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Abstract. Modeling of adsorption and desorption in microelectromechanical systems 

(MEMS) generally is crucial for their optimization and control, whether it is necessary 

to decrease the adsorption-desorption influence (thus ensuring stable operation of 

ultra-precise micro and nanoresonators) or to increase it (and enhancing in this 

manner the sensitivity of chemical and biological resonant sensors). In this work we 

derive and use analytical mathematical expressions to model stochastic fluctuations of 

the mass adsorbed on the MEMS resonator (mass loading noise). We consider the case 

where the resonator surface incorporates two different types of binding sites and where 

non-negligible depletion of the adsorbate occurs in a closed resonator chamber. We 

arrive at a novel expression for the power spectral density of mass loading noise in 

resonators and prove the necessity of its application in cases when resonators are 

exposed to low adsorbate concentrations. We use the novel approach presented here to 

calculate the resonator performance. In this way we ensure optimization of these 

MEMS devices and consequentially abatement of adsorption-desorption noise-caused 

degradation of their operation, both in the case of micro/nanoresonators and resonant 

sensors. This work is intended for a general use in the design, development and 

optimization of different MEMS systems based on mechanical resonators, ranging from 

the RF components to chemical and biological sensors. 
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  1. INTRODUCTION 

Compared to the conventional mechanical resonators, micromechanical resonant 

structures manufactured by MEMS (Microelectromechanical system) or NEMS 

(Nanoelectromechanical system) technologies have many favorable features. These 

include their extremely compact dimensions of the order of micrometers or nanometers, 

the technological compatibility – and thus vastly facilitated integration – with active 

electronics, low power consumption, an extended range of available resonant frequencies 

(even reaching the gigahertz range), high reliability and batch production with a high 

yield and a very low cost per unit element. This makes them convenient for applications 

in electronics, as frequency defining units of miniature oscillators and frequency selective 

circuits [1-4]. Additionally, the easy adjustability of their parameters makes them promising 

candidates for tunable passive components, which further enables reconfigurability, a higher 

integration degree and miniaturization of radio-frequency circuits [3]. MEMS/NEMS 

resonators are also being developed for various sensing applications and represent the basic 

components of highly sensitive resonant sensors of mass, force, acceleration, temperature, 

as well as the concentration of various chemical substances and biological agents [5-8], 

often being based on micro- and nanocantilevers. 

Smaller device dimensions lead to an increase of the surface-to-volume ratio, which 

boosts their sensitivity to some physical processes whose effects are negligible in larger 

structures. Among such processes are adsorption and desorption (AD) of particles from the 

surrounding medium, which occur at the surface of the structure, and results in varying 

amounts of mass being added to the native resonator mass, thus changing the resonant 

frequency of the device. This process enables the operation of AD-based chemical and 

biological sensors, however in other resonant devices it is undesirable. The added mass 

randomly fluctuates due to the stochastic nature of the AD processes. In resonators, these 

fluctuations are known as mass loading noise or resonator AD noise [9]. They contribute to 

the total frequency noise of the resonator, together with other noise sources (including 

temperature fluctuations, outgassing, Brownian motion, Johnson (thermal) noise, drive power 

and self-heating, random vibration, flicker (1/f) noise, etc. [10-12]), and therefore degrade the 

performance of electronic devices and sensors of which the microresonator is an integral part. 

It is particularly important to analyze this kind of fundamental noise, since it allows for the 

optimal resonator design and optimization of the operating conditions, which consequently 

ensures lower noise levels and, accordingly, minimizes signal degradation in electronic 

circuitry and improves detection limits in sensors. Based on these facts, there is a need to 

establish a mathematical model of particles binding-unbinding process at the resonator surface 

as accurately as possible, enabling the analysis of mass loading noise.  

