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Abstract. The present understanding of this work is about to evaluate and resolve the 

temperature compensation point (TCP) or zero temperature coefficient (ZTC) point for 

a sub-20 nm FinFET. The sensitivity of geometry parameters on assorted performances 

of Fin based device and its reliability over ample range of temperatures i.e. 25 0C to 

225 0C is reviewed to extend the benchmark of device scalability. The impact of fin 

height (HFin), fin width (WFin), and temperature (T) on immense performance metrics 

including on-off ratio (Ion/Ioff), transconductance (gm), gain (AV), cut-off frequency (fT), 

static power dissipation (PD), energy (E), energy delay product (EDP), and sweet spot 

(gmfT/ID) of the FinFET is successfully carried out by commercially available TCAD 

simulator SentaurusTM from Synopsis Inc. 
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1. INTRODUCTION AND BACKGROUND CONCEPT 

Between the two types of transistors, the bipolar devices (BJTs) are more temperature 

sensitivity and show large variations in the operating point with temperature fluctuations. 

The unipolar devices (FETs) are not so prone to instabilities due to temperature effects, 

but it is still needed to investigate the behaviour precisely the device performance when 

the transistor dimension enters in to nanometre scale. Because the physical, chemical, 

mechanical, thermal and optical properties of devices change significantly from those at 

larger scales.  

From the basic operating principle point of view, a MOSFET is a voltage controlled 

majority carrier device. The movement of majority carriers is controlled by the voltage 

applied on the control electrode (called gate) which is insulated by a thin metal oxide 

layer from the bulk semiconductor body. The electric field produced by the gate voltage 

modulate the conductivity of the semiconductor material in the region between the main 

current carrying terminals called the Drain (D) and the Source (S) [1]. 
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Changes in temperature affect system speed, power, and reliability. This effect is 

caused by altering the threshold voltage (Vth), mobility (µ), and saturation velocity (Vsat) 

in the device. The resulting changes in device current can lead to failures [2]. Vth, µ, Vsat 

and supply voltage (VDD) are all technology dependent parameters, with predicted values 

available down to the 22 nm node [ITRS]. Use of high-k dielectrics and metal gates to 

alleviate nanoscale gate leakage problems also alters Vth, µ and Vsat. The combination of 

these changes makes it difficult to determine the effect of temperature on the device 

performance [3]. The temperature effect is important to be considered because of thermal 

runaway. In the temperature dependence region, circuits continue to speed up as temperature 

increases. The higher temperatures could result in thermal runaway resulting from the 

exponential temperature dependence of leakage current, which may already be dominating 

the total power consumption in the nanoscale regime [4]. 

MOSFETs are widely used in the field of military, satellite communications, medical 

equipment, automobile, nuclear sectors, wireless and mobile communications, etc., as amplifier 

design, analog integrated circuits (ICs), digital CMOS design, mixed-signal ICs, power 

electronics and switching devices. As for demand in variety of applications and the use the 

nanoscale transistors, it is important to analyze the performances at a wide range of 

temperatures [5]. According to the literature, several technologies have been explored as an 

option for both low and high temperature operations. Few of them are Complementary Metal 

Oxide Semiconductor (CMOS), Silicon on Insulator (SOI) [6], and III-V semiconductors. The 

unwanted flow of high leakage current through the well junction and the presence of latch up 

puts a limit on the use of bulk CMOS devices at high temperatures. However, due to the 

absence of the well and latch up in SOI devices, it can be preferred for both low and high 

temperature operations [7]–[9]. 

Vadasz and Grove [10] reported the temperature dependence of bulk MOSFET at below 

saturation region. As for theoretical and experimental agreement, the variation of channel 

conductance with temperature is shown to be due to the variation of the threshold voltage 

and of the inversion layer mobility. Bipolar transistors are considered to be unusable at low 

temperatures as a consequence of strongly reduced current gain [11], [12]. Gaensslen et al.  

