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Abstract. Today, limitation of fossil fuel resources and other issues such as the possibility 

of the depletion of fossil energy reserves, global warming, environmental pollution, price 

instability, and the growing need for industrial and urban centers for energy have prompted 

the international community to seek appropriate alternatives. Such examples are nuclear 

energy, solar energy, geothermal energy, wind energy, and ocean waves. Renewable energy 

is generated owing to the simplicity of the applied technology compared to nuclear energy 

technologies. On the other hand, such energies play a key role in new energy systems in 

the world similar to nuclear waste. The increasing use of renewable energies has given 

rise to significant complications. One of the main operational issues in this regard is the 

uncertainty of electricity generation by solar power plants, which is caused by the 

passage of clouds. The present study aimed to investigate the effects of cloud passage on 

the production of solar power plants. Initially, a control system was designed to control 

a high-penetration solar power plant in the network, and the maximum allowable 

percentage of penetration was calculated for different loads. For this purpose, three 

algorithms (DE, PSO, and ICA) were used to determine the MPPT of the solar arrays in 

shady conditions, as well as the MPPT point of the solar arrays. According to the results, 

the colonial competition algorithm was faster compared to the other algorithms. 
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  1. INTRODUCTION 

Today, limitation of fossil fuel resources and other factors such as the possibility of the 

depletion of fossil energy reserves, global warming, environmental pollution, price 

instability, and the growing need for industrial and urban centers for energy have prompted 

the international community to seek appropriate alternatives. Such examples are nuclear 

energy, solar energy, geothermal energy, wind energy, and ocean waves. On the other hand, 

atomic ions play a key role in new energy systems in the world. Despite the increasing 

demand for electricity and the growing need for high-quality and reliable electricity, lack 

of responsive production, distribution, and transmission infrastructures in large electricity 

networks in some cases has led to scattered energy resources for further development [1].  

Use of distributed generation resources along with the supplying parts of the load 

increases the reliability of the power system through the proper placement of the distributed 

generation sources. Furthermore, losses could be decreased and voltage profiles could be 

improved, which ultimately lead to increased energy efficiency [2]. Solar energy is 

considered to be the most viable option among various scattered production sources given 

the problems associated with air pollution, as well as the abundance of high-power sunlight. 

A solar power plant is cost-efficient and able to cover a large portion of an area load (affecting 

air pollution) when it is large-scale in terms of energy production. Scattering provides a 

significant amount of load to a feeder, which also known as a high-penetration scattering 

source. The use of high-penetration solar power plants in the distribution network has numerous 

advantages and several technical disadvantages.  

Ohmic voltage drop in distribution networks is an important issue, and pulsed transformers 

are used for its compensation. Distribution lines are mostly radial and designed to flow in one 

direction. By inserting a high-penetration solar power plant into parts of the feeder, the flow 

direction is reversed, thereby reducing the current sent by the distribution substation and also 

causing a significant decline in the voltage drop across the distribution network. If hotline pulses 

that cannot change the transformer pulse under the load are not used in the feeder, the PCC 

voltage will be higher than usual  .  The issue becomes more acute when the consumed load 

during the day changes. Since the highest amount of electricity is generated by the solar power 

plant during the time with the lowest load consumption, the penetration of the power plant 

is maximized in this period. Therefore, the manual pulse changers currently used in distribution 

networks cannot be used for voltage regulation.  

The effects of cloud passage may be highly destructive to the voltage and power balance 

in a distribution network. If the generation capacity of the solar power plant is partly 

comparable to the main power plant (steam, gas), the disturbance of the grid power balance 

could become problematic due to the instantaneous reduction of the generation power in 

the solar power plant. This occurs because a steam or gas power plant with a ramp could 

compensate for the reduction in the instantaneous production capacity, which may in turn 

cause power shortage in large parts of the network. In addition, the emergence of voltage 

fluctuations in the network could lead to customer dissatisfaction or the inefficient 

operation of network equipment. To date, several studies have evaluated the connection of 

the photovoltaic system: 

"Integrated Autonomous Voltage Regulation and Islanding Detection for High Penetration 

PV Applications". This paper proposes an autonomous unified var controller to address the 

system voltage issues and unintentional islanding problems associated with distributed 

photovoltaic (PV) generation systems. The proposed controller features the integration of both 
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voltage regulation (VR) and islanding detection (ID) functions in a PV inverter based on 

reactive power control [2].  

"A Novel Approach for Ramp-Rate Control of Solar PV Using Energy Storage to 

Mitigate Output Fluctuations Caused by Cloud Passing". This paper proposes a strategy 

where the ramp-rate of PV panel output is used to control the PV inverter ramp-rate to a 

desired level by deploying energy storage (which can be available for other purposes, such 

as storing surplus power, countering voltage rise, etc) [3].  

