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Abstract. We present an overview of the Systems Engineering and Assurance Modeling 

(SEAM) platform, a web-browser-based tool which is designed to help engineers 

evaluate the radiation vulnerabilities and develop an assurance approach for electronic 

parts in space systems. The SEAM framework consists of three interconnected modeling 

tools, a SysML compatible system description tool, a Goal Structuring Notation (GSN) 

visual argument tool, and Bayesian Net and Fault Tree extraction and export tools. The 

SysML and GSN sections also have a coverage check application that ensures that every 

radiation fault identified on the SysML side is also addressed in the assurance case in 

GSN. The SEAM platform works on space systems of any degree of radiation hardness 

but is especially helpful for assessing radiation performance in systems with commercial-

off-the-shelf (COTS) electronic components.  
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1. INTRODUCTION 

The advent of the small spacecraft or CubeSat has enabled much greater access to space 

at relatively low cost. CubeSats can be rapidly assembled from a variety of available 

commercial off the shelf electronic (COTS) subsystems to fulfill spacecraft functions, from 

sensors to command and data handling. Clearly CubeSats or similar space systems with 

majority COTS parts require a new paradigm for mission assurance of the system that is 

compatible to cost, schedule, and development constraints of the “small” mission.  

Radiation assurance is of prime concern and depending on the mission requirements, the 

impact of single event effects (SEE), total ionizing dose (TID), and displacement damage 

dose (DDD) must be considered. While radiation testing is ever important, assurance 

models can be of significant value to CubeSat development in providing for mission 

success. In this regard, the Systems Engineering and Assurance Modeling (SEAM) 

platform1 has been developed and deployed in a collaborative NASA -University project. 

The benefits of Systems Engineering for small spacecraft, even at the fundamental level 

of capability, are well documented by INCOSE [1]. Systems Modeling Language (SysML) 

starter models for CubeSats are available and in use [2, 3]. Further, standards for these 

models are emerging [4].  In addition, we can see the benefits of building assurance models 

as SysML has continued to increasing usage [5, 6].  Assurance models focused on failure 

mitigation are needed to complement Systems Engineering models to improve success 

rates, as many CubeSat missions have failed. 

An assurance platform for small missions presents several challenges unique to the 

modeling environment. As indicated, the platform must be able to provide rapid analysis results 

compatible with the CubeSat development environment and workstyle. Furthermore, the tool 

must have low barriers to entry, both in terms of cost and usability. Other desirable features 

include standard graphical representations with well-defined visual syntax, embedded guidance 

focused on assurance, a collaborative web-based implementation, flexibility in modeling, and 

interoperability with other platforms. For these reasons, WebGME2: a web--based environment 

for creating domain-specific modeling tools, emerged as an excellent foundation for 

implementing SEAM and for evaluating concepts for Model Based Assurance for small 

missions. However, the graphical constructs presented herein as a part of SEAM are generic 

and not necessarily exclusive to any implementation framework. Currently, a free version of 

SEAM is maintained at modelbasedassurance.org.  

The modeling and analysis platform encompasses the necessary components for an easy-

to-use, flexible, mission assurance tool. Models constructed using the platform represent the 

subject system from various aspects. Each modeling aspect is subsequently described in terms 

of its graphical constructs that represent concepts of a small mission assurance framework. This 

is followed by descriptions of the use and deployment of the platform, focusing on radiation 

assurance, and already successfully demonstrated capabilities of SEAM. 

 
1 https://modelbasedassurance.org/  
2 https://webgme.org/  

https://modelbasedassurance.org/
https://webgme.org/
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2. THE GRAPHICAL CONSTRUCTS OF SEAM 

SEAM has several key components built around several modeling aspects and assurance 

flexibility that can be linked or used independently depending on user preferences. The SEAM 

approach encompasses:  

▪ SysML internal block diagrams to represent the system architecture models, extended 

with fault propagation, with limited SysML import capability 

▪ Functional decomposition models that relate system functions to individual 

components, which allow for the generation of reliability representations of the 

system including Bayesian Nets (BN) and auto generated fault trees exportable to 

other applications 

▪ Goal Structuring Notation (GSN) Assurance Case models that support NASA Standard 

8729.1A 

▪ Tools for exporting Bayesian net topologies and fault trees showing the probable impact 

of radiation on system performance in standard formats.  