Numerous models of mass loading noise in microresonators, nanoresonators and other 

micro- and nanostructures applicable to different practical situations can be found in literature 

[9-10, 13-16]. A majority of them assumes the existence of only one type of binding sites on 

the adsorbing surface, so that the adsorption and desorption of one species is characterized by 

one pair of adsorption and desorption rate constants and most often it is described by the 

Langmuir model. However, usually the real surfaces are not uniform, and each of them is 

characterized instead by different structural, morphological or chemical features, which results 

in a difference between its surface adsorption sites. If this is the case, the AD process is 

characterized by some spatial distribution of AD rate constants across the surface. The 

simplest type of such surfaces has two distinct kinds of adsorption binding sites, so that there 
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is a bimodal surface affinity for the particles of a given species. In that case the kinetics of AD 

processes and resonator noise are described by models that imply a bi-Langmuir AD process 

[17, 18]. In certain cases it is necessary that the models of AD process and noise include some 

additional effects which may be of importance. One of such effects is depletion of adsorbate 

particles in the resonator chamber due to adsorption, which may be significant, especially at 

low adsorbate concentrations and for small dimensions of the resonator chamber, as described 

in [19]. The joint effect of the two phenomena to the AD process kinetics has been analyzed in 

[20], while a model of the dynamics of the equilibrium fluctuations, AD noise in frequency 

domain, has not been established yet for such a case.  

Here we present a new mathematical model of mass loading noise, which is more 

comprehensive than the other mass loading noise models previously published in the 

literature, since it simultaneously takes into account the bimodal surface affinity and the 

decrease of the analyte concentration in a chamber containing the resonator, caused by 

particles adsorption-desorption processes and the finite dimensions of the chamber. In 

this way, the model can closely approximate the conditions that exist in practice when 

resonators are exposed to low adsorbate concentrations. 

 2. MASS LOADING NOISE MODELING  

A bimodal adsorbing surface (illustrated in Fig. 1) implies the existence of two types of 

binding sites, which differ in their affinity for binding adsorbate particles from the ambient. 

The adsorption-desorption of adsorbate particles on such a surface is characterized by two 

pairs of adsorption and desorption rate constants, (kfv1, kr1) and (kfv2, kr2), corresponding to the 

sites of type 1 and 2, respectively. If Na1 and Na2 are the numbers of binding sites of the two 

types on the resonator surface, and N0t is the number of particles in the resonator chamber at 

the moment t, the time evolution of the numbers of particles adsorbed at the sites of the first, 

N1, and of the second type, N2, is determined by the equations 
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It is assumed here that only one adsorbate particle can be bound to a single site of any 

kind, and that adsorbate particles do not interact among themselves. 

In a closed chamber, N0t is changing over time due to the AD process, and it equals 

N0t = N0 – N1 – N2, where N0 is the number of particles in the chamber at the moment 

t = 0. Then, Eqs. (1) and (2) constitute the system of nonlinear differential equations [20] 
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Fig. 1 Illustration of adsorption-desorption process of adsorbate particles on a bimodal 

surface, characterized by two types of adsorption sites (here represented as surface 

patches with two different shades). 

which is solved numerically for N1 and N2. However, if the numbers of the adsorbed 

particles in each moment are much smaller than the total number of adsorbate particles in 

the chamber N0, then N0t can be considered constant over time, thus Eqs. (3) and (4) 

become equal to the equations of the bi-Langmuir model, given by Eqs. (1) and (2) in 

which N0t = N0. The use of the model that takes into account the adsorbate depletion in 

the resonator chamber during adsorption, becomes necessary with a decreasing N0. Its 

importance for MEMS resonators becomes obvious since it is known that their use in 

frequency reference and timing applications requires low operating gas pressures inside 

the chamber in order to ensure higher Q-factor by minimizing air damping as one of the 

major energy loss mechanisms [2,3]. Apart from that, micromechanical resonant 

structures used in adsorption-based chemical and biological sensors also operate under 

conditions of a small number of adsorbate particles, since these sensors are intended for 

highly sensitive detection of ultralow analyte concentrations. In both of the given 

examples, it may not be valid that N0>>N1+N2, thus the finite amount of analyte and the 

depletion over time of the particles available for adsorption should be taken into account 

when performing the analysis, as predicted by Eqs. (3) and (4). 

If M is the mass of a single adsorbate particle, and N is the total number of adsorbed 

particles, the total adsorbed mass on the resonator surface is 

 )( 21 NNMMNm +==  (5) 

The AD process on the resonator surfaces reaches the steady state after some time. 