"A study of dispersed photovoltaic generation on the PSO system". Results of a study 

on dispersed photovoltaic (PV) generation on the Public Service Company of Oklahoma 

(PSO) system with simulated dispersed PV generation are presented [4].  

"Influence of photovoltaic power generation on required capacity for load frequency 

control". in this paper developed a mathematical model to evaluate the impact of small (rooftop) 

photovoltaic (PV) power-generating stations on economic and performance factors for a larger 

scale power system, and applied this model to the Tokyo metropolitan area [5].  

In all papers data are limited regarding the problems that could occur within the network; 

such examples are swing power, increased/decreased voltage profiles, failure of protection 

devices, cloud effect, power plant harmonics, and network frequency regulation [3-12].  

 The necessity of building and connecting to the solar power plant grids and the 

unforeseen issues that occur with the introduction of these power plants to the grid have 

motivated the current research.  

The present study aimed to investigate the effects of connecting a scattered solar 

generation unit to the grid in the cloud passage and determined the feeder load changes for 

a fixed consumer from an operational perspective.  

2. MATERIALS AND METHODS 

To date, several studies have evaluated the connection of the photovoltaic system to the 

network and various penetrations rates within a photovoltaic system in the electricity network. 

However, data are limited regarding the problems that could occur within the network; such 

examples are swing power, increased/decreased voltage profiles, failure of protection devices, 

cloud effect, power plant harmonics, and network frequency regulation [3-12].  

In this study, we assessed the effects of connection to a high-penetration solar power 

plant in the distribution network in terms of voltage and the changes in the feeder load for 

a constant consumer from an operational perspective. By connecting the power plant to the 

distribution network, which had transformers with manual pulse changers that are unchangeable 

under load, the voltage at the end of the line and where the power plant was connected to 

the network increased.  

The ANSI standards allow 4% overvoltage for distribution networks. Given that the 

impedance of distribution lines is higher than the standard value in some cases, it is paramount 

to investigate the effects of the overvoltage. On the other hand, the feeder is mainly powered by 

the solar power plant, and it is not an economical option to incorporate large amounts of energy 

storage in high-power plants. This is because by crossing the cloud and casting a shadow on 

solar array panels, their instantaneous power decreases significantly. The power reduction 

causes the power balance of the distribution network and the disturbance of the power 

plant, as well as voltage change. In this study, we also evaluated the effects of cloud transit 

by initially defining a photovoltaic system and a solar panel model . 
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2.1. Photovoltaic System [13-16] 

Photovoltaics (PV) refer to a solar power generation system. In this method, solar cells 

are used for the direct production of electricity from solar radiation. These solar cells are 

semiconductors and composed of silicon. When sunlight shines on a photovoltaic cell, a 

potential difference occurs between the negative and positive electrodes, causing the 

current to flow in-between. PV could be classified as a renewable energy technology, and 

a photovoltaic system consists of several components and subsystems, including the 

photovoltaic effect manufacturer by mechanical tools, battery (energy storage subsystem), 

control equipment, monitors, and measurement devices, and support manufacturer . 

2.2. Solar Panel Modeling [17] 

The physical structure of a solar cell is similar to a diode the p-n junction of which is 

exposed to sunlight. The absorbed energy from the light intensity in this area leads to the 

production and transfer of carriers (electrons and holes) and their aggregation in the output 

terminal. A solar panel has several photovoltaic cells with a series of external connections 

(parallel or series-parallel). Figure 1 shows the function of a solar cell. Figure 2 depicts the 

equivalent circuit of a solar cell.  

 

Fig. 1 Solar Cell Function [2, 4] 

 

Fig. 2 Solar Cell Orbit Equivalence 

In this study, the characteristics of the solar panel were determined based on the 

parameters of Equation 1 t0 3 as follows: 

 𝐼 = 𝐼𝑝ℎ − 𝐼𝑜 (𝑒
𝑉𝐷

𝐴.𝑉𝑇
⁄

− 1) −
𝑉+𝑅𝑠𝐼

𝑅𝑝
 (1) 
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 𝐼𝑝ℎ = 𝑆. (𝐼𝑠𝑐 − 𝛼(𝑇 − 25))  (2) 