SEAM allows for these models to be incorporated into a single project. Fig. 1 shows 

the top-level view of a SEAM project that contains all the models. On the left of the Fig. 

are reference materials including a GSN model of NASA’s R&M Objectives Hierarchy 

[7], templates for a requirements model, system level definitions including fault labels, 

links to useful external apps, and a project-specific library of components. These reference 

materials can make modeling in SEAM more user-friendly. In the center of Fig. 1 are the 

links to the different models: GSN, functional decomposition model, and SysML models. 

Each model exists independently of the others, though SEAM does allow for the models to 

be linked if desired. 

 

Fig. 1 Top level of a project folder. Contains the NASA R&M Standards, project definitions, 

relevant external applications, the project family library, functional decomposition 

model, system model and the GSN assurance model. 
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SysML and Assurance Extensions for SEAM 

SysML is widely used as a descriptive language for capturing the structure and 

dependencies of complex systems, consisting of a set of canonical diagrams that capture the 

system behavior. In SEAM, the SysML block diagram describes the architectural structure 

of a system. It focuses on the flow of power and data through a system instead of precise 

electrical connections. Fig. 2 shows a SysML diagram of a generic embedded system 

comprised of four subsystems: Power, sensor S1, microcontroller M1, and Output. Power 

connections are shown in black, and data connections are shown in green. The purpose of the 

system is to respond to an environmental stimulus and to change its state accordingly. Each 

block, or subsystem, can be as specific or abstract, as necessary. For example, the Power 

subsystem in this example is a higher level of abstraction and is comprised of a battery and 

three voltage regulators (shown in the lower part of Fig. 2). Sensor S1, on the other hand, is 

the lowest level of abstraction for that subsystem and represents a single component. 

 

Fig. 2 (Top) SysML block diagram of a generic embedded system that uses a sensor to 

determine the next state of the system. Each block represents an abstraction of a 

subsystem: Sensor subsystem (S1), Microcontroller subsystem (MC1), Output 

subsystem, and Power subsystem. (Bottom) Lower level abstraction of the Power 

subsystem. 
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Faults and anomalies can be modeled in lower-level subsystem abstractions. A simple fault 

model for the sensor is shown in Fig. 3, in which the blocks with “p” and “s” in them represent 

power and signal ports, respectively. The sensor takes in power through the Power In port and 

outputs a signal through the Sensor_Output port. Fault causes and anomalies are denoted by the 

“F” and “A” blocks and are used to show how faults originating in a component and the 

associated anomalies. For the sensor shown in Fig. 3 there are two fault causes, TID (Total 

Ionizing Dose) and SEE (Single Event Effect). TID leads to a Degraded Signal anomaly, while 

SEE leads to a Transient Incorrect Signal anomaly as well as High Current anomaly. Failures 

propagate out of a component and into other inter-connected components in the system. The 

labeled edges between the anomaly and the port show the failures propagating across 

component boundaries. The failure label corresponds to the propagating failure effect. 

 

Fig. 3 Sensor fault model. The sensor in this system is only concerned with two faults, 

Total Ionizing Dose and Single Event Effect. These faults produce anomalies that 

appear on the sensor’s output. 

SEAM allows for the creation of project libraries for both components and failure labels. 

Libraries of commonly used project features reduce the overall creation time of models and 

make modeling easier for new users. Fig. 4 shows the component library (left) and failure label 

 

Fig. 4 (Left) Parts library. Library of part models used in the system design. (Right) Failure 

Label Definition – List of labels for failures propagating across component boundary. 
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definitions for this example project. Four (4) components were identified as likely to be used 

multiple times in this system and were created as library templates. Whenever one of these 

components is used in the SysML model, an instance of that template is created. If changes need 

to be made to all the instances of a component, the template in the library can be modified and 

all instances will be updated. This makes it easy to update the models as components change. 

Failure labels are all defined in the project definitions to be used throughout the SysML model. 

For this example, a small number of generic failure labels were created to standardize the 

language used throughout the SysML model. 

