FACTA UNIVERSITATIS
Series: Electronics and Energetics Vol. 34, No 2, June 2021, pp. 239 - 257
https://doi.org/10.2298/FUEE2102239C

Original scientific paper

INPUT SPLITS DESIGN TECHNIQUES
FOR NETWORK INTRUSION DETECTION
ON HADOOP CLUSTER

Vladimir Ciri¢, Dusan Cvetkovié, Nadja Gavrilovi¢,
Natalija Stojanovi¢, Ivan Milentijevic¢

University of Ni§, Faculty of Electronic Engieering, Nis, Serbia

Abstract. Intrusion detection system (IDS) is one of the most important components
being used to monitor network for possible cyber-attacks. However, the amount of data
that should be inspected imposes a great challenge to IDSs. With recent emerge of various
big data technologies, there are ways for overcoming the problem of the increased
amount of data. Nevertheless, some of this technologies inherit data distribution
techniques that can be a problem when splitting a sensitive data such as network data
frames across a cluster nodes. The goal of this paper is design and implementation of
Hadoop based IDS. In this paper we propose different input split techniques suitable
for network data distribution across cloud nodes and test the performances of their
Apache Hadoop implementation. Four different data split techniques will be proposed
and analysed. The techniques will be described in detail. The system will be evaluated
on Apache Hadoop cluster with 17 slave nodes. We will show that processing speed can
differ for more than 30% depending on chosen input split design strategy. Additionally,
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1 INTRODUCTION

The complexity of the Internet, diversity of available services, and the de-
sire to expand applications of the global network contribute to its increased
insecurity. Even with decades of research, and a lot of available security
products, the internet has steadily become more and more dangerous [1,2].

Living in the era when everything is connected to the internet requires a
different security strategy. When the attack begins, it is irrelevant how the
network is configured or what kind of “boxes” network has, or how many
security devices are installed. The only thing that matters is who is defending
the network. The only way to stay ahead of new vulnerabilities and attacks
is through vivid detection and response [3]. Unfortunately, constant security
monitoring is a key component missing in most networks [4,5].

Intrusion detection system (IDS) is one of the most important compo-
nents used to detect attacks in monitored network traffic [6]. Intrusion de-
tection is broadly considered to be a classification problem. Based on their
classification model IDSs are classified into signature (or pattern) matching
and anomaly based IDS. The signature matching IDS monitors the network
activity for a known misuse pattern that was previously identified as a ma-
licious attempt [6].

Having in mind typical bandwidths on the network boundaries, the amount
of data that need to be analyzed for malicious signatures becomes challeng-
ing. There are IDS implementations available that tend to speed up network
packet analysis [7—12]. Different approaches to task and data parallelism
were exploited [9,10,12]. Some implementations use multi-core software de-
velopment frameworks to parallelize the execution on CPU [11], while some
utilize GPUs [8].

The Apache Hadoop is a framework for distributed processing of large
amount of data on clusters of computers (nodes) using MapReduce pro-
gramming model, where each node offers local computation and storage [13].
Hadoop Distributed File System (HDFS) is used for distributed data storage,
and it represents a layer above existing file system of every node in cluster
used to store input files or parts of them. Large files are split into a group
of smaller blocks. Size of these blocks is fixed, so it is easy for Hadoop to
index any block within the file [7]. However, this data distribution technique
can introduce problems when splitting a sensitive data such as network data
frames across a cluster nodes. Due to the fixed size of the block, one part of
the network packet can end up on one node, while the other part is on the
other, making malicious pattern matching challenging [14, 15].
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Several authors already dealt with the problem of IDS implementation
on Hadoop. However, for the best of our knowledge there is no solution
that implements IDS on Hadoop without support of other software tools.
In [16,17] the authors used Hadoop to analyse logs gathered from well-known
Snort IDS. In [18] the authors proposed Hadoop as a distributed database
manager, but the main processing isn’t performed by Hadoop.