Then the numbers of the adsorbed particles reach the values N1e and N2e, determined by 

the equations obtained from Eqs. (3) and (4) for dN1/dt = 0 and dN2/dt = 0  
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Here K1 = kr1/kfv1 and K2 = kr2/kfv2 are the equilibrium constants. 

However, even after reaching the steady state the numbers of adsorbed particles 

fluctuate due to the inherently random nature of the AD process. These fluctuations result 

in the fluctuations of the adsorbed mass, known as the mass loading noise, m. If ∆N1 

and ∆N2 denote small fluctuations around the equilibrium values N1e and N2e, the numbers 

of the adsorbed particles in each moment are N1 = N1e + ∆N1 and N2 = N2e + ∆N2, and the 

fluctuations of the adsorbed mass are 
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The linear approximation of the functions A1, A2, D1 and D2 (defined in Eqs. (3) and 

(4)) around the equilibrium values of the adsorbed particles numbers 
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where all the functions and derivatives are calculated for N1 = N1e and N2 = N2e, enables 

linearization of Eqs. (3) and (4), which yields the system of Langevin equations after 

adding an intrinsic source function (1 and 2) to the right side of each of them 
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(the equalities Aie = Die are applied, which stem from the steady-state conditions 

dNi/dt = 0, for i = 1 or i = 2). The previous equations may be presented in the form 
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Eqs. (11) and (12) have a form suitable for the application of the Langevin procedure 

to obtain the power spectral density (PSD) of steady-state fluctuations of mass loaded on 

the resonator, Sm(f), for the case of AD processes of two adsorbates, in the manner 

presented in [21]. This procedure is performed by solving Eqs. (11) and (12) in the 

frequency domain in order to obtain the PSD of the fluctuations N1 and N2, denoted as 

SN1(f) and SN2(f), and also their cross-spectral density, SN1N2(f). The PSD of mass 

loading noise is then, based on Eq. (8)  
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(as derived e.g. in Supplementary data of [15] by using the definition of the spectral 

density and autocorrelation function of a random variable that equals the sum of two 

coupled random variables). 

After performing all the necessary calculations the result is obtained in the form 
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and the low-frequency magnitude is 
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The characteristic frequencies of the PSD Sm(f) are fi=1/(2τi), index i is 1, 2 or 3.  

The PSD of resonator frequency noise caused by random mass loading is [10]   
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where the resonator mass is m0, and ν0 is its resonant frequency.  

If the analyte depletion due to the adsorption is neglected, Eqs. (1) and (2) become 

independent and linear. The overall PSD of mass fluctuations is then calculated as the 

sum of PSDs of mass fluctuations of the both parts of the adsorbed amount (the part 

adsorbed on the type 1 sites, and the part adsorbed on the other type of sites) 
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(this equation stems from Eq. (14) when N1 and N2 are statistically independent random 

variables) and the components 1 and 2 are given by the expression 
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with the characteristic frequency fLi=1/(2τLi), where τLi = kri + kfviN0 (i is 1 or 2). 
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3. RESULTS AND DISCUSSIONS 

We investigate the phenomenon of mass loading fluctuations in resonant structures 

with bimodal surface affinity, influenced by adsorbate depletion from the finite sample 

during adsorption, as well as quantitatively investigate and compare the results obtained 

by using the model that takes into account the depletion and the one that neglects it, through 

the analysis which is as general as possible, i.e. not pertinent to a given micromechanical 

resonant structure or adsorbate. Therefore, the results of mass loading noise analysis are 

presented in terms of PSDs of the fluctuations of the total number of adsorbed particles, 

SN(f). All the conclusions about SN(f) easily lead to conclusions about Sm(f) and Sν(f), 

having in mind the linear relation between their values (Eqs. (14), (20) and (21)). The 

values of adsorption and desorption rate constants used in the analysis are kfv1=1.3.10-11 

1/s, kr1=0.4 1/s, kfv2=1.3.10-13 1/s and kr2=0.02 1/s. They belong to the ranges corresponding to 

biomolecules and biosensors [22, 23], which does not affect the generality of the analysis. 