Functional Decomposition Model 

Another diagram incorporated in SEAM that is not present in the standard SysML 

diagram set is the Functional Decomposition Model (FDM) shown in Fig. 5.  A system 

may have many functions. Functions are specific descriptions of system capability 

established by requirements or specifications. The functions serve as a key abstraction level 

for assessing reliability, availability, and safety of a system. In the FDM, functions (upper 

case F) are associated with sub-functions (lower case f), which in turn are associated with 

specific instances of components that support the sub-function. In Fig. 5, only one 

component is associated with each sub-function, in practice each sub-function can be 

associated with many component instances. The FDM is a hierarchical assignment of 

responsibility for the accomplishment of a function to sub-functions and components.  

 

Fig. 5 Functional Decomposition Model. The top-level function is supported by five 

primitive functions each of which is related to a component/ subsystem that 

implements it. 

As shown in Fig. 5 for a typical embedded system, the sub-functions nearly always involve 

power, probing the environment (sensing), calculating the system condition and response to the 

environment according to algorithms built into system software (computation), and constructing 

a response to the environment (actuation). Other typical embedded functions are user input and 

output, and remote communication, which could be added to this diagram, as necessary. In a 

space radiation environment, another typical subfunction would be mitigation of radiation 

effects, which assigns responsibility for mitigation measures to components such as voltage 

regulators or load switches to avoid single event latch up.  

The FDM creates a network or topology of the system correlation of system functions 

with component-level functionality. 
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GSN Assurance Case 

Goal Structuring Notation (GSN) assurance cases are used to document and develop 

assurance cases and can be developed in parallel with the SysML and Functional 

Decomposition models within the SEAM tool. References to the GSN Community Standard 

and NASA Std 8719.1A are provided within SEAM, and the NASA R&M Objectives 

Hierarchy (from NASA Std 8719.1A) is provided in GSN format for reference. More detail on 

the use of GSN are given in [8] and [9]. Fig. 6 shows the top-level view of the R&M Objectives 

Hierarchy, which provides a guide for developing GSN assurance cases and can be used as a 

starting point for users to develop their own GSN assurance cases. 

 

Fig. 6 A hierarchical view of the NASA R&M Objectives Hierarchy. 

A simplified GSN assurance case for the generalized embedded system example is 

shown in Fig. 7. In this figure, The GSN nodes within red boxes come directly from the NASA 

R&M Hierarchy and were used as starting points for development of the more specific 

assurance case being made here. In this incomplete GSN assurance case, the argument for Goal 

2.2 has been completed while the other subgoals are still in development. Goal 2.2 applies to 

the Sensor Subsystem, and requires that the subsystem be tolerant to faults, failures, and 

other anomalous internal and external events. The strategy for meeting this goal, from the 

NASA R&M Hierarchy, is to prevent faults and failures or to provide mitigation for the 

faults and failures. Two subgoals were identified to meet this strategy, both related to the 

known radiation effects possible in the sensor. The solutions (or evidence to support) Goal 

2.2.1 and 2.2.2, total ionizing dose (TID) degradation and single event effects (SEE) errors, 

respectively, are found through radiation testing of the sensor. TID is found to not be a 

concern for the mission requirements in this project and SEEs are to be mitigated by the 

Microcontroller subsystem, which could involve another goal/strategy argument chain. 
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Both solutions are specific to this mission and if the requirements were to change, they 

would need to be reevaluated. 

 

Fig. 7 GSN Assurance Model:  A simplified GSN assurance argument model where the boxes 

in red indicate generic goals/ strategies advocated by NASA R&M standards. The other 

GSN nodes correspond to the specific system and its parts. 

System Reliability Models 

The integrated models in SEAM – the functional decomposition model, the system 

architecture model, and the underlying fault propagation model – can be translated into 

computational models that are part of the system reliability study. Currently SEAM models 

have been translated into fault tree models and Bayesian network models.  
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Fault tree models 

Fault trees [10] are graphical models that represent how low-level events, like 

component faults, combine and propagate to high-level events (like system-wide failures). 

The combination of the low–level events is expressed using an AND/OR tree-like structure. 

The extraction of fault trees, as well as other reliability artifacts, from SysML has been 

demonstrated as viable means of rapidly building reliability models [11, 12]. 