The goal of this paper is design and implementation of IDS based on
Apache Hadoop, with focus on data splitting and distribution techniques
to cluster nodes. In this paper we propose different input split techniques
suitable for network data distribution across cloud nodes and test the perfor-
mances of their Apache Hadoop implementations. Four different data split
techniques will be proposed and analysed. The techniques will be described
in detail. The IDS will be implemented using Myers pattern search algo-
rithm as a core for signature-based packet analysis and evaluated on Apache
Hadoop cluster with 17 slave nodes. We will show that processing speed
can differ for more than 30% depending on chosen input split design strat-
egy. Additionally, we’ll show that malicious level of network traffic can slow
down the processing time, in our case, for nearly 20%. The scalability of the
system will also be discussed.

The paper is organized as follows. Section 2 gives a brief introduction
to IDS. Section 3 is devoted to the MapReduce framework, as a basis for
the proposed Apache Hadoop implementation. Section 4 is the main section
and presents the design of the IDS workflow on the Hadoop framework. In
this section we will discuss the design of data input split techniques, as well.
Section 5 is devoted to the system evaluation, while in Section 6 concluding
remarks are given.

2 INTRUSION DETECTION SYSTEM BACKGROUND

IDS monitors network traffic and deploys various techniques in order to
provide security services. Based on the technique used to assess the network
packets as regular or malicious, IDSs are classified into signature (or pattern)
matching and anomaly based IDSs [11,19,20]. The signature matching IDS
searches the network traffic for a known misuse pattern that was previously
identified as a malicious attempt [7,8]. A database with malicious signatures
is prepared in advance. This leads to fast and reliable operation, but these
IDSs are not able to detect new attacks that have not been seen before.
The anomaly based detection IDSs make the decision based on a profile
of a normal network behavior, and they are capable of detecting zero day
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attacks, with a drawback of possible false positives [20,21]. In this paper we
will focus on pattern matching based IDS.

The workflow of pattern matching based IDS is shown in Fig. 1 [12,19].
Intrusion detection starts with network monitoring, followed by network
packet preparation for efficient pattern matching, which is based on the pre-
defined signature database (Fig. 1). Network monitoring can be performed
as packet capture, deep packet inspection and flow-based monitoring. Packet
capture intercepts a data packet that is crossing over a specific computer net-
work, but it focuses only on packet headers. Deep packet inspection (DPI)
is an advanced method of packet filtering, which inspects at the application
layer of the OSI (Open Systems Interconnection) reference model.

signature
database

net. traffic packets group pattern
monitoring decode packets match

Fig. 1: The typical IDS workflow.

Any signature based IDS checks the presence of a malicious signature
in the incoming packet sequence and act as instructed by the corresponding
rule. Snort is a widely used open-source IDS based on pattern matching [11].

The pattern matching algorithm must be fast enough in order to support
the network link speed. There are various implementations of pattern match-
ing algorithms [7-12]. We will use Myers pattern search algorithm for DPI
packets inspection, with rules in Snort syntax as proposed in [12]. In order
to speed up pattern matching, in this paper we choose Apache Hadoop dis-
tributed environment, with focus on network traffic data distribution across
the nodes.

3 ApracHE Hapoor HDFS AND MAPREDUCE

The Apache Hadoop is a framework for distributed computing based on
MapReduce programming model, where each computer in a Hadoop cluster
(node) offers local computation and storage [13]. The Apache Hadoop cluster
consists of one master and many slave nodes. The Apache Hadoop is avail-
able in versions 1.x and 2.x. There are two main components of Hadoop 1.x
system: Hadoop Distributed File System (HDFS), used for distributed data
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storage, and MapReduce computing framework for data manipulation. The
architecture of Hadoop 2.x adds YARN (Yet Another Resource Negotiator)
as an extension for resource management.