The presented results are pertinent to different amounts of adsorbate particles surrounding the 

resonator (i.e. various adsorbate concentrations or pressures in the chamber of fixed volume). 

Among a total of Na=1011 adsorption sites on a bimodal affinity surface, different shares 

of two types of sites are assumed. 

Fig. 2 shows the power spectral density of fluctuations of the total number of 

adsorbed particles according to the model that takes into account adsorbate depletion, 

SN(f). It is introduced in Eq. (14), and determined by Eqs. (15)-(19). The same quantity 

obtained by using the model which assumes a constant adsorbate concentration in the 

resonator chamber, SNL(f), given in Eq. (21), is also shown. The concentration of adsorbate in 

the chamber of volume 1·10-7 m3 is 2.5·1019 1/m3 (which corresponds to the overall number of 

adsorbate molecules of 2.5.1012). The equal shares of different types of adsorption sites are 

assumed (v=0.5). Also presented on the diagram are the components of SNL(f), SNL1(f) 

and SNL2(f), that originate from independent fluctuations on the two types of adsorption 

sites. They are determined by Eq. (22), according to the linear (i.e. bi-Langmuir) model 

of adsorption on a bimodal adsorbing surface. A good match can be observed between 

the total PDS values predicted by the two models. 

The bi-Langmuir set of equations (1)–(2) models the two adsorbed fractions as 

independent. Their contributions to the PSD of fluctuations of the total number of 

adsorbed particles are shown by dashed and dotted lines in the diagram. However, the 

dynamics of fluctuations of numbers of particles adsorbed on the two types of sites is not 

actually independent if the adsorbate quantity is finite: although the adsorbate particles 

independently occupy the two sets of adsorption sites, they deplete the same pool of the 

free particles. In equilibrium, the surface coverage remains constant on average, but the 

distribution of the occupied sites continuously changes, with the dynamics determined by 

the rate constants. The term 'favorable sites' in the analysis refers to the adsorption sites 

characterized by a greater affinity for the adsorbate (expressed as the ratio of adsorption 

and desorption rate constants). A greater binding energy will cause the adsorbed particles 

to reside longer on the surface, hence their desorption rate constant will be lower and 

there will be less fluctuations at lower frequencies. Truly, in the diagram, at lower 

frequencies, the fluctuations of the adsorbed fraction with lower rate constants dominate 

over the fluctuations of the fraction with the greater rate constants (the dashed line is 

above the dotted line). Naturally, higher rate constants characterize greater dynamics of 

the process, and at higher frequencies the overall noise level is dominated by the fraction 
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that exhibits more frequent binding (the dotted line is above the dashed one). After 

specifying the low frequency noise magnitude (LFNM) and the frequencies at which the 

PSD curve changes its slope as the characteristic parameters of the PSD, it is of interest 

to analyze the discrepancy between the two models regarding these parameters over the 

range of values of concentrations and fractions of favorable sites. 

 

Fig. 2 PSD of the fluctuations of the number of adsorbed particles on the resonator 

surface (expressed in 1/Hz) with bimodal affinity (for v=0.5), presented both 

according to the model that takes into account adsorbate depletion in the resonator 

chamber, and according to the model that neglects it. The PSDs shown by dotted 

and dashed lines correspond to the fluctuations of the numbers of particles 

adsorbed on the two types of sites, N1 and N2, for negligible depletion. The overall 

number of adsorbate particles is 2.5.1012. 

The same quantities as in Fig. 2 are shown in Figs. 3 a-c, but for different adsorbate 

concentrations: for 5 times (Fig. 3a), 25 times (Fig. 3b) and 50 times (Fig. 3c) lower values. 