 𝑃 = 𝑉𝐼 = 𝑉(𝐼𝑝ℎ − 𝐼𝑜 (𝑒
𝑉𝐷

𝐴.𝑉𝑇
⁄

− 1) −
𝑉+𝑅𝑠𝐼

𝑅𝑝
) (3) 

where q is the electron electric charge, K shows the Boltzmann constant, VT is the thermal 

voltage, T represents the absolute cell temperature (°K), A is the diode emission 

coefficient, Io shows the reverse saturation current, Iph is the photovoltaic component of 

the current, S is the sunlight (kw/m2), α shows the short-circuit current temperature 

coefficient, ISC is the cell short-circuit current under standard conditions (25°C, radiation: 

kw/m2), VD is the diode voltage, RS shows the series noise resistance, Rp is the parallel 

noise resistance, V is the solar cell terminal voltage, I shows the solar cell terminal current, 

and P represents the solar cell output power. If series resistance and parallel resistance 

(0≈Rs and pRp) are eliminated and the short-circuit conditions are considered, the source 

current of the model is approximately equal to the short-circuit current. Equation 4 was 

applied for the assessment of the solar cell. 

 𝐼 ≈ 𝐼𝑠𝑐(1 − 𝑒
𝑉−𝑉𝑜𝑐

𝐴.𝑉𝑇 ) (4) 

Photovoltaic systems could be used to generate electricity in any setting with a high 

potential for the absorption of solar energy. Due to the high costs of solar cell production 

and the cost-efficiency of electricity generation by fossil fuels from photovoltaic systems, 

the national electricity grid is commonly used in remote areas (e.g., villages and borders). 

Other applications of these systems for street lighting in cities are as solar pumping systems 

using photovoltaic, portable solar, and power supply systems for telecommunication and 

seismic stations and tunnel lighting systems for mountain roads.  

V-I. The characteristics of a temperature- and radiation intensity-based solar representation 

have been shown in Equations 5-11. 

 𝑣𝑆𝐴 =
𝑁


𝑙𝑛 (

𝑀𝐼𝑝ℎ−𝑖𝑆𝐴+𝑀𝐼𝑜

𝑀𝐼𝑜
) −

𝑁

𝑀
𝑅𝑆𝑖𝑆𝐴 (5) 

 ∆𝑇 = 𝑇 − 𝑇𝑟  (6) 

 ∆𝑖 = (𝐼𝑠𝑐 − 𝐼𝑠𝑐𝑟)∆𝑇 + (
𝐼𝑠𝑐

𝐼𝑠𝑐𝑟
− 1) 𝐼𝑠𝑐𝑟  (7) 

 ∆𝑣 = −∆𝑇 − 𝑅𝑠∆𝑖 (8) 

 𝑣𝑆𝐴
𝑛𝑒𝑤 = 𝑣𝑆𝐴 + ∆𝑣 (9) 

 𝑖𝑆𝐴
𝑛𝑒𝑤 = 𝑖𝑆𝐴 + ∆𝑣 (10) 

 𝑃𝑆𝐴 = 𝑣𝑆𝐴
𝑛𝑒𝑤𝑖𝑆𝐴

𝑛𝑒𝑤 (11) 

In these equations, T and Tr are the working point temperature and the nominal 

temperature of a solar panel, respectively, α shows the coefficient of the temperature flow, 

β is the voltage coefficient of temperature, and TSC and TSCr represent the short-circuit 

current at the operating point and the name of the solar panel, respectively. For a silicon 

solar panel (N=36, M=1), Equation 5 will become Equation 12. 

 𝑣𝑆𝐴 = 𝑘 𝑙𝑛 (
𝐼𝑝ℎ−𝑖𝑆𝐴+𝐼𝑜

𝐼𝑜
) − 𝑖𝑆𝐴 (12) 
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In addition, the production current with a specific radiation level could be obtained 

using Equation 13. 

 𝐼𝑝ℎ = [𝐼𝑠𝑐𝑟 + 𝛼(𝑇 − 𝑇𝑟)] ∙ (𝑆/1000) (13) 

Figure 3 shows the P-I characteristic of a radiation intensity-based solar array, and 

Figure 4 depicts the temperature-based solar array. By observing these curves, it could be 

concluded that the output power of a solar array is highly nonlinear and largely depends on 

the amount of radiation and the intensity of the ambient temperature. Therefore, these 

figures show that the maximum power point (MPP) would change with changes in the 

temperature and radiation intensity. To achieve the optimal operating point of the system, 

it is essential to use the MPPT algorithm. 