In this tree primary events are the leaves, intermediate nodes are either logical 

combinators (disjunctive or conjunctive) or intermediate (e.g. sub-system level) events, 

and the top (root) node of the tree is the system level event. The arrows connecting the 

nodes (from leaves towards the root) indicate causation or enablement. The AND/OR 

operators operate on probabilities of events assigned by the modeler. Fault-trees allow not 

only the review and logical analysis of how local faults combine and lead to system-level 

events, but also the calculation of the probability of those events as a function of the 

probabilities of the low-level events. Thus, they are very useful tools for evaluating the 

reliability of the system, and in design. For the latter, when the designer changes the system 

(e.g. by introducing redundancy), the fault tree can help the quantitative evaluation of how 

the reliability improves (or degrades).  

Fault Tree Generation 

The SEAM tool set includes generators that convert the SEAM model into a fault tree 

model. Initially, the fault tree is generated from the functional decomposition model. Each 

function is translated into a “Lost Function” intermediate or top event in the fault tree. The AND 

(OR) nodes in the fault tree correspond to the OR(AND) nodes in the functional decomposition 

model. A basic event-Lost Component (LC)-is introduced for each component node at the 

bottom of the functional decomposition model. The fault tree generated from the functional 

decomposition model is refined based on the system model and the underlying fault propagation 

model. Components with failure modes are converted to intermediate events and a basic event 

corresponding to each failure mode is added.  

The fault model is traversed starting from each of the failure modes. For each anomaly 

(AND/ OR) encountered in the path, a corresponding logic gate (AND/OR) is added to the 

fault tree. For each effect node encountered in the path, a corresponding logic relationship 

between the fault event and the lost function event is added to the fault tree (if it is not already 

present). For each response/ mitigation node encountered in the path, the fault tree is modified 

so that the failure mode event is blocked until the mitigation function is lost. Finally, the fault 

tree is simplified by eliminating logic gates that are redundant and unnecessary.  

Fig. 8 shows the fault tree generated from the Functional Decomposition Model 

(Fig. 5), the System Model (Fig. 2) and the underlying fault propagation model [13]. The 

top and intermediate level nodes colored in blue represent the events corresponding to the 

“Lost Function” (LF). The nodes in brown represent the events that correspond to the “Lost 

Component” (LC). Certain LC nodes are basic event (terminated with a circle) as the 

component models do not include any failure modes (e.g. LC_Power, LC_Output etc.). 

Other LC nodes are intermediate events as they are followed by basic events corresponding 

to the failure modes (nodes in red).  

When the fault propagation is arrested by a mitigation/ response function, the generated 

fault tree is modified. The failure mode events (FM_S1_SEE, FM_MC1_SEL) do not lead 
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to higher level events in the fault tree unless the mitigation function is lost (and the node 

with LF_Mitigation). 

The generated fault tree is output as an xml file in Open-PSA model exchange format 

so the fault tree can be evaluated in any FT evaluation platform. For example, the 

open-source SCRAM fault tree analysis engine can load the generated fault tree model to 

identify minimum cut sets, as well as risk analysis based on fault probabilities which could 

be used as evidences in the GSN assurance case models. 

 

Fig. 8 Fault Tree generated by SEAM based on the functional decomposition model, 

system model and the underlying fault propagation model. Boxes represent top-

event or intermediate event in the fault tree. Boxes with a circle below represent 

the basic event. Loss of Function (LF) events are in blue, Loss of component (LC) 

events are in brown and Failure mode events are in red. Triangle represents the 

loss of mitigation function. 

Bayesian Nets 

Bayesian (Belief) Networks (BN) are a graphical formalism for representing and 

implementing probabilistic inference networks [14, 15]. Bayesian nets are directed acyclic 

graphs, with 3 types of nodes: nodes without inputs (‘leaves’), nodes without outputs (‘top’), 

and nodes with both inputs and outputs (‘intermediate nodes’). Each node represents a random 

(probabilistic) variable in a system. Leaf nodes can be assigned a ‘prior’ probability value for 

each possible value of the random variable. An intermediate or ‘top’ node can be assigned a 

table of conditional probability values that determine the probability distribution for the value 

of that node as a function of the probability of the nodes attached to the incoming edges. The 
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BN performs probabilistic inference: it propagates the probability values of the leaves to the 

intermediate and then to the ‘top’ node. Note that BN-s allow quite complex probabilistic 

relationships, more than what one can do with the AND/OR nodes of fault trees. Note also, that 

the nodes (i.e. variables) can take values from a discrete set or a continuous (but finite) set.  