The HDFS is an abstraction of all file systems of cluster nodes, which
creates an illusion of common data file storage. Large files are split into a
group of smaller parts called blocks (default block size is 64MB) [13]. The
size of blocks is fixed, due to the simplification of indexing. The HDFS is
master-slave architecture, based on the existence of two types of (Linux)
deamons: DataNode and NameNode (Fig. 2). NameNode is executed on
the master node and it is responsible for managing DataNodes (slaves) [13].

NameNode - et éSccondary?
. Name
nput file N o d e
/facta/dpi.pcap <>
Hadoop /’ . - —
Client = N : R .
DataNode 1 DataNode 2 DataNode 3

Fig. 2: HDFS components and their communication

The NameNode is also responsible for taking care of the replication factor
of data blocks. The replication factor contributes to data fault tolerance by
creating a several copies of each block across the cluster. In Fig. 2 the repli-
cation factor is 2 (default replication factor is 3). In case of the DataNode
failure, the NameNode chooses new DataNodes for new replicas, balances
disk usage and manages the communication traffic to the DataNodes [13].

Typical Hadoop workflow has 4 parts: (1) transferring input data from
Client host to HDFS, (2) processing data using MapReduce framework on
the slave nodes, (3) storing results on HDFS, and (4) reading data by Client
host from HDF'S.

MapReduce is programming model for distributed data processing, where
the map function is applied on every data element in parallel, followed by
the reduce function that summarize the collections of intermediate results
produced by the map functions. MapReduce paradigm assumes that there
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are no data dependencies between any given instance of the map functions.

The map and reduce functions are implemented in Hadoop as follows.
Before the beginning of execution, the input data files must be added to the
HDEFS. The beginning of the data processing itself is the determination of
the logical units that will be processed - Input Splits. The most common
case is that one Input Split corresponds to one block on HDF'S, but it is not
necessary to be so. In case the data requires it, the partitioning of data to
Input Splits can be done differently, through a special implementation of the
InputFormat class that will create them [14,15].

All input and output data are given in key-value pairs < k,v >. The
default behavior is to use TeztInputFormat, where the key is an offset in
bytes from the beginning of file, and the value is the content of one line of
the file. The binary files can be used as well. One map task processes one
input split (Fig. 3). Each Input Split is divided into records, which are
represented as key-value pairs < k;,v; >. Each pair is processed by a map
task with one call of the map function. The map function takes one key-
value pair < k;,v; > and executes given operations on them. It produces
the intermediate results also in the form of key-value pairs < ky,, v,,, > (Fig.
3). Those results are then grouped in such manner that all pairs having the
same key are sent to the same reducer. Reducer summarizes all data with
the same key in order to get the final result (Fig. 3).

‘ Input File ‘
1
HDFS ‘ Inputgplit 1 ‘ ‘ Input gplit 2 ‘ ‘ Inputgplit 3 ‘
Map ‘ Map ‘tas}< 1 ‘ ‘ Map ‘task 2 ‘ ‘ Map ‘{ask 3 ‘
S}éufﬂe | (k,v) | o) (ky,v,)
ort (V) A0 *(ﬁ
Reduce ‘ Reducer 1 ‘ Reducer 2 ‘

HDFS

Fig. 3: The MapReduce execution

In order to design an efficient Hadoop based IDS, due to the fixed size
nature of HDF'S data blocks, in this paper we’ll focus on experimenting with
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different techniques of dividing the input data into Input Splits.

4 DESIGN OF HADOOP BASED IDS

The architecture of the proposed IDS is shown in Fig. 4. The proposed ar-
chitecture uses available Snort rules database and distributes pattern search
across the Hadoop cluster. Due to the default behavior of HDF'S to split the
data into a fixed size blocks, and the nature of network protocols to have
a packets of different sizes, the crucial design decision is how the packets
on block boundaries will be handled. Having this in mind, we introduced
peap_input_format packet in the architecture from Fig. 4, which will allow
us to experiment with different approaches by abstracting the InputFormat
class mentioned in the previous Section.