 

Fig. 3 The characteristics of the P-I solar arrays at a constant temperature and different 

radiation intensities [18-23] 

 

Fig. 4 The characteristics of the P-I solar arrays at a constant temperature and different 

radiation intensities [18-23] 
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2.3. Maximum Power Point Tracking (MPPT)Algorithm 

To use a solar array at the maximum operating point, an MPPT method is required to 

detect the power peak. This method obtains the voltage and current at which the solar array 

has the maximum power in the output. Figures 5 and 6 show the characteristic curves of 

the V-I and P-I of a solar array at the radiation intensity of 1,000 W/m^2 and temperature 

of 25°C, respectively. Furthermore, these figures illustrate the characteristics of the solar 

array under partial shading conditions, which shows five cells with the radiation intensity 

of 800 W/m^2 and temperature of 23°C, as well as five cells with the radiation intensity of 

500 W/m^2 and temperature of 25°C.  

As is shown in Figures 5 and 6, many MPPT methods do not function properly under 

partial shadow conditions and the local optimal MPP point converges due to the presence 

of several peak points under shady conditions. To solve this issue, the MPPT algorithm 

could be used based on random optimization methods. 

 

Fig. 5 V-I with and without Shadow [18-23] 

 

Fig. 6. P-I with and without Shadow [18-23] 
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2.3.1. MPPT-based Optimization Algorithm 

The main advantage of stochastic optimization algorithms is escaping from the local 

optimal points. Stochastic optimization algorithms such as PSO and DE could detect the 

optimal point of a problem, which makes them useful in finding the maximum power point 

of solar arrays under shady conditions. We considered the output power of the solar array 

as the objective function of the optimization problem as in Equation 14. 

Figure 7 shows the structure of the studied system. In this system, the tracker connects 

the maximum solar power of the PV module to the battery. The maximum power tracking 

system consists of a DC-DC converter and a PID control system and controller (PSO 

MPPT/DE MPPT). The PSO MPPT/DE MPPT unit uses environmental parameters at its 

input, along with Equations 5-13 to determine the voltage and current of the maximum 

power. The inputs of the MPPT method based on the stochastic optimization algorithm 

included T (cell temperature), S (radiation intensity), Nshadle (number of the cells in the 

shade), Tshade (temperature of the cells in the shade), and Sshade (radiation intensity in the 

cells in the shade). 

  

Fig. 7. Structure of Studied System 

The maximum power tracking system could achieve the optimum operating power 

point of the maximum power supply (Pmax) by adjusting the Duty Cyck value of the skin 

converter. The DC-DC boost converter adjustment function based on its permanent state is 

as follows:  

(14 )  𝑉0 =
𝑉𝑆𝐴

1−𝑑
  

where d is the value of the life cycle, VO shows the output voltage of the DC boost 

converter, and VA is the output voltage of the solar array. The optimal value was calculated 

using Equation 14, in which VSA=Vmp and V0 =25v (battery voltage). In this sections, we 

define the random algorithms used in the article. 
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2.3.2. Particle Swarm Optimization (PSO) Algorithm [24-25] 

In the past decade, the particle swarm optimization (PSO) algorithm, which is based on 

stochastic research methodologies for general optimization, was proposed by Abr Hart et 

al. based on the models of simple social systems to solve nonlinear problems such as 

distribution optimization. Reactive power is highly efficient, and the characteristics of this 

algorithm have been further discussed. This algorithm is based on research on different 

communities (e.g., bird communities) and a very simple concept. Therefore, the time 

required for the calculations is very short and does not require considerable memory. In 

addition, the  algorithm has been developed for nonlinear and continuous optimization 

problems, while it could also be used for problems with discrete variables.  

2.3.3. Differential Evolution (DE) Algorithm [26-28] 

Differential evolution (DE) is a simple population-based algorithm, which randomly 

searches for the optimal point of the network. This algorithm is able to optimize nonlinear 

and non-derivative target functions. In the DE algorithm, the populations include vectors 

with real values, and the key advantage of the algorithm is that it results in better answers 

compared to other methods at the same time.  

2.3.4. Imperialist Competitive Algorithm (ICA) [29-30] 

The Imperialist Competitive Algorithm (ICA) is an evolutionary computational 

method, which determines the optimal answers to various optimization problems. The 

algorithm provides an algorithm for solving mathematical optimization problems by 

mathematically modeling the process of social and political evolution In terms of 

application, the ICA is classified as an evolutionary optimization algorithm similar to the 

genetic algorithm (GA), PSO, and Ant Colony Optimization (ACO). The main advantage 

of the imperialist competition algorithm is its high speed compared to other optimization 

algorithms.  

