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Abstract. Although IGBT modules are widely used as power semiconductor switch in 

many high power applications, there are still reliability problems related to the current 

unbalance between paralleled IGBTs that may destroy the whole module and, 

eventually, the power system. Indeed, short-circuit and overvoltage events can also 

destroy some of the IGBTs of the power module. In this sense, the instantaneous 

monitoring of the anode current and voltage values and the use of a more intelligent 

gate driver able to work with the signals of each particular IGBT of the module would 

enhance its operating lifetime. In this sense, the paper describes the design, 

optimization, fabrication and basic performances of 3.3 kV – 50 A punch-through 

IGBTs for traction and tap changer applications where anode current and voltage 

sensors are monolithically integrated within the IGBT core. 
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1. INTRODUCTION 

IGBTs [1,2] are the most widely used power semiconductor device in low, medium 

and high voltage applications. IGBTs with voltage capability ranging from 600 to 6500 V 

delivering up to 2500 A are commercially available as discrete devices or as power modules. 

Low voltage discrete IGBTs are manly addressed to automotive applications, where low 

losses and high reliability are the most critical challenges [3], while medium voltage IGBT 

modules are basically designed for traction applications and wind generation with short-

circuit capability [4]. Finally, high voltage IGBT modules for applications operating at an 

output power in excess of 100 KVA are addressed to high speed trains, high power industrial 

drives, VAR compensation and flexible AC transmission [5]. Although the IGBT technology 
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is mature, the reliable operation of a module is still under optimization since the safe 

operation of the power module is one of the most critical issues of a power system. 

Short-circuit events and overcurrent transient peaks inherent to inductive load switching 

may destroy one or several IGBT chips packaged into the power module with the eventual 

subsequent destruction of the whole power system due to explosion or overcurrent burn-out. 

Therefore, the direct measure of the instantaneous anode voltage and current levels during an 

undesired destructive event would improve the lifetime of each discrete power 

semiconductor device included into the power module. In this sense, the current distribution 

between the different IGBTs may become unbalanced as a consequence of non-uniform 

thermal distribution or a local thermal resistance increase derived from delamination 

problems [6-8]. Hence, the current increase in one of the IGBTs may drive it out of its safe 

operating area [9]. The Implementation of integrated current sensors in the IGBT core, 

which is not commonly done in the IGBTs of commercial power modules for traction 

applications, would significantly increase their safe operation. Average current sensing is the 

most common technique using current mirrors with shunt resistors and a reference voltage 

[10]. Current sensors are usually implemented in large area discrete IGBTs, where a certain 

number of cathode cells are connected to an auxiliary cathode electrode, leading to a low 

current value proportional to the cathode current value.  

Overvoltage or short-circuit events can also be destructive since the IGBT may be driven 

to avalanche or to high power dissipation, with local temperature increase and thermal 

destruction. If an anode voltage sensor is implemented, the undesired anode voltage increase 

can be quickly detected and the gate drive can safely turn-off the entire IGBT before 

destruction. However, the anode electrode is placed at the backside of the die and the anode 

voltage value is too high to be used in a logic circuit. Therefore, the anode voltage sensor has to 

be placed on top of the die with a voltage level compatible with the gate drive electronics. The 

first anode voltage sensors were successfully developed for 600 V applications based on the 

voltage mirror concept [11]. 

This paper describes the design and fabrication of smart IGBTs for 3.3 kV applications 

where current and anode voltage sensors are monolithically integrated within the core 

region. Two target applications are envisaged: traction modules with a large number of 

paralleled IGBTs delivering high anode currents and on-load tap changers for smart grid 

distribution transformers, where the transformer ratio has to be changed as a function of the 

active and passive connected loads if a stable and safe AC voltage waveform has to be 

delivered to end users. Commercial tap changers are based on the mechanical adding or 

subtraction of small inductances connected in series with the primary inductor [12]. 

However, the increasing demand of electrical energy with large fluctuations of the connected 

loads requires remote operation of tap changers and this can only be achieved by substituting 

the mechanical switches by the solid-state counterparts. The implementation of anode 

voltage sensors is crucial to avoid the destruction of the solid-state switch due to the eventual 

short circuits both at the high and low sides of the transformer. 

2. ANODE VOLTAGE SENSOR 

The design and optimization of the anode sensor structure is based on a 3.3 kV IGBT 

punch-through technology with terraced gate design [13] to prevent a premature breakdown 
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between adjacent core cells at the curvature of the P-body diffusion. A cross-section of 

the last IGBT core cell and the sensor structure is plotted in Fig. 1, where the main design 

parameter; distance between adjacent deep P
+
 sinkers (L), is highlighted. The layout of 

the core region cells is striped and the corresponding metal gate runners are also included 

to minimize the gate resistance and prevent possible delays in the turn-on process of the 

farthest cells with the subsequent current focalization. The process technology is based on 

the standard 8 mask IGBT technology available at the IMB-CNM clean room, including a 

back-side deep N-type diffusion to create the N-buffer layer inherent to the punch-through 

structures. An optimized multiple floating guard ring edge termination with 22 rings has 

been used to provide the required voltage capability for 3.3 kV applications, using the 

same deep P
+ 

sinker diffusion of the core cells. Each ring is covered by a metal line to 

ensure a uniform bias distribution along the ring, once it becomes biased due to the 

depletion region extension. Rings have to be wide enough to avoid a metal overlay that 

would lead to a field plate effect, degrading the effectiveness of the edge termination. 