Bayesian Net Generation 

The SEAM models can be used as the basis for creating the structure of the Bayesian 

Network (BN) models. Fig. 9 shows the structure of the BN model corresponding to the 

system architecture in Fig. 2 and the functional decomposition model in Fig. 5. 

The root (leaf) nodes of the Bayesian network model would correspond to the mission 

variables such as Mission Time and Single Event Environment in Fig. 9. These mission 

nodes determine the strength of environment effects. In Fig. 9, the environment effect 

nodes correspond to Total Ionizing Dosage (TID), Single Event Upset (SEU) and Single 

Event Latch up (SEL).  

 

Fig. 9 Bayesian Network model based on the SEAM model for the embedded system example. 
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The next set of nodes in the BN models correspond to the health of the components. In 

Fig. 9, S1_Health and MC1_Health correspond to the health of the sensor component (S1) 

and the microprocessor (MC1). The health of the components is affected by the 

environment effects. 

Component health affects the performance of the components, which is indicated by 

the quality of the functions provided by the components. So, the next layer in the BN 

corresponds to the functions provided by the component. In Fig. 9, these correspond to the 

nodes –Probe_Env and Calculate_Response. The quality of the lower level functions 

affects the quality of the higher-level functions and hence the overall system performance 

(BN Node System_Function in Fig. 9).  

Additionally, the fault propagation model introduces additional edges between the 

component health and the quality of the functions. This is because the quality of a function 

is not just governed by the health of the component responsible for delivering the function, 

but also the health of other inter-connected components.  In the case of Fig. 9, the 

Calculate_Response function is not only affected by the health of the component providing 

the function (MC1), but also the health of component S1. 

The BN model could help in understanding the reliability of the system function, given 

the current status of the mission variables. It could be useful to study the sensitivity of the 

goodness of the functions to the health of the individual components. 

3. STRUCTURE AND COVERAGE CHECKS 

The integrated modeling environment in SEAM allows cross-referencing of the 

elements in the  

▪ System Architecture Model 

▪ Functional Decomposition Model 

▪ GSN Assurance model. 

This cross referencing allows users to relate parts of the GSN assurance arguments 

(Goals, Strategies, and Solutions) to the relevant components in the system model, the 

functionality provided by the component and any radiation-induced faults associated with 

the component [16]. 

To aid in this effort, the SEAM toolset performs a coverage check which informs the user 

through simple spreadsheet-like tables the coverage from different perspectives.  While this 

is useful even in the context of a simple system presented here, it is particularly useful as the 

system scales up and the assurance argument needs to account for the increasing number of 

components, their inter-dependence in terms of functionality provided and failures propagated. 

The results of a coverage check are presented as a set of tables. These include: 

▪ Parts List:  This table includes hyperlinks to each of the part type models in the parts 

library that is associated with the current system model. The hyperlinks allow the 

user to navigate to the part model and its internal fault model.  Fig. 10 shows the list 

of parts associated with the system in Fig. 2 and parts library in Fig. 4. 

▪ Instance List: This table presents the component instances in the system architecture 

model. For each component instance (row), it shows the corresponding part from the 

part library.  Fig. 11 shows the instance list as part of the coverage check. As shown 
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in this table, it is possible that the multiple instances of the same part (Voltage 

Regulator) are used in the system.   

 

Fig. 10  Coverage check – Parts list. Each row corresponds to a part model in the parts library. 

 

Fig. 11 Coverage check - Instance list.  Each row corresponds to a component instance in 

the system model and its associated part in the part library. 

▪ Function Coverage:  This list presents a summary of the functional decomposition 
model. For each function, it lists the implementing component(s) in the system model.  
Functions that do not have a corresponding implementation component in the system 
are appropriately flagged. This informs the user that either the functionality is not 
implemented in the system or the relationships have not been captured in the functional 
decomposition model. Fig. 12 shows the function coverage table generated as part of 
coverage check for the function decomposition model (Fig. 5) and the system (Fig. 2) 
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Fig. 12 Coverage check – Function Coverage - Each row corresponds to a function in the 

function decomposition model and the component (part) in the system design that 

implements the function. 

