voltage but also on 

reliability indicators, namely, Total Energy Not Supplied (TENS), Average Energy Not 

Supplied (AENS) and Average System Interruption Duration Index (ASIDI) is carried out. 

The types of DG taken for this research work are Type I and Type IV. The efficacy of the 

presented technique has been tested on IEEE 33-bus system. The load model selected for 
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this study is constant power type. Based on the type of DG integration, two case studies 

are identified and presented. The main contributions of this article are mentioned below: 

i. Two meta-heuristic techniques have been implemented for the simultaneous siting and 

sizing of one and three DG units in RDS and their results are compared. 

ii. The impact of Type I and Type IV DG allocation on reliability indicators such as TENS, 

AENS and ASIDI has also been analysed in addition to system voltage profile and 

power losses. 

iii. The percentage real power loss reduction (PLR) to penetration level (PL) ratio is 

determined to show the efficacy of the proposed method over other analytical and meta-

heuristic methods. 

The rest of the research article is arranged as follows: The mathematical modeling of 

load, line and DG is demonstrated in section 2. Section 3, Section 4 and Section 5 explains 

the development of problem formulation, system reliability indicators and the working of 

PSO and GSA, respectively. The solution methodology for multiple DG units installation 

using PSO approach is discussed in section 6. The result analysis has been discussed in 

Section 7. In Section 8, the conclusions of the paper are drawn. 

2. MATHEMATICAL MODELING 

2.1. Line and load model 

System loads are considered to be concentrated at its nodes. Most of the system loads 

in RDS are voltage- and frequency-dependent [20]. For the analysis of static load, variation 

in voltage is taken into account as frequency deviation is insignificant [21]. In this article, 

the load is modeled as a constant complex power type. The one-line diagram (SLD) of a 

branch connected between i-1th and ith bus is demonstrated in Fig. 1. In short-line 

distribution model, the line-to-ground capacitance is very small and hence neglected [22].   

 
Fig. 1 Electrical equivalent of one branch 

From Fig. 1, we get                                                                                                                                                                                                                                                                                    

 𝑷𝒊 + 𝒋𝑸𝒊 = 𝑽𝒊∠𝜹𝒊. 𝑰𝒊
∗  (1)  

where Vi is receiving-end bus voltage and Vi-1 is sending-end bus voltage.  𝛿𝑖 represents 

voltage angle at ith bus.  Qi and Pi represents reactive and active power load fed to bus i, 

respectively. Conjugating both sides of Eq. (1), we get 

 𝑃𝑖 − 𝑗𝑄𝑖 =  (𝑉𝑖∠𝛿𝑖)
∗. 𝐼𝑖  (2) 

The receiving-end bus voltage is given as 

 𝑉𝑖∠𝛿𝑖 = 𝑉𝑖−1∠𝛿𝑖−1 − (𝑅𝑖  + 𝑗𝑋𝑖  )𝐼𝑖   (3) 



222 S. SINGH PARIHAR, N. MALIK 

where 𝑅𝑖 and 𝑋𝑖   represents the branch resistance and the branch reactance, respectively 

and δi-1 shows the voltage angle at i-1th bus. From Eq. (2) and Eq. (3), the magnitude of 

receiving-end voltage is determined and given in Eq. (4) 

   𝑉𝑖 = [{(𝑅𝑖𝑃𝑖 + 𝑋𝑖𝑄𝑖 −
1

2
𝑉𝑖−1

2)2 − (𝑅𝑖
2 + 𝑋𝑖

2)(𝑃𝑖
2 + 𝑄𝑖

2)}

1

2
− (𝑅𝑖𝑃𝑖 + 𝑋𝑖𝑄𝑖 −

1

2
𝑉𝑖−1

2 )]

1

2

   (4) 

The branch RPL (𝑃𝑙𝑜𝑠𝑠) and branch reactive power loss (𝑄𝑙𝑜𝑠𝑠) between bus i-1 and bus i 

is expressed as 

   𝑃𝑙𝑜𝑠𝑠(𝑖 − 1, 𝑖) =
(𝑃𝑖

2+𝑄𝑖
2)

|𝑉𝑖|2 . 𝑅𝑖  (5) 

 𝑄𝑙𝑜𝑠𝑠(𝑖 − 1, 𝑖) =
(𝑃𝑖

2+𝑄𝑖
2)

|𝑉𝑖|2 . 𝑋𝑖  (6) 

The LF algorithm applied in the paper is backward-forward (b/f) sweep [23]. A 

tolerance of 10-4 p.u in bus voltage difference in two successive iterations at all the buses 

is considered as the stopping criteria.  

2.2. DG Modeling 

The DG resources of high rating can lead to situation wherein losses are more than the 

base case [4]. The DG resources of small size generally operate in constant power mode, 

that is, the generator bus is being modeled as a constant negative PQ load. However, the 

DG can be modeled wherein DG associated bus is considered as PV bus and the total 

reactive power penetrated by the DG is kept at a fixed voltage level. According to IEEE 

1547 Standard [24], the utilities do not recommend the DG units to regulate bus voltages 

in order to avoid their conflict with the existing voltage control schemes [25]. In addition 

to this, as the amount of reactive power delivered by the generator depends upon the system 

configuration and cannot be stated in advance. Therefore, the DG is modeled as PQ load. 