[ 1 1 1
IDS . tests __.y| Snort rules_
parser
1 [ 1
Hadoop ... pcap_input_ | . 5 utils
Framework format
N ~
1
pcap_packet
counter

Fig. 4: The architecture of the proposed IDS

The IDS packet from Fig. 4 is a central part that implements MapRe-
duce pattern search through captured network traffic using Myers algo-
rithm [12]. We chose the standard pcap format for capturing and storing
the network traffic [3]. The architecture’s packet pcap_input_format from
Fig. 4 is specialized for controlling the boundaries of the Input Splits, while
peap_input_counter tests the validity of its execution. The Snort_rules_parser
creates a distributed cache out of Snort rules that will be used as an input in
the pattern search algorithm. The pattern search algorithm itself is imple-
mented in the tests packet, while utils provide pcap network traffic decoding
functionalities.
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4.1 The input file format

De facto standard for network traffic capture and storage is pcap file format,
which is used by various well known network tools such as Wireshark, tcp-
dump, libcap, etc. [3]. The internal structure of pcap file is given in Fig. 5.
The file begins with global header, after which the particular network traffic
packets follow. Global header contains, among the others, two important
information (Fig. 5): the network protocol of the stored packets (network),
and the maximum length of the stored packets (snaplen). The network
protocol is in the most of cases Ethernet protocol, but it can be IP or any
other. The maximum length of the stored packets is the feature that enables
storage of the beginning of the packets only, for the sake of efficiency, in
the cases when only headers are required. In such cases snaplen value is
less then the value indicating original packet len in the actual header of the
packet, showing that only the first snaplen bytes of the packet are stored.

Each packet header from Fig. 5 contains the information about the
stored network packet and should not be confused with actual network pro-
tocol header. The packet header from Fig. 5 contains pcap information
about the time when the packet is captured (ts_sec and ts_usec), and its
length (incl_len and orig len).

|" - - | snaplen [ network | [ts sec [ts usec |incl len | orig len|

|Global header| Packet header | Packet data |- - - | Packet header | Packet data |

Packet 1 Packet N
Fig. 5: The internal structure of pcap file

As network protocol packets can have variable length (from few bytes to
several tens of kB, depending on protocol), and HDFS blocks are of the fixed
size, the fields incl_len and orig-len are of the great importance for the
proposed system. The incl_len field represents the length of the packet in
bytes as it is stored in the pcap file, while the orig len field gives its original
length in bytes as seen on the network. For each packet the following relation
stands

incl len < snap_len < orig len, (1)

where only the first incl_len bytes of each packet are captured in the pcap
file. Here we will demonstrate and compare several techniques for input
splits design, having in mind variable nature of network traffic packets.
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4.2 Input split techniques

We performed experiments with four different Input Split designs. Within
the first design technique we use textual file as an input, while in the next
three techniques we use binary file format with different network packet and
HDEFS data block aligning techniques.

Technique 1 - tshark packet pre-decoding

The simplest solution regarding the implementation of the map and reduce
functions is to use input file in textual format, and to pre-decode captured
network traffic prior to placing the input file on the HDFS. The paper [12]
deals with this particular type of implementation.

As malicious attempts can be recognized from their signatures in the form
of character or byte arrays, pcap file should be decoded in order to obtain
data in plain text from all headers of encapsulating network protocols (i.e.
Ethernet, IP, and TCP), including data carried by the application layer. In
this case it is not necessary to implement custom Hadoop InputFormat, but
the TextInputFormat can be used instead. We use tshark Linux command
line tool for network traffic decoding. The example of tshark tool usage is:

tshark -r <pcapfilename> -T fields -E separator=, -e ip.addr -e
_ws.col.Protocol -e tcp.port —-e udp.port -e data > output.txt

Each line in the output.txt contains the information from one fetched
network packet, which now represents the input file for HDFS. The input
file is divided in Input Splits, and each map task is fed by one Input Split.
The map function implemented to support this technique takes one line at
the time, and executes the pattern search algorithm. If some of the Snort
rules match the malicious network packet, the mapper emits < key, value >
pair, where the key stands for the attack identification, while the value is
constant 1. Having the same key, the results from the same malicious flow
go to the same reducer, which counts the malicious packets in the flow and
outputs the result.