[13] presented an enhancement mode FET with a channel length of 1 µm suitable for operation 

at liquid nitrogen temperature. They claimed the performance of FET devices are significantly 

improved in terms of device turn-on time, 1.7 to 4 times higher transconductance, and an 

increasing threshold voltage at 77 K. Other advantages are a decrease of 1000 times inversion 

layer leakage currents, 6 times higher silicon thermal conductivity, and 6 times lower 

aluminium line resistance. There is  no significant difference in temperature dependence of 

threshold voltage was observed between ‘thick-film’ SOI and bulk MOSFET’s reported by 

Krull and Lee [14]. Groeseneken et al. [15] documented that, in thin-film SOI n-channel 

MOSFET’s the device is fully depleted below a critical temperature and above, the device is 

no longer fully depleted.  

The drain current ID is influenced by two terms, i.e., channel mobility µ and threshold 

voltage Vth as [16] 

 ( )    ( )[ ( )]D GS thI T T V V T    (1) 

The mobility term of (1) forces ID to decrease, whereas the [VGS - Vth] term increases 

ID with increase in temperature. But the behaviour of ID with temperature shows an 

opposite effect at a fixed gate bias voltage. The effect of two controlling terms of (4) is 
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nullified at a fixed value of bias voltage, which is defined as Zero Temperature Coefficient 

(ZTC) bias point. The so called ZTC point has been identified for bulk CMOS by Shoucair [17] 

and Prijic et al. [18], in both the linear and the saturation regions for temperatures between 27 
0
C and 200 

0
C. Later, Groeseneken et al. [15] and Jeon and Burk [9] demonstrated the 

existence of the ZTC point experimentally for thin and thick-film SOI MOSFETs, 

respectively [19]. Both experimental and analytical results for the ZTC point over a high 

temperature range (25
0 

C-300
0 

C) of a partially depleted (PD) SOI MOSFET has been 

introduced by Osman et al. [20]. They have identified two distinct temperature coefficient 

points, in the linear as well as in the saturation region. Tan et al. [16] have analysed the 

fully depleted (FD) and lightly doped enhanced SOI n-MOSFET over a wide range of 

operating temperature (300 K-600 K). 

It is desirable to bias the digital and analog circuits meant for wide temperature 

applications at a point where the V-I characteristics show little or no variation with respect 

to temperature. This inflection point is typically known as temperature compensation point 

(TCP) or zero temperature coefficient (ZTC) [15], [18], [20]–[22]. 

2. ZTC BIAS POINT 

There are two ZTC points for a transistor, one for the drain current and the other for 

the transconductance, and in general they have different values in linear and saturation 

regions. These ZTC points are defined as the points at which the drain current or the 

transconductance remains constant and independent of temperature. The ZTC points, are 

values of VGS at which the reduction of the threshold voltage is counter-balanced by the 

reduction of the mobility, and as a result, the value of the drain current or the value of the 

transconductance remains constant as the temperature varies. For gate voltages lower than 

ZTC, the decrease of threshold voltage is dominant, as a matter of fact drain current 

increases with temperature, while for gate voltages higher than ZTC, the mobility degradation 

predominates and drain current decreases with temperature. The ZTC is a very important 

bias point for analog designers as it corresponds to a gate voltage at which the device DC 

performance remains constant with temperature [19], [23], [24]. 

3. SIGNIFICANCE OF ZTC BIAS 

ZTC biasing is one of the important techniques in high temperature design especially 

for operational transconductance amplifier (OTA). The principal advantages of ZTC 

technique are [25]:  

 It maintains a constant operating point over a wide range of temperatures so that 

no transistors operate out of saturation.  

 It ensures stability of the circuit over a wide range of temperatures.  

 Design simplicity and ensures reliable circuit operation when several stages are used.  

It provides a bias point that is temperature independent. The main disadvantages of 

ZTC are: high overdrive voltage associated with ZTC bias results in reduced intrinsic gain 

due to the low gm as well as reduced signal swing. The reduced gm with temperature can affect 

the small signal performances of the amplifier like gain, bandwidth, etc., especially when the 

amplifier is required to operate over a wide range of temperatures. 
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The multi-gate structures like Double Gate (DG) MOSFET fabricated on SOI wafers 

is one of the most promising candidates due to its attractive features of low leakage 

current, high current drivability (Ion), transconductance (gm), reduced short channel effects 

(SCEs), steeper subthreshold slopes, and suppression of latch-up phenomenon [26]–[31]. 