The smaller the concentration, the stronger the depletion of the adsorbate will be in the gas 

phase and consequently, the greater the discrepancies between the results obtained by the 

use of the linear model and by the more accurate nonlinear one. In Fig. 3a, a small deviation 

can be observed between the PSDs of total fluctuations determined according to the two 

adsorption models. The model that includes adsorbate depletion predicts a slightly higher 

total noise, and a small difference can also be noticed between the characteristic frequencies 

of the two spectral densities. Compared to the case shown in Fig. 2, both models at a 5 

times lower concentration predict an order of magnitude higher low-frequency noise 

magnitude, and lower characteristic frequencies. The characteristic frequencies are 

determined by the parameters τ1, τ2, τ3, τL1 and τL2, whose values are given in Table 1. A 

further decrease of the adsorbate concentration results in a significantly higher difference 

between the PSDs obtained according to the two models, as shown in Fig. 3b. 
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a)  
 

b)  
 
 

c)  
 

Fig. 3 PSD (expressed in 1/Hz) of the fluctuations of the number of adsorbed particles on 

a bimodal affinity surface (v=0.5), according to the two adsorption models for: 

a) 5 times, b) 25 times, and c) 50 times lower adsorbate concentration than in Fig. 2. 
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The lower low-frequency noise magnitude is obtained according to the model that 

takes into account the adsorbate depletion. A certain difference in characteristic 

frequencies of the spectra can also be observed. 

The largest difference between the magnitudes of mass loading noise calculated 

according to the two models can be observed at the lowest adsorbate concentration used 

in this analysis (Fig. 3c). The difference exists at all frequencies, so the total noise 

according to the model that neglects the depletion is higher than that predicted by the 

more accurate (non-linear) model. However, the difference between the characteristic 

frequencies of the two spectra is negligible. 

Table 1 PSD parameter values of mass loading noise according to the two models for 

different values of N0, i.e. for different cases shown in Figs. 2 and 3 (v=0.5). 

Parameter Fig. 2 Fig. 3a Fig. 3b Fig. 3c 

N0 25.1011 5.1011 1.1011 0.5.1011 

1 0.0316 0.1705 0.7422 0.9346 

2 3.0042 13.1688 32.1861 37.6628 

3 0.1481 0.8827 6.2486 11.4308 

L1 0.0304 0.1449 0.5882 0.9524 

L2 2.8986 11.7647 30.3030 37.7358 

Difference between the noise magnitudes negligible modest noticeable significant 

We have seen that the power spectral density is affected by the depletion of the adsorbate 

in the gas phase due to the adsorption-desorption process. Now we will investigate the 

influence of the shares of different types of adsorption sites on the surface. Figs. 4 and 5 show 

the power spectral density for different percentages of the favorable adsorption sites on the 

surface. Figures 4a-c are obtained for the parameter values which are the same as for Fig. 2, 

while Figs. 4d-f are obtained for the same parameter values as Fig. 3c, but for three cases: 

when the favorable sites dominate (v=0.8), when the unfavorable sites are dominant (v=0.2), 

and when the number of different sites is the same (v=0.5). Figs. 4a-c show a good matching 

between the two models for all the values of v, at the same adsorbate concentration (2.5·1019 

1/m3). Therefore, Figs. 4a-c correspond to the systems for which the linear model is 

applicable. However, Figs. 4d-f, obtained for 50 times lower concentration, show a significant 

difference between the results according to the two models, for every v. They demonstrate that 

for a certain subset of the parameter space the bi-Langmuir model of adsorption does not 

enable accurate quantification of the noise level, thus the nonlinear model must be applied. 

 The previous analysis showed that in certain cases the linear model falsely predicts noise 

levels. The ratio of LFNMs is shown in Fig. 5. It is obtained by dividing the LFNM calculated 

using the linear model with the LFNM calculated by the nonlinear model. It can be observed 

that the difference in LFNM is greater for lower adsorbate concentrations. When the 

difference is significant, it increases with the higher share of the high-affinity sites. Typical 

concentrations span over a very wide range, and consequently the discrepancy due to the 

neglected analyte depletion may exceed an order of magnitude. 
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Fig. 4 PSD of the fluctuations of the number of particles adsorbed on a bimodal affinity 

surface, for different percentages of the favorable adsorption sites,  ( = 0.2, 0.5, 0.8), 

calculated using the model that neglects depletion and the model that takes it into 

account. The parameters are the same as in Fig. 2 for a-c, and the same as in Fig. 3 c 

for d-f. 
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Fig. 5 The ratio of the low frequency noise magnitude (LFNM) calculated by the linear 

model and the LFNM obtained according to the model that takes into account 

adsorbate depletion, over the range of adsorbate concentrations and fractions of 

favorable adsorption sites on the surface. 
 