The system performance in terms of voltage upgradation and loss minimization attained 

from 3rd Type of DG is worst among all other DG types of DG [26]. The change in the load 

demand at a bus is dependent upon the power injected by the DG. If a DG is placed at bus 

i, then the equivalent load at the same bus can be articulated as 

 𝑃𝑖
𝑒𝑞

= 𝑃𝑖 − 𝑃𝐷𝐺𝑖  (7)   

 𝑄𝑖
𝑒𝑞

= 𝑄𝑖 − 𝑄𝐷𝐺𝑖  (8) 

where, 𝑄𝐷𝐺𝑖  and 𝑃𝐷𝐺𝑖  represents the reactive and real power penetrated by DG at bus i, 

respectively.  The magnitude of reactive power injected at bus i for a given PF of Type IV 

DG is  

 𝑄𝐷𝐺𝑖 = 𝑃𝐷𝐺𝑖 . tan (𝑐𝑜𝑠−1((𝑃𝐹)𝐷𝐺)) (9)  

3. PROBLEM FORMULATION 

The objective of installing multiple DG units of multiple types in RDS is to upgrade 

bus voltage profile and system reliability with reduction of power losses. The PSO and 

GSA based technique has been implemented for the optimal installation of single and 

multiple DG considering Eq. (10) as the objective function 
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 𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 (𝑂𝐹) =  𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ∑ 𝑃𝑙𝑜𝑠𝑠(𝑖 − 1, 𝑖)
𝑵𝒃−1
i=1  (10) 

where 𝑁𝑏 is the total buses of the system. The operational constraints are as follows: 

a) Power balance principle:                                                

 𝑃𝐺 = 𝑃𝐷 + 𝑃𝑙𝑜𝑠𝑠   (11) 

 𝑄𝐺 = 𝑄𝐷 + 𝑄𝑙𝑜𝑠𝑠  (12) 

where  𝑄𝐺  and 𝑃𝐺   represents the generated reactive and real power. 𝑄𝐷 is system reactive 

load demand and 𝑃𝐷 is system real load demand.    

b) Bus voltage limits:                                                            
 0.95 𝑝. 𝑢 ≤ 𝑉𝑖 ≤ 1.05 𝑝. 𝑢  (13)          

c) Branch ampacity constraints:                                                                            

   𝐼𝑏𝑟𝑎𝑛𝑐ℎ  ≤  𝐼𝑡ℎ𝑒𝑟𝑚𝑎𝑙   (14)  

where, 𝐼𝑏𝑟𝑎𝑛𝑐ℎ and 𝐼𝑡ℎ𝑒𝑟𝑚𝑎𝑙   represents the branch current and its thermal limit, respectively. 

d) Constraints on DG power generation:  

 0 ≤ 𝑃𝐷𝐺𝑖 ≤ ∑𝑃𝐿𝑜𝑎𝑑 (15) 

 0 ≤ 𝑄𝐷𝐺𝑖 ≤ ∑𝑄𝐿𝑜𝑎𝑑 (16) 

 0 ≤ 𝑆𝐷𝐺𝑖 ≤ ∑ 𝑆𝐿𝑜𝑎𝑑 (17) 

where 𝑆𝐷𝐺𝑖 represents the distributed apparent power generation and ∑𝑆𝐿𝑜𝑎𝑑 , ∑𝑃𝐿𝑜𝑎𝑑  and 

∑𝑄𝐿𝑜𝑎𝑑  are the system’s total load for apparent, real and reactive power, respectively. 

e) Distribution substation capacity:   

 0 ≤ 𝑃𝑔
𝑖 ≤ 𝑃𝑔(𝑚𝑎𝑥)     i ∈ slack  (18) 

 0 ≤ 𝑄𝑔
𝑖 ≤ 𝑄𝑔(𝑚𝑎𝑥) (19) 

where 𝑄𝑔(𝑚𝑎𝑥) is maximum reactive power generation and 𝑃𝑔(𝑚𝑎𝑥)  is maximum real 

power generation, at slack bus.  

4. SYSTEM RELIABILITY INDICATORS 

Planning procedure uses reliability indicators for deciding new investments in new 

generation capacities. In this article, the effect of different DG units in the RDS is assessed 

by considering the following reliability indicators:   

a) Total Energy Not Supplied 

TENS is a measure of distribution system in adequacy and is estimated using Eq. (20) 

 𝑇𝐸𝑁𝑆 = ∑ 𝜆𝑎(𝑒)𝑢𝑒         (MWh/yr𝑛𝑙
𝑒=1 )  (20) 

where, nl is the total load points count,  𝜆𝑎(𝑒) is the unavailability of the load point e (kW) 

and 𝑢𝑒 is the annual outage time in hours/year. The annual outage time is the summation 

of total load outages occurred due to branch failure and can be calculated as  
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 𝑢𝑒 = ∑ 𝜆𝑓𝑟𝑒𝑛𝑙      (21) 

where, 𝑟𝑒  is the repair time (hours) or the total interruption time of the load and 𝜆𝑓 is the 

failure rate. 

b) Average Energy Not Supplied  

The AENS is estimated using Eq. (22) 