The advantage of this approach is ease of Hadoop implementation, with
the drawback that packet decoding have to be done prior the beginning of
Hadoop program and pattern search.

Technique 2 - Custom InputFormat for pcap input

In order to overcome disadvantages of the previous technique, pcap file have
to be used in the original binary format, without pre-decoding. This can
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be achieved by implementation of custom Hadoop InputFormat that will
process pcap files. Two considerations should be taken into account: (1)
How to divide the input file into Input Splits? (2) How to read records from
an Input Split and feed them into the map function?

During the input file processing and creation of each Input Split, in this
technique we ensured that the boundary between each two adjacent Input
Splits is exactly at the boundary between two packets (Fig. 6). We crawled
the pcap file package by package until the configured block size limit (Fig. 6).
At that point, a new Input Split is created. Since the division is performed
at the packet boundaries, the sizes of the obtained Input Splits can differ
from each other, but no more than the maximum length of one packet, which
is 1536 bytes for Ethernet).

Input Split ) (2)
—1 1

|Global h] P. header| Packet data| - - - } P. header| Packet data| - - - | P. header| Packet datal

Packet 1 Packet x Packet N

Max. block size
Fig. 6: Dividing the pcap file into Input Splits: (1) correct boundary, (2)
incorrect boundary

In order to perform pattern search within the map function, the map
function requires both the packet header and the packet data. The output
from the mapper is in the form < key,value >, where the key is the offset
of the beginning of the packet header, and the value is the whole packet in
its original binary format.

In this approach the Mapper itself decodes the binary packet and locates
all required data (IP addresses, ports, payload, etc.), making the decoding
distributed operation, as well. As Myers algorithm natively works with
bytes, Mapper only have to decode the packet up to the application layer (to
find TP addresses and port numbers), but not the application layer payload
itself, which, compared to tshark, reduces the number of operations required
for decoding.
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Technique 3 - Custom InputFormat with probabilistic packet bound-
ary detection

Although the previous technique is much better than tshark packets decod-
ing due to its distributed packet decoding, it still crawls from packet to
packet through the pcap file with aim to align the boundary of the Input
Split with the boundary of the packet. In order to do so, it loads each net-
work packet into the memory. This takes time before the start of ”useful”
distributed processing, and slows down whole processing. In order to avoid
this bottleneck we propose the third technique - probabilistic packet bound-
ary detection, where we assume that pcap file contains the network packets
captured only on the Data Link layer of the OSI reference model, i.e. that
each "packet” in the pcap file is Ethernet frame.

Let the HDFS block size be z bytes. Here we propose not to load all
z bytes into the memory in order to find the boundary between the Input
Splits, but rather to skip the first = (z < z) bytes (Fig. 7). The question
now is whether the boundary between the network packets lies on the chosen
offset of x bytes? If so, then for the next package in the pcap file Eq. (1)
should stand. This practically means that the value on the position of the
orig len field should be greater than zero, that the value of the inc_len
field should be within the valid limits of the Ethernet frame size, and that
the value of the inc_len field should be less than or equal to the value of
the orig_len field. Other fields in the package itself must be valid, too. A
suitable place for additional check is where the ethertype field in the header
of the Ethernet frame should be. This value should be compared with the
value that indicates the Ethernet protocol.

This is highly probabilistic and fuzzy way of boundary detection, and a
few verified fields can mislead us by giving us a false positive answer. Thus,
we check the same conditions for the following k packets (up to the packet
denoted as Py in Fig. 7). If all conditions stand for the next k packets, we
declare the boundary between the packets found, and create the Input Split.
In order to perform mentioned additional checks on the next k packets, after
skipping the offset of = bytes we load the following y bytes, as it is shown in
Fig. 7. Let us note that y < z.