2.4. Microgrids [31] 

Microgrids are low-voltage electrical networks consisting of scattered energy sources 

such as microturbines, solar cells, wind turbines, and fuel cells. Moreover, microgrids 

include energy storage equipment such as batteries and flywheels, as well as controllable 

loads. Microgrids could be used when connected to the grid and when disconnected from 

the grid, which greatly increases the reliability of the delivered energy. Connecting any 

sources (microgrids) to a distributed generation system (except conversion from renewable 

energy or other energy sources into electrical energy) has several issues. One of the issues 

during the connection of microgrids to the network is the presence of nonlinear loads, 

which are related to the structure of power electronics and other similar loads that are used 

in the network or the microgrid.  
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3. SIMULATION 

3.1. Introduction 

With the expansion of industries and population growth, the need for energy is 

increasing each day. Given the shortage of the energy generated from fossil fuels, the 

global community is paying more attention to renewable energy. Renewable energies are 

the energies that are obtained from sunlight and used in two fashions; the first is the use of 

solar thermal energy for domestic, industrial, and power plants, and the second is the direct 

conversion of light from the sun into electricity using PV solar cells. The main advantages 

of solar cells include free and pollution-free fuel, and the disadvantages are the high initial 

costs and low system efficiency. Each year, the cell production has higher yields and lower 

prices than the previous years, while low yields and relatively high prices per cell remain 

among the challenges of this technology. The main barriers to the use of this technology 

are the scientific and technical weakness in conversion due to the lack of knowledge and 

field experience, variable and alternating amounts of energy due to climatic and seasonal 

changes, and changes in the direction of radiation.  

To exploit the available resources, mechanical systems are required to place solar 

panels in the direction of uninterrupted sunlight at any time; this method is known as a 

solar tracking system. Furthermore, an electronic system is essential to place the output of 

the solar panels at a suitable operating point with the maximum transmission power. 

However, the placement of solar panels at the point of maximum power may be problematic as 

in the non-linearity of the output characteristic of the solar cell and the variability of this 

characteristic in terms of light radiation and even cell temperature. Therefore, a system 

should be implemented for the control of solar cells along with the placement of solar cells 

at the optimal working point. In case of change in this point due to climatic conditions, the 

maximum transmission power of the system could be tracked continuously and rapidly, so 

that the solar cell would remain at the optimal point. This section simulates the proposed 

method for determining the MPPT of a solar array. 

In the present study, we initially investigated the effects of temperature changes and 

radiation intensity on the MPPT value of solar arrays, followed by the effects of shadow 

on the performance of the solar arrays. In addition, the PSO, DE, and ICA random optimization 

algorithms were used to determine the MPPT of the solar at different temperatures, radiation 

intensities, and atmospheric conditions.  

3.2. Climatic Conditions in Determining MPPT of Solar Arrays 

In the current research, we evaluated the effects of climatic conditions on the MPPT of 

the solar arrays. As is shown in Figure 8, the solar cell was initially modeled in MATLAB 

Simulink environment. According to the findings, nonlinear, environmental solar cells 

(temperature and radiation) were dependent on the P-I and V-I characteristics. In addition, 

the working point of the solar cells depended on their charge attachment.  

To recognize the behavior of a solar cell, a model with an electrical average should be 

developed based on separate electrical components with well-established behavior. An 

ideal solar cell is modeled with a current source parallel to a diode although no solar cell 

is practically ideal. In the present study, we added a sub-resistor and a series resistor to the 

model. Table 1 shows the basic characteristics of these cells at the temperature of 25°C. 

 



 Effects of Connecting a Scattered Solar Generation Unit to the Grid on the Cloud Passage... 615 

 

Table 1  characteristics of silicon solar cells arrays in T=25 ℃ 

α = 0.002086(
𝐴

℃
) 

Current -Temperature Coefficient 

𝛽 = 0.0779(
𝑉

℃
) 

Voltage-Temperature Coefficient 

𝐼𝑜 = 0.5 × 10−4 (𝐴) Reverse Saturation Current 

𝐼𝑆𝐶 = 4.8 (𝐴) Short Circuit 

𝑅𝑆 = 0.0277(Ω) Solar resistor 

λ = 20.41(𝑉−1) Coefficient Solar 

 
Fig. 8 Solar Photovoltaic Modeling 

Figures 9 and 10 show that at the temperature of 25°C and radiation intensity of 

1,000 W/m2, the solar array had 4.55 A, voltage of 7.59 V, and power of 34.54 MPPT 

watts. Notably, only one MPP point was observed since there was no shadow conditions 

in the solar array.   

 

Fig. 9  Curve I-V (T=25℃, Radiant intensity 𝑆 = 1000
𝑊

𝑚2) 

https://climatescience.org/advanced-energy-solar/
https://climatescience.org/advanced-energy-solar/
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Fig. 10  Curve P-V (T=25℃, 𝑆 = 1000
𝑊

𝑚2) 

Figure 11 shows the effects of the changes in radiation intensity on the MPP of the solar 

arrays at the temperature of 25°C. As can be seen, the decreased intensity of radiation in 

the solar arrays led to the reduction of the maximum power of the solar arrays. Figure 12 

depicts the effects of changes in the MPP of the solar arrays at the radiation intensity of 

1,000 W/m2. As is observed, the increased temperature of the solar arrays led to the 

reduction of the maximum power of the solar arrays . 