  𝐴𝐸𝑁𝑆 =
∑ 𝜆𝑎(𝑒)𝑢𝑒

𝑛𝑙
𝑒=1  

∑ 𝑁𝑒
    (MWh/customer − yr)  (22) 

where, 𝑁𝑒 is the number of customers at e. 

c) Average System Interruption Duration Index 

The ASIDI calculates the average duration of the interrupted system load due to the 

occurrence of the outages.  Mathematically, it can be given as Eq. (23) 

  𝐴𝑆𝐼𝐷𝐼 =
∑ 𝐿𝑒𝑟𝑒

𝐿𝑇
  (hours or minutes)  (23)                        

where, 𝐿𝑒 is the load interrupted and 𝐿𝑇 is the total connected load. 

d) Customer Average Index Duration Index (CAIDI) 

The CAIDI is the ratio of sum of customer interruption duration to the total number of the 

customer interruption and is given as Eq. (24) 

   𝐶𝐴𝐼𝐷𝐼 =
∑ 𝑢𝑒.𝑁𝑒

∑ 𝜆𝑓.𝑁𝑒
 (hours/cust − interruption)  (24) 

e) System Average Interruption Frequency Index (SAIFI) 

The SAIFI is the average number of interruptions per customer per unit time and is given 

in Eq. (25) 

 𝑆𝐴𝐼𝐹𝐼 =
∑ 𝜆𝑓.𝑁𝑒

∑ 𝑁𝑒
𝑛𝑙
𝑒=1

    (interruptions/customer-yr) (25) 

The allocation of DG in RDS is a cost-effective solution to enhance system reliability as it 

is used in the distribution system as an alternative source for restoring power and may 

supply electric power to the loads that are failed due to faults. Hence, the integration of DG 

decreases the number of total customers not connected to the grid and outage time 

depending upon their output power which in turn reduces the numerator of all reliability 

indices mentioned in Eq. (20), (22), (23), (24) and (25) thereby enhancing distribution 

system reliability. 

5. OPTIMIZATION ALGORITHMS 

5.1. PSO algorithm 

PSO is a stochastic approach wherein each particle changes its existing state in a 

multidimensional search space. If  𝑉𝑝𝑑 = [𝑣𝑝1, 𝑣𝑝2 … . . 𝑣𝑝𝑛𝑑
] and 𝑆𝑝𝑑 = [𝑠𝑝1, 𝑠𝑝2 … . . 𝑠𝑝𝑛𝑑

] 

demonstrate the velocity and the position of particle p, respectively; 𝑑 = 1,2, … 𝑛𝑑 and 𝑝 =
1,2, … 𝑁𝑠. Here, d signifies the current dimension, Ns signifies the swarm size and 𝑛𝑑 is 

the dimension of the concerned problem. 
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 𝑣𝑝𝑑
𝑘+1 = 𝑤𝑝𝑣𝑝𝑑

𝑘 + 𝑐1𝑟𝑎𝑛𝑑1(𝑝𝑏𝑒𝑠𝑡𝑝𝑑 − 𝑆𝑝𝑑
𝑘 ) + 𝑐2𝑟𝑎𝑛𝑑2(𝑔𝑏𝑒𝑠𝑡𝑝𝑑 − 𝑆𝑝𝑑

𝑘 ) (26) 

  𝑆𝑝𝑑
𝑘+1 = 𝑆𝑝𝑑

𝑘 + 𝑣𝑝𝑑
𝑘+1   (27) 

where, 𝑆𝑝𝑑
𝑘  and 𝑣𝑝𝑑

𝑘  represents the current position and velocity of particle p at kth iteration, 

respectively. c2 and c1 are the accelerating coefficients for 2nd and 1st particle, respectively.  

rand1(.) and rand2(. ) are the random numbers distributed uniformly between 0 and 1. 

pbestpd and gbestpd is the particle’s best position depending upon its personal experience 

and the global best position of the particle depending upon the experience of the overall 

swarm, respectively. The 1st and 3rd terms in Eq. (26) represents the inertia component and 

social component, respectively. The inertia weight of the pth particle (𝑤𝑝) decreases linearly 

with iterations and is mentioned as 

   𝑤𝑝 = 𝑤𝑝𝑚𝑎𝑥 −
(𝑤𝑝𝑚𝑎𝑥−𝑤𝑝𝑚𝑖𝑛)

𝑘𝑚𝑎𝑥
. 𝑘  (28) 

where, 𝑤𝑝𝑚𝑖𝑛 and 𝑤𝑝𝑚𝑎𝑥 are the min and the max value of wp, respectively.  𝑘𝑚𝑎𝑥 and k 

represents the maximum and current iteration number.  

5.2. Gravitational search algorithm 

GSA is a stochastic metaheuristic approach inspired by the law of gravitational and law 

of motion. The performance of the object is measured in terms of its mass. The laws results 

in global movement of all the considered objects towards the object having heavier mass.  