In a recent work [32]–[34], a detailed analysis of inflection point to examine its reliability 

issues over a wide range of temperature variations (100 K-400 K) for both analog and RF 

applications of DG MOSFET with HKMG technology was reported. 

To pamper the market requisites, the density of transistors in a chip and the performance in 

terms of speed and power consumption are needed to be increased. The transistor 

miniaturization is one of the major concerns behind performance and cost. Undesirable short 

channel effects (SCEs) [35] and excessive Vth variation occurred beyond 32 nm technology 

node, hence there is searching for new technologies/methodologies. The new methodologies 

lead in two directions: one is the introduction of new materials into the classical single gate 

MOSFETs like develop uniaxial/biaxial strain in the channel region to enhance the carrier 

mobility in the channel region and implementation of high-k dielectric materials as gate oxide 

to minimize the gate leakage current. Second is the development of non-classical Multigate 

MOSFETs (Mug-FETs) which is a very good concept for further scaling of the device 

dimensions. So, the Integrated Device Manufacturer (IDM), foundries and electronic design 

automation (EDA) companies grant more investments with an emphasis on most promising 3-D 

FinFET technology. The advantages of FinFET technology are higher drain current and 

switching speed,  less than half the dynamic power requirement with 90% less static leakage 

current [36], [37]. 

4. FINFET DESIGN 

         
 (a) (b) 

Fig. 1 (a) Perspective 3-D (b) 2-D cross sectional view of SOI FinFET 

 

The geometrical process parameters of FinFETs are as:  

 Gate length (Lg): the physical gate length of FinFETs. 

 Fin height (HFin): the height of silicon fin. 
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 Fin width (WFin): the width of silicon fin. 

 Gate oxide thickness (Tox): the thickness of the gate oxide. 

 Underlap channel length (Lun): the region under Si3N4 spacer. 

Among all the parameters the HFin and WFin are the two which play a major role to be 

investigated. A tradeoff is required between the wider fin which results in unacceptable 

SCEs and narrower increases parasitic resistance and is hard to manufacture. Similarly from 

the manufacturing point of view, a taller fin achieves a better layout efficiency and higher 

current. So we have adopted various design parameters like WFin/Lg = 0.25, 0.5, 0.6, 0.8, 1 

and HFin/Lg = 0.25, 0.6, 0.8, 1, 1.1, 1.3 in our simulation [38]–[40]. An n-channel MOSFET, 

having interfacial oxide as SiO2 with high-k material (Si3N4) as spacer in the underlap 

regions (Lun) is modeled. The Lun is considered as 5 nm from both sides of the channel 

towards source and drain side. Fig. 1(a) and (b) show a three dimensional, as well as 2-D 

cross sectional view of the FinFET with Source/Drain length (LS/LD) as 40 nm. The source 

drain doping is Gaussian in nature with peak ND at a density of 10
20

 cm
-3

. The Equivalent 

Oxide Thickness (EOT) is 0.9 [39], [41], [42] nm and supply voltage VDD = 0.7 V. The work 

function for the gate electrode is assumed to be 4.5 eV. The channel is undoped which 

augments the effective mobility, and hence the current density from the source [35]. 

5. SIMULATION SETUP 

The numerical simulation uses the drift diffusion approach [43], and the models 

activated in the simulation comprise a field dependent mobility, concentration dependent 

mobility and velocity saturation model. The technology parameters and the supply 

voltages employed for the device simulations are according to the analog ITRS roadmap 

[44] for below 50 nm gate length devices. The work functions of the metal gates are 

adjusted to achieve the desired Vth value. Physical models accounting for electric field 

dependence of mobility are invoked in the simulation. The inversion layer mobility 

models [45], along with Shockley–Read–Hall (SRH) [46], [47] and Auger recombination 

models are included. The inversion-layer Lombardi mobility model calculates the mobility 

degradation which normally occurs due to a higher surface scattering near the semiconductor 

to insulator interface which also includes Coulomb and phonon scattering. It deems the 

effect of transverse fields along with doping and temperature dependent parameters of 

mobility. The SRH and Auger recombination models are applied for minority carrier 

recombination. In addition, the basic mobility model is employed to consider the effect of 

doping dependence, high-field saturation (velocity saturation), and transverse field dependence. 