 

 

Fig. 1 Cross-section of the last IGBT core cell and the sensor region 

The concept and the operation mode of the anode voltage sensor structure was initially 

demonstrated on a 600 V IGBT technology by integrating stripped and cellular sensor 

structures with the suitable edge termination selected IGBT structure [11]. The sensor 

consists of two deep P
+
 diffusions connected to the grounded cathode electrode separated 

a certain distance with an additional shallow N
+
 diffusion in between to provide an ohmic 

contact to the N
-
 substrate for the additional sensor electrode. When a positive bias is 

applied to the anode electrode, the two P
+
N

-
 junctions of the sensor become reverse 

biased, leading to a self-shielding effect. Hence, the bias at the sensor electrode (Vsense) 

proportionally increases with the applied anode voltage in a range compatible with the 

gate driver electronics. In case of short-circuit or overvoltage, the Vsense value will exceed 

a pre-defined threshold value and the gate driver will directly turn-off the entire IGBT or 

reduce the anode current to a safe value. The Vsense value obtained in stripped sensor 

design is higher than that of the cellular counterpart but the most critical parameter is the 

resistive load connected to the sensor electrode. 
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Fig. 2 Detailed view of the stripped anode voltage sensor and its monolithic integration 

within the core IGBT 

 

Fig. 3 Top view of a fabricated 3.3 kV – 50 A IGBT packaged for anode voltage sensor test 

The final goal is to get 10 V at the sensor electrode at an anode voltage of 50 V for a 

3.3 kV punch-through IGBT technology. In this sense, a stripped anode voltage sensor 

structure (see Fig. 2) has been placed within the core of the IGBT (see Fig. 3), consuming 

a 3% of the total active area. The anode voltage sensor electrode is placed at the edge of 

Anode Voltage Sensor 

Current Sensor 

Cathode Wires 
Gate Pad 
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the IGBT core cells, being the stripes of the sensor orthogonal to those of the IGBT. The 

current sensor is placed at the opposite side of the chip. A gate runner is placed between 

the IGBT cells and the anode voltage sensor to minimize their mutual interaction. In this 

sense, the current flowlines simulated with Sentaurus [14] TCAD of the last IGBT core 

cell together with the first anode voltage sensor stripe are plotted in Fig. 4. A small 

fraction of the current is collected through the sensor P
+
 diffusions with the inherent slight 

on-state resistance increase. Moreover, these P
+
 diffusions helps in collecting holes during 

the IGBT turn-off process in a similar way than the peripheral P
+
 diffusion connected to 

the cathode potential. 

 

 

 

 
 

Fig. 4 Current flowlines at a gate bias of 15 V in the last IGBT core cell  

and the first anode voltage sensor strip 

3. FABRICATION OF INTELLIGENT 3.3 KV IGBTS 

3.3 kV IGBTs have been fabricated with a total chip area of 1.3×1.3 cm² for a nominal 

current of 50 A. The real current capability is shown in Fig. 5 where more than 100 A are 

reached at a gate voltage of 15 V, being the gate threshold voltage in the range of 5 V. 

The feasibility anode voltage sensor has been experimentally measured with a Vsene = 8 V 

at an anode voltage of 50 V, as inferred from Fig. 6. In order to check the compatibility of 

the designed anode voltage sensor structure with a wide range of gate driver architectures, 

simulations of the Vsense evolution when different resistive loads (100, 200, 500 and 1000 

Ω) are connected to the sensor electrode is also included in Fig. 6. Although the Vsense 

value at an anode voltage of 50 V slightly decreases when the load resistance increases, it 

can also be used as an input signal for the gate control driver. 

 

IGBT Cathode 

Gate runner 

Sensor Sensor Cathode 
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Fig. 5 Experimental I(V) curves of the 3.3 kV IGBT 

 
 

Fig. 6 Simulated and experimental evolution of the voltage sensor value  

as a function of the resistive load of the control electronics 

4. TRANSIENT ANALYSIS OF THE ANODE VOLTAGE SENSOR 

Up to now, the Vsense evolution has been simulated or measured by increasing the anode 

voltage from 0 to the desired value with the gate electrode grounded. Hence, the current 

flowing through the entire IGBT is the leakage range with no heating effects. In contrast, 

IGBT modules operating in traction or on-load tap changers applications are far from the 

described ideal conditions [15]. Pulse-width-modulation schemes are typical in traction 

applications to supply the sinusoidal current for the train speed control. Therefore, 2D 
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TCAD simulations have been carried out to determine the turn-off performance of the 

IGBT with an anode voltage sensor based on the typical turn-off test circuit plotted in Fig. 