The agent’s mass is calculated using Eq. (29) 

   𝑀𝑔
𝑘 =

𝑚𝑔
𝑘

∑ 𝑚ℎ
𝑘𝑁𝑔

ℎ=1

     (29) 

where,  

 𝑚𝑔(𝑘) =
𝑓𝑖𝑡𝑔

𝑘−𝑓𝑖𝑡𝑤𝑜𝑟𝑠𝑡
𝑘

𝑓𝑖𝑡𝑏𝑒𝑠𝑡
𝑘−𝑓𝑖𝑡𝑤𝑜𝑟𝑠𝑡

𝑘 (30) 

where,  𝑓𝑖𝑡𝑔
𝑘
 and 𝑀𝑔

𝑘 are the fitness value and the mass of agent g at kth iteration. 𝑁𝑔 

represents the total number of agents. 𝑓𝑖𝑡𝑏𝑒𝑠𝑡
𝑘
 and 𝑓𝑖𝑡𝑤𝑜𝑟𝑠𝑡

𝑘
 are the best and the worst 

fitness value among Ng at kth iteration. The force acting between agent g and h as per the 

law of gravity is given in Eq. (31) 

 𝐹𝑔ℎ𝑑
𝑘 = 𝐺𝑘 .

𝑀𝑔
𝑘.𝑀ℎ

𝑘

𝐷𝑔ℎ
𝑘+ℰ

. (𝑆𝑔𝑑
𝑘 − 𝑆ℎ𝑑

𝑘 )   (31) 

where, 𝐺𝑘 is the gravitational constant at kth iteration. ℰ is a small constant which ensures 

the denominator is non-zero. 𝐷𝑔ℎ
𝑘 shows the Euclidian distance present between the agent 

g and h. The acceleration of agent g as per the law of gravity is given in Eq. (32) 

  𝑎𝑔𝑑
𝑘 =

𝐹𝑔𝑑
𝑘

𝑀𝑔
𝑘  (32) 

where, 𝐹𝑔𝑑
𝑘  is the force acting on agent g at iteration k in d dimension. The updated velocity 

and position of agent g is calculated as 
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 𝑣𝑔𝑑
𝑘+1 = 𝑟𝑎𝑛𝑑. 𝑣𝑔𝑑

𝑘  + 𝑎𝑔𝑑
𝑘   (33) 

 𝑆𝑔𝑑
𝑘+1 = 𝑆𝑔𝑑

𝑘 + 𝑣𝑔𝑑
𝑘+1  (34) 

The value of 𝐺𝑘  is set using Eq. (35) 

 𝐺𝑘 = 𝐺𝑜. 𝑒−𝛼
𝑘

𝐾  (35) 

where,  𝐺𝑜 is the initial value of the gravitational constant. K is the total number of iterations 

and reduces linearly to 1.  

The sequence of steps the GSA follows are Identification of search space, random 

initialization of GSA parameters, fitness function evaluation, updation of GSA parameters, 

determination of force using Eq. (31), acceleration using Eq. (32) and velocity using Eq. 

(33) followed by updating agent’s position using Eq. (34) till the stopping criteria is met. 

6. SOLUTION METHODOLOGY FOR OPTIMAL MULTIPLE DGS ALLOCATION  

AND RELIABILITY ASSESSMENT USING PSO 

The PSO-based method to allocate multiple DGs optimally in RDS for mitigating 

system power losses and the reliability indicators takes the following steps  

Step I: Solve the b/f LF problem for the base case to determine magnitude of system 

bus voltage and its power losses as mentioned in section 2.1. 

Step II: Calculate reliability indicators: TENS, AENS, ASIDI, CAIDI and SAIFI. 

Step III: Select PSO parameters (swarm size, acceleration coefficients and weight) to 

minimize the OF value. 

Step IV: Set iteration counter k as 0 

Step V: The values of the DG location and size are generated (between zero and sum of 

system loads (continuous)) with random velocities and positions on the 

dimension (locations & sizes of Type I and Type IV DG) as pbest. 

Step VI: Repeat the LF algorithm for every particle after placing DG randomly. If all 

constraints are within limits then compute OF for the randomly initialized 

particles. Else, reject the infeasible solution. 

Step VII: The DG site and size providing the lowest OF value is considered as gbest and 

its corresponding position is nominated as the particle best position. 

Step VIII: The value of particle’s velocity, particle’s position and its weight are updated 

using Eq. (26), Eq. (27) and Eq. (28), respectively.  

Step IX:  If kmax is achieved, jump to Step X. Else, increment k and repeat steps IV through 

IX. A new pbest and gbest is generated and stored if the newly obtained values 

is found to be superior than the previous values.  

Step X:  The best position signifies the optimal sites and sizes of multiple DGs and its 

corresponding OF value represents the minimum total RPL. 

Step XI:  Calculate the value of TENS, AENS, ASIDI, CAIDI and SAIFI after optimal 

penetration of single and multiple DGs of the corresponding type with the values 

calculated in step II. 
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7. NUMERICAL RESULTS AND DISCUSSION 

This paper demonstrates the effect of optimal installation of different DG units in RDS 

using PSO and GSA to mitigate system power losses and upgrade system reliability. The 

total capacity of the simultaneously placed multiple DGs is not to supersede the total 

system load. The total system data for 33-bus has been taken from [27]. The IEEE 33-bus 

system has a power demand of 3.715+j2.3 MVA and three laterals. The base kV and MVA 

taken for the test system are 12.66 and 100, respectively. The data taken for calculating 

reliability indicators are mentioned in the appendix section (Table 9 and Table 10). The 

total number of interruptions and customer with at least one interruption is considered as 