This can be used to form a probabilistic algorithm as follows: (1) if the
verified conditions stand for the next k packets, we assume that the correct
boundary between the Input Splits is on the a-th offset; (2) if the conditions
don’t stand at least for one of the k£ packages, the offset x is not the correct
limit, and the offset of x + 1-st byte should be examined (Fig. 7). In the
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Input Split 1 Input Split 2

J

\Globalh| P} [P, [+« | P, [P}--- [P, [ [Py [Py
N

oo | Py

" x-byte offset ~—du——
y-bwte search y—byte: search

x-byte offset ‘

Fig. 7: Probabilistic method for packets boundaries detection

worst case scenario the number of offsets that should be examined is equal
to the maximum length of Ethernet frame, which is not a problem having
in mind that we already have y bytes from pcap loaded and available. Even
in this case, it is much less than loading and processing of all z bytes.

With the careful selection of the parameters z, y and k, high degree of
certainty of the proposed technique can be reached. In our implementation
we selected the following parameters: z = 128MB, z = 123MB and y =
5MB. In the portion of y = 5MB there are more than 3.000 Ethernet frames,
more then enough for us not to obtain any false positive, while loading only
4% of the pcap file.

Technique 4 - Custom InputFormat with aligned blocks and Input
Splits

The previous technique has an important drawback regarding the way how
the HDF'S operates in the case of unequal sizes of blocks and Input Splits.
In any case, the HDFS block size is constant. If the Input Split size is less
than the block size, as it is in the previous technique, the boundary of the
input split will not be aligned with the block boundary, forcing the HDF'S to
fill the remaining space with the next Input Split. That Input Split will be
divided having a small portion in one block and a larger portion in the next
block. The case when one Input Split resides in two blocks will force the
Hadoop to copy both blocks on the node where the mapper who processes
the particular Input Split is executed. This can cause large and unnecessary
network traffic while copying the blocks.

To overcome this issue and prevent unnecessary blocks copying, we pro-
pose the fourth technique where we have a custom InputFormat and the
exact same sizes of blocks and Input Splits (Fig. 8). Now, the boundaries
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of Input Splits are not aligned with the boundaries of network packets in
most cases, and they split some packets into two parts (Fig. 8). There-
fore, we will ignore the split packets as invalid. They intentionally will not
be processed further through the MapReduce framework, leaving the small
chance of false negative response of our network intrusion detection system
for the sake of speed gain by avoiding of unnecessary block copying. In the
worst case, the number of packets that will not be processed can be equal to
the number of Input Splits, i.e. one invalid packet per Input Split (roughly
one Ethernet frame per 100.000 frames will be ignored).

The problem that remains is finding valid beginning of the first packet
within the Input Split, and this is a reason for having a custom InputFormat
within this technique, too. To find the first valid packet in Input Split, we
use the same probabilistic algorithm as in the previous technique, and we
search through the first y bytes of the Input Split for the valid beginning of
Ethernet frame (Fig. 8).

Input Split 1 1 Input Split 2 H
—~ —~
1 1
Globalh| P\ [P [--- [Py [ |- [Pef---[POIR] -+ |
i —
1 y-byte 1 y-byte
block 1 ' block 2 '

Fig. 8: Aligned blocks and Input Splits

5 IMPLEMENTATION RESULTS

The proposed techniques are suitable for implementation in both Hadoop
1.x and 2.x without any restrictions. In order to evaluate the proposed tech-
niques, the IDS is implemented in Apache Hadoop 1.x and 2.x, and tested on
a cluster with 18 commodity nodes, where 1 node is a master while the rest
17 nodes are slaves. The nodes are equipped with Intel(R)Core(TM)2 Duo,
CPU E4600@2.40GHz, and 1GB of RAM. In order to compare the perfor-
mances of the proposed Hadoop IDS with the reference Snort IDS, evaluation
of the technique 1 is done in single-processor environment, because the Snort
IDS doesn’t support distributed execution. For that purpose we used an en-
vironment with i3 6006U CPU and 8GB RAM. The processor E4600 has
2 cores and operates at 2.4GHz, with Whetstone benchmark results 2.25
FLOPS per core, i.e. 4.50 FLOPS in total. The processor i3 6006U has 4
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cores at 2.00GHz, with Whetstone benchmark results 2.08 per core, i.e. 8.31
in total [22].