▪ Component Coverage:  This table maps component instances in the system model 

to the appropriate function(s) in the functional decomposition model.  It is likely 

that component instances of the same part support different functions in the system.  

Entries that are not related to any function are appropriately flagged.    

▪ GSN Coverage: This table presents the coverage of the assurance argument in the 

GSN model relative to the components in the system.  The table lists the GSN goals 

and solutions for the assurance argument related to each component instance in the 

system. It further identifies the specific GSN goals related to each of the underlying 

component faults, each functional degradation effect that the fault propagates to and 

each mitigation strategy associated with the fault propagation.  

Fig. 13 shows an example GSN coverage table generated as part of the coverage check.  
The first column corresponds to the component instance; the next column corresponds to 
any fault originating from within the component; this is followed by the effect (E) and the 

 

Fig. 13 Coverage check – GSN Coverage: The table maps the parts in the system design 

and their underlying faults to the GSN arguments (goals/ solutions). 
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mitigation response (R) related to the fault propagation. The links to the GSN arguments 
are listed in the next column. Entries with no associated GSN arguments are flagged with 
a red question mark (“?”) symbol. 

The next few columns reveal the status of the specific GSN goal (Developed/ 
In-development), and the result of the argument based on if it meets the specifications or 
not (yes/ no/ partial). “Information Source” indicates if the argument pertains to the specific 
component instance or the part it corresponds to. Action column reveals the user decision 
on the completion status of the argument (completed/needs attention/ ignore). The 
penultimate column allows for traceability and assignment of individual arguments to 
persons. The comments column keeps a record of the comments related to the decisions 
made pertaining to the arguments. 

4. INTEGRATING THE MODELS AND SYSTEMS ANALYSIS – STAR TRACKER EXAMPLE 

Star trackers are embedded systems of a satellite that gather image data from the 
surrounding stars to orient the satellite by comparing the real-time image data to a stored star 
map. Often, a CMOS imaging sensor with a lens is used to gather the real-time data. The data 
is sent through a Kalman filter to help predict the satellite position. The image is filtered to 
reduce image noise and the star positions are determined by identifying the centroids of areas 
of higher light levels. In Fig. 14, the data from the star tracker is processed through the attitude 
determination and control systems, and then sent to the control components to reorient the 
satellite [17]. This satellite control system is used as a baseline to translate a real-world 
embedded system example into SEAM to provide a simple tangible example for the space 
community. As seen in the block diagram, satellite control systems can be complex, therefore 
the star tracker subsystem was chosen to create a simplified model. 

 

Fig. 14 Block diagram representing a satellite control system. The path highlighted in red 

depicts the path of interest translated into SEAM [18]. 

Fig. 15 represents the functional decomposition [19] of the star tracker embedded system. 

The overall function of the system is to orient the satellite. This is achieved by taking the raw 

image data from the CMOS imaging sensor block, represented by the Sensor reference block 
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here. The data is then processed and compared to the stored star map in the Logic block. The 

Compare_to_Stored_Data low-level function is broken out from the Process_Image_Data 

function because the raw image data needs to have noise filtered out and have high light levels 

be identified by software processing before the data can be compared to a stored reference star 

map. The position and attitude data are then translated, and the data is converted to signal 

commands to be sent to the controls and reoriented using the thrusters and reaction devices. 

 

Fig. 15 SEAM model view of a functional decomposition of a star tracker embedded 

system. The top and mid-level functions are represented by blocks with capital 

F(x), and the lowest-level functions are represented by the blocks with lowercase 

f(x). The topmost function represents the overall goal of the star tracker embedded 

system: to orient the satellite. 

Fig. 16 shows the model view of the star tracker system, depicting a simple sensor logic 

reaction embedded system. The power block feeds power to each of the components using 

linear regulators. Power flow is represented by the black paths. The CMOS_Imaging_Sensor 

block represents a direct component, while the Logic, Power, and Controls_Actuators blocks 

represent subsystems. Data is received from the CMOS sensor, processed in the logic block, 

and the reactions are executed with the controls and actuators. Data flow is represented by the 

green paths. 