 
Fig. 11 Curve P-I  Fig. 12 Curve P-I 

(T = 25℃, varied radiant intensity)  (𝑆 = 1000
𝑊

𝑚2, varied temperature) 

3.3. Determining MPPT of Solar Arrays with Partial Shading 

Partial shadowing is performed by the shadows created by buildings, trees, and clouds 

(moving shadows). As a result of creating a shadow instead of the maximum power point, 

several peaks were observed in the voltage-current characteristic of the module in the 
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present study. With regard to the moving shadow conditions, the photovoltaic system 

module is typically divided into three sections (Figure 13).  

In the current research, radiation and facade data were collected in each section and 

used with a sample photovoltaic system in MATLAB software to calculate the short-circuit 

current and open-circuit voltage in the module section. The data were fed to random 

algorithms to calculate the maximum power point section voltage and the maximum power 

point current. With the changes in the radiation and temperature in section i, the values of 

Isc and Voc also changed. Therefore, the appropriate function was automatically adjusted, 

acting to find the new value of the maximum power point of this section. It was assumed 

that the S radiation and temperature conditions of the section remained unchanged, and the 

maximum power point of the same section was searched by a random algorithm.  

After obtaining the maximum power point values of each independent section, the 

maximum power point of the entire module of the photovoltaic system was measured by 

the instantaneous possible mean of the maximum power point obtained from each module 

section of the photovoltaic system. The process was repeated in case of any changes in the 

radiation of each section of the module . 

 
Fig. 13   Solar Array Module with Different Radiation Intensities 

 

In this section, the MPP of the solar arrays was initially determined under shadow 

conditions. For this purpose, two scenarios were also tested, the details of which are 

presented in Table 2. As is depicted in Figures 14-17, a local number was created in the 

solar array under optimal shadow conditions, making it impossible to search for MPP in 

the solar array using conventional methods. 

Table 2  Two Scenarios under Shadow Conditions 

W/m2 W/m2 Radiant intensity 

1000 1000 Cell1 

  600   300 Cell2 

  260   200 Cell3 
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Fig. 14 Curve I-V (T=25℃; first case) Fig. 15 Curve P-V (T=25℃; first case) 

 
Fig. 16 Curve I-V (T=25℃; second case) Fig. 17 Curve P-V (T=25℃; second case) 

3.4. Determining MPPT Using Random Algorithms 

In the studied system, the maximum power point detector connected the module of the 

photovoltaic system to the battery. The maximum power point tracker consisted of a DC-

DC boost converter and a control system (maximum power point tracking by random 

algorithms). In general, the maximum power point tracking unit of random algorithms uses 

random parameters in the inputs to determine the current and voltage based on the 

maximum power through equations.  

In the present study, the inputs of the maximum power point tracking unit were random 

algorithms for cell temperature, solar radiation, and the number, temperature, and radiation 

of the cells in the shade. The maximum power point detector adjusted the operating point 

of the solar array for the maximum power by adjusting the boost converter life cycle. The 

optimization algorithms had two modes with three scenarios in each case, which were 

defined to determine the maximum power point of the solar arrays. The defined modes are 

shown in Tables 3 and 4. In these cases, the number of the cells in the shade, their temperature, 

and radiation intensity differed in each scenario . 



 Effects of Connecting a Scattered Solar Generation Unit to the Grid on the Cloud Passage... 619 

 

Table 3  Basic Conditions of Solar Arrays in Assessment of Random Algorithms in First Case 

 Scenario 1 Scenario 2 Scenario 3 

Number of cells in non-shady conditions 40 30 20 

Cell temperature in non-shady conditions 25 25 25 

Intensity of cell radiation in non-shady conditions 900 900 900 

Number of cells in shade 0 10 20 

Cell temperature in shade 0 20 20 

Intensity of cell radiation in shade 0 500 500 

Table 4  Basic Conditions of Solar Arrays in Assessment of Random Algorithms in Second Case 

 Scenario 1 Scenario 2 Scenario 3 

Number of cells in non-shady conditions 50 40 35 

Cell temperature in non-shady conditions 30 30 30 

Intensity of cell radiation in non-shady conditions 750 750 750 

Number of cells in shade 0 10 15 

Cell temperature in shade 0 25 25 

Intensity of cell radiation in shade 0 600 600 

 

Tables 5-7 show the basic parameters of the PSO, DE, ICA algorithms. In all these 

algorithms, the number of the iterations, number of the control parameters (population 

dimension), and initial population were equal . 