10 and 4012, respectively. The failure rate of the system is assumed to be 0.5 f/yr. The PSO 

and GSA are tested on standard 33-bus RDS to verify its robustness. The PSO algorithm 

analyses the impact of single and multiple DGs placement, whereas, the GSA analyses the 

impact of single DG placement on system’s reliability. The maximum iteration count and 

swarm size chosen for the PSO is 100 and 20, respectively. The values of PSO control 

variables 𝑐1 , 𝑐2 , 𝑤𝑝𝑚𝑖𝑛 and 𝑤𝑝𝑚𝑎𝑥 selected for the fast convergence are 2, 2, 0.4 and 0.9, 

respectively as in [28]. In GSA, the values of Go and α is taken as 100 and 20, respectively 

as in [29]. The population size, K and dimension selected for the GSA technique is 33, 20 

and 1, respectively. The proposed technique is implemented to calculate bus voltages, total 

system power losses, annual cost of energy loss (ACEL), annual savings and reliability 

indicators. The value of ACEL [30] is calculated using (36) 

 𝑨𝑪𝑬𝑳 = (∑ 𝑷𝒍𝒐𝒔𝒔 (𝒊 − 𝟏, 𝒊)
𝑵𝒃
𝒊=𝟐 𝑻 ∗  𝑬 )$    (36) 

where T and E are annual time duration (8760 hours) and energy cost (0.06 $/kWh), 

respectively. The comparative analysis of the obtained results has been carried out at the 

same base voltage and load model. The methodology to integrate multiple DGs in the test 

system is implemented in MATLAB. 

The results of the 33-bus RDS before and after penetration of one and three DGs using 

PSO approach are compared and tabulated in Table 1. The total system real and reactive 

power loss in the absence of any type of DG is 210.07 kW and 142.43 kVAr, respectively. 

The value of TENS, AENS and ASIDI is also calculated for the uncompensated system 

and found out to be 8.0475 MWh/yr, 0.0004969 MWh/cust-yr and 0.2794 hours, 

respectively. The following case studies based on the type of DG penetration are as follows: 
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Table 1 Results of Type I DG installation in 33-bus RDS using PSO approach 

 
Base case 

With DG 

1 DG 3 DGs 

  PSO  

Optimal DG size in kW (optimal bus) - 2605(6) 1067.5(24), 

779.7(14), 

1091.8(30) 

Minimum bus voltage (Vmin) p.u @ bus 

(Improved voltage in %) 

0.9042 @ 18 0.9436 @ 18 

(4.35%) 

0.9729 @ 33 

(7.59%) 

RPL (kW) 210.07 110.00 71.00 

RPLR (kW) 

(% reduction in RPLR) 

- 100.07 

(47.63%) 

139.07 

(66.20%) 

Reactive power loss (kVAr) 142.43 80.82 - 

ACEL ($) 110413 57816.00 37317.6 

Annual energy loss Savings ($) - 52597.00 73095.4 

Table 2 Impact of Type I DG installation on reliability indicators for 33-bus RDS 

  TENS 

(MWh/yr) 

AENS 

(MWh/cust-yr) 

ASIDI 

(hours) 

No DG  8.0475 4.9691e-04 0.2794 

One DG 
PSO 2.2230 1.3727e-04 0.0452 

GSA 1.8936 1.1693e-04 0.0461 

Three DGs  1.5682 9.6834e-05 0.0541 

7.1. Type I DG penetration 

The optimal position of single DG placement is found out to be bus 6 after applying 

PSO technique with DG size of 2605 kW, whereas, for simultaneous positioning of 

multiple DGs, the buses 24, 14 and 30 are obtained with a DG capacity of 1067.5 kW, 

779.7 kW and 1091.8 kW, respectively (From Table 1). The CPU time for the computation 

of LF in a 33-bus system considering Type I DG obtained from the PSO approach is 1.15 

seconds and found out to give faster convergence as compare to other approaches viz. 

4.2651 seconds [8] and 6.9255 seconds [31]. The optimal location and size of single Type 

I DG in 33-bus RDS using GSA is bus 6 and 2000 kW, respectively. The effect of 

penetration of single and multiple DGs on TENS, AENS and ASIDI are also analysed and 

mentioned in Table 2. The reduction in the value of reliability indicators after penetrating 

DGs in RDS demonstrates the improvement in system reliability. 

7.1.1. Effect of Type I DG on system power losses 

The optimal installation of a single DG minimizes the RPL by 47.63%, whereas, in the 

case of 3 DGs, the value of RPL reduces by 66.20% as illustrated in Table 1. This in turn 

releases the real power demand of 100.07 kW and 139.07 kW after penetration of single 

and multiple DGs, respectively, at unity power factor. 
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7.1.2. Effect of Type I DG on voltage profile 

The minimum bus voltage of 0.9042 p.u without DG was attained at bus 18 which got 

enhanced to 0.9436 p.u at bus 18 and 0.9729 p.u at bus 33 for single and multiple DGs 

placement with a percentage voltage enhancement of 4.35% and 7.59%, respectively. The 

proposed methodology meets all the constraints except small voltage violation (lower limit) 

in case of single Type I DG i.e. 5.64% instead of 5% in the case of single DG placement 

(From Table 1). The impact of installing one and three DG on the convergence of bus 

voltage magnitude for 33-bus RDS is presented in Fig. 2 which displays that the multiple 

DG has better bus voltage profile than single DG placement. 