7 (left). IGBT1 accounts for the designed 3.3 kV IGBT with anode voltage sensor while 

IGBT2 is a conventional 3.3 kV IGBT with the corresponding area factor to deliver a 

nominal current of 50 A. IGBT1 is dimensioned to take into account that the total anode 

voltage sensor length corresponds to one of the laterals of the active IGBT area and has 

also to deliver a nominal current of 50 A. 

 

 
 

Fig. 7 Test circuit for the inverter switching simulation (left) and simulated turn-off 

waveforms of the different considered structures 

Three different cases have been considered by properly selecting the way the two IGBTs 

are connected, assuming that they share the anode electrode. The first case is IGBT1 

connected and IGBT2 not connected. Hence, information about the interaction between 

sensor and core cells can be directly derived. The second case is IGBT1 not connected and 

IGBT2 connected, leading to the transient simulation of a real 3.3 kV – 50 A PT-IGBT 

without anode voltage sensor. Finally, the third case corresponds to both devices connected 

in a mixed-mode way, accounting for the fabricated IGBT with anode voltage sensor. 

The current at the inductor increases with a certain di/dt when a constant VDS voltage 

is applied to the circuit up to the desired level. When the gate voltage is ramped to 0V, 

the IGBTs are turned-off and the inductor current is forced to flow through the 

freewheeling diode (FWD). The inverter test circuit has been designed in accordance to 

the standard 2.5 kV DC line, where 3.3 kV IGBTs are used. In this sense, VDS, L, Lo and 

RG are set at 2500 V, 2.5 mH, 285 nH and 3.7 Ω, respectively. As a consequence, the 

maximum achievable current is in the 50 A range, which corresponds to the limit of the 

Reverse Blocking Safe Operating Area (RBSOA). 

The turn-off waveforms plotted in Fig. 7 reveals that a significant interaction between 

the sensor and the core cells can be expected (dash-dot line) with the subsequent turn-off 

delay and enhanced heat generation in the vicinity of the anode voltage sensor cells due to 

the increase of the parasitic capacitances. Nevertheless, when realistic area factors are 
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used (solid line) to emulate the fabricated IGBT with anode voltage sensor, the turn-off 

performance approaches the one corresponding to the conventional PT-IGBT counterpart 

(dashed line). In conclusion, the monolithic integration of the anode voltage sensor within 

the core area of the 3.3 kV IGBT is feasible since the interaction between the sensor and 

the adjacent core cells has not a deep impact on the transient performance. 

 

 

Fig. 8 Steady and transient simulation of the anode voltage sensor level  

as a function of the applied anode voltage 

The last step in demonstrating the suitable operation of the fabricated intelligent IGBT 

with integrated sensors (IGBT1 + IGBT2) is the transient simulation of the anode voltage 

sensor at turn-on and turn-of processes and its comparison with the steady-state case. The 

turn-on and turn-off curves are extracted form transient simulations where the anode voltage 

is ramped down from 2500 V to 0 V (turn-on) and vice-versa (turn-off). The steady state 

simulations with the gate biased at 0 and 15 V exhibit a mismatch at high anode voltage 

values, far from real operation. Nevertheless, the simulation at high anode voltage with the 

gate at 15 V is included since these conditions will happen at the beginning of the turn-off 

process with a high current density flowing through the IGBT core cells. As a consequence, 

the carrier concentrations and the electric field distribution will be modified in the anode 

voltage sensor structure. 

Assuming that the anode voltage sensor structure is included in the active IGBT area 

to mainly protect it from an unexpected fast increase of the anode voltage as a 

consequence of short-circuit event or when the energy of an inductor is dumped to the 

semiconductor, the fast increase of the anode voltage sensor value at turn-on ensures the 

protection capability since the threshold voltage level at which the gate driver will turn-

off the intelligent IGBT will be reached even earlier than in the ideal steady state case.  

Steady State (Vg = 0 V) 

Steady State (Vg = 15 V) 

Turn-off 

Turn-on 
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5. CONCLUSIONS 

The basic design aspects and the expected evolution of an intelligent 3.3 kV – 50 A 

IGBT with integrated anode voltage and current sensors is reported in this paper. The 

operation of the new anode voltage sensor structure is analyzed with the aid of TCAD 

simulations, including its interaction with the adjacent IGBT core cells. The experimental 

evolution of the anode voltage sensor level as a function of the applied anode voltage has 

corroborated the feasibility of the fabricated devices. Finally, transient simulations have 

been carried out to demonstrate the protection capability of the anode voltage sensor. 
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