We used input pcap files of variable sizes with 1, 2, 3, 4, and 5GB of
network traffic data, having "low”, "medium”, and ”high” number of mali-
cious packets (less than 1%, 30-40%, and more than 70%, respectively). We
also varied the number of Snort rules and the number of slave nodes in the
cluster.

The proposed Hadoop IDS with technique 1 for Input Splits prepara-
tion (tshark packet pre-decoding) is evaluated in Hadoop 2.9.0, in pseudo-
distributed environment on the previously mentioned single-processor sys-
tem, along with the Snort IDS. The results are given in Table 1.

input file | preprocessing | pattern search | total process-
size [GB] | time [s] time [s] ing time [s]
Snort IDS 1 0 120 120
Hadoop IDS | 1.6 211 94 305

Table 1: Hadoop IDS with tshark packet pre-decoding vs. Snort IDS

The used input pcap file size is 1GB, and it contained about 2 million
network packets with "medium” number of malicious packets. As it can be
seen from Table 1, packet pre-decoding increased the file size from 1GB to
1.6GB. Nevertheless, the proposed IDS has 21% faster pattern search time
than the Snort (94s vs. 120s). This is due to the fact that the execution
of Hadoop IDS takes advantage of multi-core CPU, while the Snort doesn’t.
However, the time required for tshark packet pre-decoding took more than 3
minutes (211 seconds), giving the total processing time for Hadoop 2.5 times
slower than the Snort IDS.

For the job execution purposes Hadoop 2.x requests three different kinds
of containers from YARN: the application master container, map containers,
and reduce containers. Application master itself requires 1.5GB or RAM by
default, making Hadoop 2.x suitable for large clusters with a lot of resources.
The proposed techniques 2, 3 and 4 are evaluated in Hadoop 1.2.1 environ-
ment, due to the lower resource requirements. For the independent variables
in the experiment we chose input pcap file size, the level of malicious packets,
the number of Snort rules in the database, and the number of slave nodes.
As dependant variables we obtained the total execution time, the total num-
ber of map tasks, as well as the number of data local and rack local' map

'Data local map task is a map task which has data block already locally available on
the node where it executes prior to the execution, while rack local map task needs to fetch
the data block from the other slave node.
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tasks.

Fig. 9 shows the evaluation results of the techniques 2, 3 and 4 for 1GB
input file size with low level of malicious packets, on a cluster with 17 slave
nodes, and the Snort database with 1000 rules. The results are as expected:
the Hadoop IDS with input split technique 4 has the best execution time
(Fig. 9a). In this case it performs 32% faster then the proposed technique
2 (170 vs. 250 in Fig. 9a). The number of DataLocal and RackLocal blocks
confirm the design hypothesis about additional block copying (Fig. 9b).
The techniques 2 and 4 have the same number of map tasks due to the fact
that both techniques force the size of the input split to be exact (Tcq4) or
very close to the size of a block (Tecq2), while Tcq3 introduces the greatest
deviation between the size of an input split and a block.

| |
[5] [#] BB Tcq2lETeq3
Hy
200 | 20 |1 Tead .
100 | 10 .
404

i i
Teq2  Tecq3  Teqd MapTasks Datal.ocal RackLocal
a) b)
Fig. 9: Evaluation results of different Input Split design techniques: a) total
processing time for techniques 2, 3 and 4, b) map tasks and blocks
distribution across the cluster

We also evaluated how the technique 4 performs with variable malicious
level of input pcap file and variable file size, how it performs with variable
number of Snort rules in database, and how it performs in the clusters with
different number of slave nodes. The evaluation results are given in Fig. 10.
For better introspection, we used the same parameters for the starting points
of graphics in Figs. 10 a) and b) as in Fig. 9 a): Tcq4, Snort database
with 1000 rules, input file size 1GB, and low pcap malicious level. Figs. 10
b), ¢), and d) have one common point, as well.