Table 5  Parameters of DE Algorithm 

Value Parameter 

10 Population Size 

  1 Number of Dimensions of Each Population 

50 Number of Repetitions 

Table 6  Parameters of PSO Algorithm 

Value Parameter 

10 Population Size 

  1 Number of Dimensions of Each Population 

50 Number of Repetitions 

0 and 9 W Max. 

0 and 3 W Min. 

2 and 05 C1 

2 and 05 C2 

Table 7  Parameters of ICA Algorithm 

Value Parameter 

10 Population Size 

  1 Number of Dimensions of Each Population 

50 Number of Repetitions 

  2 Number of Empires 
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Figures 18-20 depict the speed and convergence of the PSO, DE, and ICA algorithms 

in the first case, and the second case is shown in Figures 21-23. As can be seen, the 

convergence speed of the ICA algorithm was moderately higher compared to the other 

algorithms. Notably, these algorithms are based on random numbers, and their convergence 

rate may change each time the program is run. According to our findings, the speed of the 

training-based algorithm was higher than the other algorithms. In addition, the optimal 

point was obtained accurately in all the repetitions . 

 
Fig. 18 Function of Random Algorithm in Determining MPPT (mode 1, scenario 1) 

 
Fig. 19 Random Algorithm Performance in Determining MPPT (mode 1, scenario 2) 
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Fig. 20 Performance of Random Algorithm in Determining MPPT (mode 1, scenario 3) 

 
Fig. 21 Performance of Random Algorithm in Determining MPPT (mode 2, scenario 1) 
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Fig. 22 Performance of Random Algorithm in Determining MPPT (mode 2, scenario 2) 

 
Fig. 23 Performance of Random Algorithm in Determining MPPT (mode 2, scenario 3) 

As can be seen, the accuracy and performance of the proposed method were evaluated using 

a photovoltaic system consisting of a solar panel, DC/DC converter, battery, and control system 

(MPPT), which was simulated using MATLAB Simulink software. Furthermore, three 

stochastic optimization algorithms (PSO, DE, and ICA) were utilized to compare the 

performance of the MPPT. To evaluate the performance, efficiency, and accuracy, the method 

was compared with the VMPPT, P&O, and CMPPT methods similar to the previous paper in 

this regard.  
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3.5. MPPT based on Perturb and Observe (P&O) Algorithm [32-33] 

The P&O method has been widely used for MPPT given its convenience. In a typical 

P&O algorithm, the operating point voltage of the solar array is disturbed in one direction 

to observe the resulting output power. If the power change is positive, the operating point 

of the system has moves to the MPP point, and the voltage must be disturbed again in the 

same direction. If the power changes are negative, the operating point must be moved away 

from this point, and the voltage will change in the opposite direction of the first disturbance 

(Figure 24). 

  

Fig. 24 P&O method 

3.6. MPPT Based on Voltage (VMPPT) [34-36] 

In VMPPT, the correlation between the output voltage of the cellular array (VSA) is the 

same as Vmp, and the open-circuit voltage (VOC) is considered linear. 

(15 )         𝑉𝑚𝑝 = 𝐾𝑣𝑉𝑂𝐶 

In the equation, Kv is a constant known as the voltage coefficient. Figure 25 shows the 

value of Kv=Vmp/VOC based on different temperatures and radiation conditions where 

Nshade is equal to 10, 15, 20, and 25, respectively. Based on these results, it is clear that 

the Kv value is not fixed, and the VMPPT method is erroneous in shady conditions. The 

algorithm of this method is depicted in Figure 26.  
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Fig. 25 Voltage Coefficient Calculated in Different Temperature and Radiation Intensity 

Conditions; a) 10 Shaded Cells, b) 15 Shaded Cells, c) 20 Shaded Cells, d) 25 Shaded 

Cells [34-36] 

 

Fig. 26 VMPPT Method Algorithm [34-36] 

3.7. MPPT Based on Current (CMPPT) [34-36] 

In CMPPT, the correlation between the output current of a cellular array (ISA, which is 

Imp), and its short circuit current (Isc) is considered linear.  

(16)  𝑖𝑚𝑝 = 𝐾𝑖𝑖𝑠𝑐 
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In the equation, Ki shows known as the current coefficient. Figure 26 shows the value of 

Ki = imp / isc based on different temperature and radiation conditions where Nshade is equal 

to 10, 15, 20, and 25, respectively. Based on these results, it is clear that the Ki value is not 

fixed, and the CMPPT method is erroneous in shady conditions. The algorithm of this 

method is shown in Figure 27.  