 

Fig. 2 Bus voltage profile without and with one and three Type I DGs    

7.1.3. Effect of Type I DG on reliability indicators 

The impact of single DG allocation on reliability indices in 33-bus RDS is carried out 

using PSO and GSA and the values are tabulated in Table 2. After locating single DG in 

the system, the values of TENS, AENS and ASIDI decreases with a percentage reduction 

of 72.37%, 72.42% and 83.82%, respectively for PSO, whereas, it is 76.47%, 76.46% and 

83.50%, respectively for GSA, w.r.t the base case. The value of TENS, AENS and ASIDI 

becomes 1.5682 MWh/yr, 0.0000968 MWh/cust-yr and 0.0541 hours after the installation 

of three DGs, respectively (From Table 2). The percentage improvement in reliability 

indices with the penetration of single and multiple Type I DGs is illustrated in Fig. 3 and 

clearly infers that the percentage reduction in reliability indices is more with the installation 

of three DGs for TENS and AENS as compared to one DG. Hence, the injection of real 

power in the system enhances the system reliability, but excessive real power injection may 

create an adverse effect on ASIDI.  

 

Fig. 3 Percentage improvement in reliability indices with single and multiple DGs 
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7.1.4. Effect of Type I DG on the cost of annual energy loss 

The cost of annual energy loss obtained for the base case is $110413.00 which is reduced to 

$57816.00 and $37317.6 with the installation of one and three DGs, respectively. The annual 

energy loss saving after single and multiple DG placement is $52597.00 and $73095.4, 

respectively (From Table 1). 

7.1.5. Result Comparison 

The test results obtained without and with single and multiple DGs placement using 

PSO and GSA are compared to the already existing results and tabulated in Table 3. Due 

to varying nature of DG size and real power loss reduction (RPLR), a ratio of PLR to PL 

is introduced.  The larger ratio indicates the dominance of the method employed to integrate 

DG optimally. PLR is the ratio of RPLR considering DG to RPL with no DG. PL is the 

ratio of real power penetrated by DG to the real power load. The ratio obtained from PSO 

and GSA in the presence of single and multiple DGs is determined to be either equal or 

superior to the previously published results. It is obvious from the results that, in the 

presence of three DGs the reduction in power loss (66.20%) is maximum. The ACEL with 

the penetration of three DGs is significantly less as compared to a single DG. 

Table 3 Comparison of results for multiple Type I DGs in 33-bus RDS 
  

Installed DG size in kW 

(optimal bus) 

Total 

DG 

capacity 

(MW) 

RPL 

(kW) 

PLR Ratio 

of 

PLR 

to PL 

ACEL ($) 

No DG 
 

- - 210.07 - - 110413.00 

1 DG 

Proposed 

method 

PSO 2605(6) 2605 110.00 47.63 0.68 57816.00 

GSA 2000(6) 2000 114.60 45.45 0.84 60233.76 

IA [32] 2600(6) 2600 111.10 47.39 0.67 58394.16 

Grid search 

algorithm [33] 

2600(6) 2600 111.00 47.39 0.67 58341.60 

PSO [34] 3150(6) 3150 115.29 45.36 0.53 60596.42 

KHA [35] 2590(6) 2590 111.02 47.38 0.53 58352.11 

3 DGs 

Proposed method 1067.5(24), 779.7(14), 1091.8(30) 2939 71.00 66.20 0.84 37317.60 

PSO-CFA [36] 1049.1(10),878.6(25),804.9(33) 2732.6 76.00 62.48 0.84 39945.60 

ShBAT [37] 1190.0(30), 849.0(25), 790.0(13) 2829 72.12 64.34 0.83 37906.27 

ACO-ABC [38] 754.7(14),1099.9(24),1071.4(30) 2926 71.40 64.77 0.81 37527.84 

ABC [31] 1756.9(6), 575.7(15), 782.6(25) 3115.2 79.20 61.15 0.73 41627.52 

GA [39] 1500(11),422.8(29),1071.4(30) 2994.2 106.3 49.61 0.59 55871.28 

MOCSOS [40] 1187.9(13),1197.1(24),1300.2(31) 3685.2 89.40 57.67 0.58 46988.64 

MOTA [41] 980(7),960(14),1340(30) 3280 96.30 54.36 0.56 50615.28 

GA/PSO [39] 925(11),863(16),1200(32) 2988 124.0 41.22 0.51 65174.40 
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7.2. Type IV DG allocation 

For PSO approach, the optimal position after applying proposed methodology to locate 

a single Type IV DG is bus 6 with DG size of 3150 kVA, whereas, for the positioning of 

multiple DGs, the buses 24, 30 and 14 are determined with a DG capacity of 859.2 kVA, 

1031.6 kVA and 605.3 kVA, respectively, as mentioned in Table 4. The optimal bus 

obtained using GSA to locate single Type IV DG is 6 with a DG capacity of 2828.42 kVA. 

The effect of penetration of single and multiple DGs on each reliability indicator using 

PSO and GSA is provided in Table 5. 