 

Fig. 16 SEAM model view of the star tracker embedded system physical components. Green 

paths represent signal flow between components, while black paths represent power 

flow between components. Each component has embedded subsystems within its 

block. 

A large range of faults may occur, and must be considered, when designing and working 

with components of a real system. These can be accounted for in the SEAM interface to 

determine propagation paths of the faults to consider how their effects may cause faults in 

other components. Many components in a system can be affected by physical fault causes. 
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For example, in the star tracker embedded system, the focusing lens of the CMOS imager 

may be knocked out of place and become unfocused due to vibration effects on 

launch-vehicle ascent. Another physical fault that affects the imager is represented by a 

dirty lens, which may result in bad imaging data. Electronic components are also often 

affected by radiation effects such as total ionizing dose (TID). In Fig. 17, the total ionizing 

dose fault creates a degraded signal anomaly. The incorrect data then propagates out of the 

signal port to the logic block. The incorrect data enters the logic block where it then flows 

into the microcontroller depicted in Fig. 18 situated within the logic block.  

 

Fig. 17 SEAM model view of the CMOS Sensor block. Various physical faults and 

radiation effects are considered. They are modelled and anomalies caused by the 

faults are propagated out to power and signal ports to other system components. 

 

Fig. 18 SEAM Model View of the microcontroller subsystem within the logic block. The 

radiation effect, single event latch up, is considered like the case in the CMOS 

sensor. Incoming faults from the CMOS image sensor signal port enter the 

microcontroller causing levels of data deviance anomalies, which then propagate 

out to each of the control systems. 
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The incorrect data propagates into the microcontroller from the input port. This creates a 

large data deviation that then propagates out of the respective ports to the Controls_Actuators 

subsystem. The fault then enters each of the orientation controls from the respective incoming 

signal ports shown in Fig. 19.    

 

Fig. 19 SEAM model view of the Controls and Actuators block. Faults enter from the 

incoming signal ports and effect the controls, which then cause the reaction devices 

to have degraded reactions. Note that the thrusters are controlled using material 

ports instead of signal ports, as thrusters are controlled by hydraulic valves and not 

electric signals. 

One of the orientation control blocks is depicted in Fig. 20. The incorrect data from the 

total ionizing dose radiation effect is evaluated as propagating to either cause an unreadable 

signal resulting in no system response or create a large orientation command inaccuracy 

resulting in the reaction wheels further disorienting the satellite. 
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Fig. 20 SEAM model view of the Reaction Wheel Control block. The effects of the faults 

from the CMOS imager are shown creating effects of different reorientation 

inaccuracies, including a case where the system fails to recognize a readable star 

map causing an error of no system response. 

5. CONCLUSIONS 

This paper presents a web browser-based platform for radiation performance modeling 

and assurance of space systems called System Engineering Assurance and Modeling 

(SEAM), developed at Vanderbilt University with NASA support. It combines three 

modeling aspects together to allow radiation assessment. The first aspect is a SysML-based 

system description aspect that describes the system parts, their interconnection, and the 

origination and propagation of radiation-induced faults through the system. This system 

description aspect of SEAM contains two diagrams not found in the canonical SysML diagram 

set, which are the functional decomposition diagram (FCD) and the fault propagation diagram 

(FPD), which are key to capturing the introduction and propagation of faults. The second aspect 

of SEAM is based on Goal Structuring Notation (GSN), a visual argument language that enables 

the description of an assurance case, including the requirements, goals, strategies and evidence 

that are used to argue that the system will perform well in the space environment. The third 

aspect of SEAM is the generation of reliability artifacts, namely Bayesian Networks and fault 

trees, that are made possible by the FCD and FPD system diagrams. SEAM can extract the 

topologies of Bayesian nets and fault trees for radiation-induced faults from the system 

description and export them in standard formats to BN and FT evaluation applications.  

Taken together, the SEAM capabilities allow the assessment of the radiation performance 

of a spacecraft without relying on intensive radiation testing campaigns, or extensive physical 

knowledge of the electronic components. The SEAM platform can be used to evaluate any 

space system but is especially useful for small satellite applications with short development 

timeframes and significant use of commercial-off-the shelf parts.  
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