From Fig. 10 a) it can be seen that the total execution time strongly
depends on the number of malicious attempts in the network traffic flow. In
this case the total execution time differs for 18% (202 vs. 170 in Fig. 10a).
This is not a consequence of the choice of pattern search algorithm, but
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Fig. 10: Evaluation of the Tcq4 with variable parameters: a) variable num-
ber of malicious packets in pcap, b) variable input peap file size, c)
variable number of snort rules, d) variable size of the cluster.

rather the consequence of Snort rules database structure. The used Myers
algorithm has a stabile execution time which is not affected by the contents of
neither text nor pattern [12]. The Snort database is hierarchically organized,
having rules categorized in levels from general to specific. For example, if the
protocol is not http, the SQL injection rules are not going to be examined.
Thus, for the low malicious pcap a lot of packets are simply skipped after
ports and protocols check, and the Myers search algorithm is not started
for them. If the monitored traffic contains a lot of packets that fall into
”suspicious” category, one or more additional pattern searches are going to
be performed, depending on the number of specific rules bound to matched
general rule. This directly reflects the results from Fig. 10a.

Let us note that IDS process in general can be strongly affected with
the choice of the pattern search algorithm, as well as with the specifics of
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topology and network organization, as well. If anomaly based approach is
chosen instead of pattern search, the search performances can be significantly
affected also.

From Fig. 10 b) it can be seen that the total execution time linearly
depends on the size of the input files. The very slow growth in the beginning
of Fig. 10b between execution times for 1GB and 2GB inputs is explained by
the fact that the cluster consists of 17 nodes, where each node can execute
2 map tasks on two separate cores in parallel, giving the maximum of 34
simultaneously executed map task on the cluster. A 1GB file is presented on
HDEFS with 16 blocks of 64MB, while a 2GB file is presented with 32 blocks.
This means that all necessary tasks can be run at the same time for both
1GB and 2GB files. The rise in the execution time between these two is due
to the increased number of rack local tasks for the larger file. For larger
files, more than 34 map tasks are required for processing, which means that
not all of them can be started immediately, and they need to wait for the
previously started map tasks to finish execution. However, the dependency
once the cluster boundary is reached linearly increases (Fig. 10b).

The total processing time depends linearly on the number of Snort rules
(Fig. 10c), while it has an asymptotic decline depending on the number
of nodes (Fig. 10d). It can be noticed in Fig. 10d that for 17 nodes the
graph enters saturation and the processing speed remains slightly under 0.15
Gb/sec. As the number of nodes in the cluster grows, each of them stores a
smaller number of blocks on average. This leads to an increase in rack local
tasks. Copying of remote blocks during the execution is a limiting factor
that leads to the saturation in this case.

6 CONCLUSION

In this paper the design and implementation of IDS using Apache Hadoop is
proposed. Four different input data split techniques are proposed and anal-
ysed. The techniques are described in detail. The IDS is implemented using
Myers pattern search algorithm as a core for signature-based packet analysis.
We showed the suitability of Hadoop environment for the implementation
of network IDS and discussed inherited problem from Hadoop that relates
to splitting sensitive data across cluster nodes. The system is evaluated on
Apache Hadoop cluster with 17 slave nodes. The implementation and eval-
uation results are given and discussed in detail. We showed that processing
speed can differ for more than 30% depending on chosen input split design
strategy. Additionally, we showed that malicious level of network traffic can
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slow down the processing time, in our case, for nearly 20%. The scalability
of the system was also discussed. The proposed techniques deal with spe-
cific type of input data, i.e. network traffic packets, but they can be easily
generalized to deal with any type of sensitive data which need a special at-
tention before it can be split into pieces and scatter onto different nodes in
distributed environment.
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