Table 4 Results of Type IV DG installation in 33-bus RDS using PSO 

 
Base case 

With DG 

1 DG 3 DG 

Optimal DG Size in kVA (optimal bus) - 3150 (6) 859.2 (24), 

1031.6 (30), 

605.3 (14) 

Vmin in p.u @ bus  

(Improved voltage in %) 

0.9042@18 0.9602@18 

(6.19%) 

0.9953@33 

(10.07%) 

RPL (kW) 210.07 64.00 17.00 

RPLR (kW) 

(% reduction in RPLR) 

- 146.07 

(69.53%) 

193.07 

(91.90%) 

ACEL ($) 110413 33638.40 8935.20 

Annual energy loss Savings ($) - 76774.60 101477.80 

Table 5 Impact of Type IV DG installation on reliability indicators 

 

 

 

 

 

 

7.2.1. Effect of Type IV DG on system power losses 

After optimal penetration of one and three DGs in RDS, the losses reduced to 64 kW 

and 17 kW with a reduction of 69.53% and 91.90%, respectively, as illustrated in Table 1 

at 0.82 PF [28]. The reactive loss obtained without DG is 142.43 kVAr. The power loss 

reduction attained with the installation of single and multiple Type I and IV DGs is 

demonstrated in Fig. 4 which concludes that the allocation of multiple Type IV DGs gives 

the highest reduction in system RPL amongst all. 

  TENS 

(MWh/yr) 

AENS 

(MWh/cust-yr) 

ASIDI 

(hours) 

No DG  8.0475 4.9691e-04 0.2794     

One DG 
PSO 1.7033 1.0518e-04 0.045287 

GSA 1.5702 9.6956e-05 0.045513 

Three DGs  1.1429 7.0571e-05 0.054032 
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Fig. 4 RPLR with single and multiple Type I & Type IV DG penetration  

The ACEL after penetration of single and multiple Type IV DGs is $33638.40 and 

$8935.20 which results in the annual energy loss savings of $76774.60 and $101477.80, 

respectively (From Table 4). 

7.2.2. Effect of Type IV DG on system voltage profile 

The installation of a single DG in 33-bus system improves the magnitude of bus voltage at 

bus 18 from 0.9042 pu to 0.9602 pu at bus 18 resulting in percentage voltage improvement of 

6.19%. In the presence of multiple DGs the system voltage at bus 18 enhances from 0.9042 pu 

to 0.9953 p.u at bus 33 resulting in percentage bus voltage improvement of 10.07%. The impact 

of installing single and multiple Type IV DGs on the convergence of voltage magnitude at each 

bus is presented in Fig. 5, which demonstrates that the bus voltage profile with multiple DG 

units is over-represented as compare to one DG placement. 

 

Fig. 5 Comparison of bus voltages in presence of single and multiple Type IV DGs penetrations 

P+jQ indicates the system’s nominal loading. The impact of system loading on the 

magnitude of bus voltage with optimally placed DG (at bus 6) is evaluated by incrementing 

load gradually at all the buses as mentioned in Table 6 [11]. At critical loading, the voltage 

at bus 6 got reduced from 0.9496 p.u. to 0.7594 p.u. The value of critical loading factor 

obtained for 33-bus system is 3.405 after which there will be a voltage collapse. The 

subsequent incorporation of DG enhances the voltage magnitude at all the buses and hence 

provides stable operation with enhanced system capacity. 
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Table 6 Impact of system loading & Type IV DG on voltage for 33-bus [11] 

System load RPL (kW) Reactive 

power loss 

(kVAr) 

Voltage in p.u 

@ bus 6 

DG size 

(kVA) @ 

bus 6 

P+jQ 210.0704 142.4372 0.9496 0 

2(P+jQ) 1016.33 691.98 0.8894 0 

3(P+jQ) 3094.5 2122.31 0.8078 0 

3.405(P+jQ) 4905.40 3382.42 0.7594 0 

3.41(P+jQ) NC NC NC 0 

3.41(P+jQ) 2463.5 1755.3 0.8545 1000 

3.41(P+jQ) 1412.3 1062.1 0.9263 2000 

NC: No Convergence 

7.2.3. Effect of Type IV DG on reliability indicators 

The value of TENS, AENS and ASIDI obtained from PSO method after placement of 

a single Type IV DG is 1.7033 MWh/yr, 0.00010518 MWh/cust-yr and 0.045287 hours 

which becomes 1.1429 MWh/yr, 0.00007057 MWh/cust-yr and 0.0540 hours in the 

presence of three DGs, respectively (From Table 5). The drop in the reliability indicators 

shows system reliability improvement. The % improvement in the value of TENS and 

AENS incorporating single Type IV DG using GSA is 7.81% and 7.82%, respectively. The 

impact of single and multiple Type IV DGs on the percentage reduction in reliability 

indices is illustrated in Fig. 6. The percentage reduction in TENS and AENS is higher due 

to the installation of three DGs as compared to one DG, except ASIDI. The results 

demonstrate that the value of TENS and AENS decreases with higher DG penetration, 

whereas, the value of ASIDI increases due to excessive real power penetration.  