 

Fig. 6 Time constants calculated by the linear and nonlinear model over a span of adsorbate 

concentrations and fractions of favorable adsorption sites on the surface. Wide ribbons 

correspond to τL1 (lower ribbon) and τL2 (upper ribbon) from the linear model, narrow 

ribbons correspond to τ1 (lower ribbon) and τ2 (upper ribbon) from the nonlinear 

model, while symbols correspond to τ3 from the nonlinear model. The time constants 

are calculated for 20%, 40%, 60% and 80% fractions of the favorable sites. 

Fig. 6 shows the time constants τ1, τ2, τ3, τL1 and τL2, which determine the characteristic 
frequencies of the power spectra according to the two models. The difference between the 
corresponding characteristic frequencies (i.e. between the time constants τ1 and τL1, and also 
between τ2 and τL2) increases with the decrease of the concentration, but the parameter v also 
influences the relation between them. The domination of adsorption sites where molecules 
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bind with lower rate constants (the low percentage of the favorable sites in Fig. 6), does not 
ensure lower discrepancies between the time constants obtained by the linear and the 
nonlinear model at low concentrations. Depending on both the concentration and the value of 
v, the characteristic frequencies according to the nonlinear model can be higher or lower than 
the corresponding frequencies predicted by the linear model. However, in the whole examined 
parameter space they are of the same order of magnitude. 

4. CONCLUSION 

We presented the results of the stochastic analysis of adsorption-desorption (AD) 
processes on a micromechanical resonator surface with a bimodal affinity. It is assumed 
that a resonator operates in an ambient containing a finite and low amount of adsorbate, 
so there is a significant change of adsorbate concentration in the resonator chamber 
during adsorption. Such conditions are met e.g. in resonators used in frequency reference 
and clocking applications, as well as in resonant micromechanical sensors of various 
physical parameters, chemical substances or biological agents. 

The expressions for the power spectral density (PSD) of fluctuations of the number of 
adsorbed particles are derived by taking into account the adsorbate depletion in the resonator 
chamber, and also when the depletion is neglected. They yielded the corresponding expressions 
for the PSDs of mass loading noise, and also for the PSDs of resonator frequency noise. 

The analysis was performed by using the computer simulations, based on the two 
presented noise models. It revealed the change of the discrepancies between the two 
models in low-frequency noise magnitudes and characteristic frequencies of the noise 
spectra as the adsorbate amount decreases, and also with the change of the shares of 
different types of adsorption sites on the resonator surface. All the results and conclusions 
stemming from the analysis expand the knowledge about the mass loading noise of 
resonators operating in a closed chamber. 

Our results are useful for the estimation of the resonator mass loading noise and the 
corresponding frequency noise. Additionally, the development of noise models leads to a 
better understanding of the influence of the resonator parameters and their operating 
conditions, enabling their optimized design and application, and thus ensuring lower 
noise levels, minimization of signal degradation in electronic circuits, and improved 
detection limits in sensors. 

The described approach is generally applicable to micro/nanoelectromechanical systems 
with bimodal affinity surfaces, since each real structure will be exposed to some kind of 
ambient, and thus to adsorption and desorption of the species present therein. This will be 
the cause of mass loading effects, including stochastic frequency fluctuations in resonators. 

The presented results are pertinent to surfaces with bimodal affinity towards adsorbate 
particles. However, the described procedure is applicable with simple modifications to 
the more general case of adsorption on surfaces with multimodal affinity. Hence, our 
future research will include stochastic analysis of AD processes on surfaces with 
multimodal affinity towards the adsorbate in trace amounts, with special concern on the 
interplay between the analyte concentration, the fraction of adsorption sites with different 
affinities, and the level of influence of the analyte depletion caused by adsorption. 
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