The impact ionization and band to band Augur recombination model are included in the 

simulation. The silicon band gap narrowing the model that sorts out the intrinsic carrier 

concentration is activated.  

6. EFFECT OF HFIN AND WFIN ON SCALABILITY 

 In this section, the scalability of device is being discussed, the on-state drive current 

(Ion), and off-state leakage current (Ioff). The variation of fin height (HFin) and fin thickness 

(WFin) on drain current is traced in Fig. 2(a) and (b) respectively. To analyze the immense 

improvement in gm (ID/VGS) with increase in HFin/Lg ratio, we have appraised and studied the 
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ID-VGS curve. The Sub threshold Slope (SS) is an important parameter for calculating the 

off state current. Furthermore, SS is calculated as: 

 ( )
(log )

GS

D

V
SS mV dec

I





 (2) 

 exp( )D GSI qV kT   (3) 

Where, the logarithm is in base 10, ID is the drain current, VGS is the gate voltage, q is 

the charge of electron, k is the Boltzmann’s constant, η is the body factor and T is the 

temperature. At room temperature (300 K) and ideal condition (η=1), the function 

exp(qVGS / kT) changes by 10 for every 60 mV change in VGS. The ideal value for the SS 

is 60 mV/decade.  

  
 (a) (b) 

Fig. 2 Drain current (ID) of the device in log scale as a function of gate to source voltage 

(VGS) with variability of process parameter (a) HFin (b) WFin. 

 

From Fig. 2(a), as HFin/Lg ratio increases, there is a lofty leakage current observed but 

with this SS also increases. However, with the same (high HFin/Lg ratio), parasitic 

resistance problem can be avoided, which further increases the drain current. Similarly, 

Fig. 2(b) demonstrates that the leakage current can be significantly reduced for lower 

WFin/Lg ratio cases. This is because by picking a smaller WFin, we can minimize the 

longitudinal electric field at the source side because of the precincts of multiple gates. 

From both figures, it can be noticed that SS augments with the increment in both ratios, 

i.e. Hfin/Lg and Wfin/Lg, although its value is very close to the ideal one, i.e. 60 mV/decade. 

The Ion and Ioff are very much dependent on vital device geometry parameters, i.e. HFin 

and WFin. So, there is always an accord between Ion and Ioff for the device design and 

device engineers can choose the optimum parameter dimensions as their requirement for 

specific applications. 
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 (a) (b) 

Fig. 3 On current (Ion) and leakage current (Ioff) with variation of (a) HFin (b) WFin at VGS= 

VDS= VDD. 

The important figure of merit for digital application, i.e. Ion versus Ioff for different 

HFin/Lg and WFin/Lg ratios is presented in Fig. 3(a) and (b). As for our previous discussion, 

both Ion and Ioff increase with the increase in HFin. This is to confirm that for high drive 

current with matching the current drivability, taller fins are required, whereas narrow fins 

give better SCE immunity. This is because an increase in HFin results in decrease of the 

electric field in the silicon region which enhances carrier mobility and further the on state 

current. By comparing Ion and Ioff for all HFin/Lg cases, we can say that HFin = 0.6 x Lg is 

the optimum one as it endues a moderate value for both Ion and Ioff. Fig. 3(b) discussed the 

same Ion versus Ioff benchmark for different WFin/Lg ratios. From the figure, a wider fin 

width (WFin = 1 x Lg) gives unacceptable SCEs, whereas a narrower fin width (WFin = 0.2 x 

Lg) is more difficult to fabricate. So, we can take the moderate one, i.e. WFin = 0.6 x Lg as 

the optimized WFin/Lg ratio. 