 

Fig. 6 Percentage improvement in reliability indices with different number of Type IV DGs 

In addition to this, the impact of optimal allocation of three DG (Type IV) units on CAIDI 

and SAIFI have also been analysed. For an uncompensated system the values of CAIDI and 

SAIFI is 0.62466 (hours/cust − interruption) and 0.72337 (interruptions/customer-yr) which 

got reduced to 0.62305 (hours/cust − interruption) and 0.72028 (interruptions/customer-yr), 

respectively after integration of Type IV DG units. These indices are difficult to compare from 

one utility to another and from one location to another because of the differences in the 

calculation of the number of customers connected. Some utilities determine their number of 

customers based on the total number of meters connected and some based on customer postal 
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addresses and do not considers the weather conditions and planned outages for reliability 

calculation.    

7.2.4. Comparison of results 

The comparative analysis without and with the integration of single and multiple Type 

IV DGs has been carried out and tabulated in Table 7. The value of PLR and ratio of PLR 

to PL attained from the proposed method is found out to be the highest among all reported 

results for one and three DGs. The ratio obtained from GSA for single DG placement is 

found out to be superior than PSO.  The presented methodology leads to a superior solution 

causing minimum annual energy loss in most cases. It is obvious that the Vmin and reduction 

in system RPL attained with multiple DGs of Type IV is superior to single DG.  

Table 7 Comparison of results for multiple Type IV DGs in 33-bus RDS 

 Installed DG size in kVA 

(optimal bus) 

Total DG 

capacity 

(kVA) 

RPL 

(kW) 

PLR Ratio 

of PLR 

to PL 

ACEL 

($) 

No DG  - - 210.07 - - 110412.8 

1 DG 

Proposed 

method 

PSO 3150(6) 3150 64.00 69.53 0.813 33638.40 

GSA 2828.42(6) 2828.42 64.55 69.27 0.91 33927.48 

IA [32] 3107(6) 3107 67.90 67.85 0.809 35688.24 

MINLP [42] 3105(6) 3105 67.85 67.84 NR 35661.96 

GAMS [43] 3078(6) 3078 67.80 67.80 NR 35635.68 

3 DGs 

Proposed method 859.2(24),1031.6(30),605.3(14) 2496.1 17.00 91.90 1.36 8935.20 

TM [41] 705.2(16),705.2(27),1410.4(30) 2820.8 27.4 87.01 1.14 14401.44 

DGSI [44] 1208(13), 1208(29),152(31) 2568 49.8 76.22 1.09 26174.88 

LSFSA [45] 1382.9(6),551.7(18),1062.9(30) 2997.5 26.7 86.82 1.08 14033.52 

MOTA [41] 880(14),920(25),1560(30) 3360 15.7 92.55 1.00 8251.92 

MOCSOS [40] 926.1(13),1257(24),1481.2(30) 3664.3 15.1 92.83 0.93 7936.56 

NR: Not reported 

7.3. Statistical analysis of RPL  

From Table 8, the value of coefficient of variation (CV) of RPL in the presence of 

single Type IV DG is minimum as compared to the other types of DGs. This demonstrates 

that the Type IV DG is capable in reducing the variation in system power losses in 

distribution feeders around its mean value much more effectively than the Type I DG and 

hence give better security against overheating of the distribution feeders. 

Table 8 Statistical results for 33-bus with and without Type IV DG using PSO technique 

DG Type 
𝑃𝑙𝑜𝑠𝑠 (kW) 

Min Max Mean Std CV 

No DG 0.013 51.896 6.570 11.536 1.756 

Type I 0.012 15.457 3.425 4.099 1.196 

Type IV 0.010 9.9412 1.993 2.367 1.187 
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8. CONCLUSION 

This article presents a comprehensive strategy to optimally allocate multiple Type I and 

Type IV DGs in the existing RDS to reduce RPL, reliability indicators (TENS, AENS and 

ASIDI) and improve bus voltage profile. The optimal integration of DG units is carried out 

using PSO and GSA based approach which is capable to determine optimal solution with 

or without few assumptions even in a large search space. The comparative analysis on 33-

bus system has been carried out for single and multiple DGs placement in the RDS. The 

analysis clearly illustrates that the system performance in terms of reduction in system 

power losses, enhancement in TENS, AENS, bus voltage profile and AELS is superior for 

multiple DGs placement when compared to single DG. The results also demonstrated that 

the penetration of DG resources in RDS using PSO and GSA method improves TENS and 

AENS, but excessive power injection may create an adverse effect on ASIDI. An approach 

like GSA founds to provide better results than PSO for TENS and AENS improvement in 

case of single DG.  The optimal integration of multiple Type IV DG is found to have many 

positive impacts on system performance. 
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APPENDIX 

Table 9 Number of customers at each bus  

Bus number  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

Total no. of customers 500 600 750 250 425 220 500 640 800 600 730 640 550 920 120 

Bus number  16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 

Total no. of customers 60 340 410 230 260 550 650 290 270 700 250 420 720 850 760 

Bus number  31 32 33             

Total no. of customers 180 350 660             

Table 10 Customer interruption details at five load points  

 
 

 

 
 

 

Load 
points 

Unavailable  
buses 

Off time 
(min) 

1 5, 21, 24, 6, 3 28 

2 12, 7, 21, 4, 21 40 

3 6, 3, 13, 16, 24 14 
4 16, 9, 14, 10, 7 60 

5 8, 19, 6, 1, 12 35 