 

Fig. 26 Coefficient Calculated in Different Temperature and Radiation Intensity Conditions; 

a) 10 Shaded Cells, b) 15 Shaded Cells, c) 20 Shaded Cells, d) 25 Shaded Cells 

[34-36] 

 

Fig. 27. CMPPT Method Algorithm [34-36] 
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3.8. MPPT Based on artificial neural network [37-38] 

The method presented in this study provides a two-stage maximum power tracking 

method that determines the maximum point for two modules having serial connection. In 

the first step, the radiation and the temperature of the array is measured and the final P–

I curve is found. Then, a search algorithm is implemented to approximate the MPP location 

with two current and power parameters at the MPP point [37-38]. When the weather conditions 

exceed beyond a certain level, the search is repeated. In the second step, the actual characteristic 

curve starts the search for MPP from the estimated point in the first stage or from its previous 

performance point, which depends on changes in the performance conditions. In one such case, 

P and O and RCC methods are used to perform the second phase of this algorithm, and the 

neural network is realized, correspondingly [37-38]. 

 
Fig. 28 The schematic diagram of the proposed approach [37] 

 
Fig. 29 The power of the PV array in the first simulation [37] 
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Fig. 30 The current of the PV array in the first simulation [37] 

The comparison of the obtained results showed that this method has two steps and 

therefore is not faster than our methods, and also does not guarantee system stability. 

3.7. MPPT Based on Fuzzy Logic [39-40] 

The change in the duty cycle is done by Fuzzy logic controller by sensing the power 

output of the solar panel. The proposed controller is aimed at adjusting the duty cycle of 

the DC-DC converter switch to track the maximum power of a solar cell array. The inputs 

to the fuzzy logic system will be error (E) and Change in Error (C). The output will be the 

Change in Duty Cycle (dD) at sampling instant k [40]. The fuzzy logic consists of the 

following stages: fuzzification, rule base, inference system and defuzzification. The Fuzzy 

variables are divided into 5 linguistic hedges: Negative Big (NB), Negative Small (NS), 

Zero (ZE), Positive Small (PS) and Positive Big (PB).The membership functions are 

chosen as shown in Fig 31. Fig. 32 & Fig. 33 show that the linguistic hedges of change in 

error and change in duty cycle respectively. The result is shown in Fig.34.  

 
Fig. 31 Linguistic hedges of change in error [39] 

 
Fig. 32 Linguistic hedges of change in error [39] 
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Fig. 33 Linguistic hedges of change in duty cycle [39] 

 
Fig. 34 Output voltage of the solar panel without MPPT 

As you can see, shadow conditions are not considered in this method. 

The comparison of the obtained results (Section 3-4) with the findings of other studies 

(Sections 3-5 to 3-9) indicated that the use of stochastic optimization algorithms is superior 

to other methods as they are not erroneous in shady conditions.  

4. CONCLUSION 

In the implementation of the network in this study, the load was considered a point load, 

and all the solar panels were centrally simulated. In other words, the cloud passage affected 

all the solar panels similarly, and the implemented network became centralized. This 

approach is common in industrial and power plants and for domestic use, while the 

industrial use is more frequent compared to the domestic use since residential areas often 

lack the necessary space to build a centralized solar power plant.  

In industrial areas, energy storage devices (e.g., batteries) must be used to compensate 

for the voltage drop applied to the system, which may in turn cause islanding and load 

interruption. These batteries, albeit temporarily, allow the photovoltaic system to compensate 

for the microgrid power shortage locally, thereby eliminating the need for the network to 

compensate for the power shortage. As a result, the voltage drop does not occur due to the 

current influx in the network.  

In this study, a control system was designed to control the high-penetration solar power 

plants in the network. Furthermore, infiltration was obtained at different loads, and the 

effects of cloud transit on the system were also simulated and obtained. The results of these 

simulations are as follows:  
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1. The characteristics of a solar array depend on atmospheric conditions (e.g., temperature 

and radiation intensity) . 

2. In non-shady conditions, solar arrays have only one maximum power point, while 

some local optimal points could be observed in shady conditions. Consequently, it would 

be difficult to use conventional methods to determine the MPPT of solar arrays . 

3. Stochastic optimization algorithms could be used to determine the MPP point of solar 

arrays in proper shadow conditions. In this study, three algorithms (DE, PSO, and ICA) 

were employed to determine the MPPT of the solar arrays in shady conditions, and the 

speed of the colonial competition algorithm was observed to be higher compared to the 

other algorithms . 
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