6. INVESTIGATION OF ANALOG PERFORMANCE WITH VARIATION OF TEMPERATURE 

 Temperature dependency of the ID is influenced by Vth as (1), the mobility term 

(which is hampered due to scattering effects at high T) of (1) forces ID to decrease, 

whereas the [VGS - Vth] term (improves at higher T as Vth decreases) increases ID with 

increase in temperature. But the behaviour of ID with T shows just adverse response at a 

fixed gate bias voltage. The effects of two controlling terms of (1) are nullified at a fixed 

value of bias voltage, that the inflection point is called temperature compensation point 

(TCP). Fig. 4(a) shows the variations of ID with VGS at different bias temperatures. As for 

equation (1) at high gate bias, µ(T) dominates because of the heavy lattice scattering at 

higher T. It leads to a reduction in the channel mobility which further reduces ID. At low 

gate bias, [VGS - Vth] term influences ID to raise because of the shrinking nature of Vth with 

an increase in T. These two opposite effects cancel out each other at a value of VGS where 

ID shows minimal fluctuation with T. This inflection point as shown in Fig. 4(a) is 

imminent in between VGS = 0.34 V. This creates an opportunity to use multigate 

MOSFETs for integrated circuit applications. 
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 (a) (b) 

Fig. 4 (a) Drain current (ID) as function of Gate Voltage (VGS) both in linear and log scale 

(b) leakage current (Ioff) versus On current (Ion) with variation of temperature. 

 

 Fig. 4(b) presents a plot for the important parameters which includes the variation of 

Ion, Ioff for different temperatures. From the figure, it can be observed that the behaviour 

of Ion and Ioff is absolutely opposite to each other with temperature variation. For high T 

values, the device shows a fairly large Ioff and low Ion, which is just reverse in the case of 

low T. This is because, as temperature increases, the mobility of carrier’s decreases due to 

scattering effects which further reduce Ion. Again the degradation in Ioff at high temperatures is 

due to the lattice vibration and the phonon scattering phenomena play a significant role as 

T increases. 

The gm-VGS plot can simply be obtained by taking the derivative of ID with respect to 

VGS. At VGS < Vth, the channel is weakly inverted and ID is due to diffusion. The diffusion 

current increases with T because of the increase in intrinsic carrier concentration as in 

Einstein’s relation: D = kBT, where D is the diffusion constant, μ stands for mobility, kB 

is Boltzmann’s constant and T represents temperature. At VGS > Vth, the value of gm 

decreases with T due to the mobility degradation. The reduction in Vth with temperature 

enhances gm, however the degradation of mobility reduces gm. These two phenomena 

influence each other to give rise for a temperature compensation point for gm. From Fig. 5 

(a), we can conclude that the value of transconductance ZTC point (0.14 V) is lower than 

the drain current ZTC bias point (0.34 V). The inflection point for ID and gm are two 

important FOM in analog circuit design for both high and low temperature applications. 

In OPAMP (operational amplifier) based circuit design and transistors used in biasing 

string can be biased at inflection point for drain current to maintain a constant DC current 

level. The input devices may be biased at an inflection point for transconductance to 

achieve stable circuit parameters. The above said points are obtained for constant bias 

conditions in case of floating body or body tied configuration MOSFETs. Hence there is 

only one possibility to bias the transistor, i.e. either at inflection point for ID or gm. 

Moreover, this point is usually affected by process variations. Hence, depending upon the 

nature of applications, the bias conditions are picked accordingly. 
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 (a) (b) 

Fig. 5 (a) Transconductance (gm) and (b) Cut off frequency (fT) as a function of Gate 

Voltage (VGS) with variation of temperature. 

 

Cut-off frequency (fT) plays a vital role in evaluating the RF performance of the device 

plotted in Fig. 6. Generally, fT is the frequency at which the current gain is unity [42]. 

   
2

m
T

gg

g
f

C
  (4) 

Where gm, and Cgg are the transconductance, total gate capacitance respectively. The 

enhancement in fT occurs at higher drive current and lower T values. This improvement in fT 

is partially due to the increment in gm and merely because of the low values of intrinsic 

capacitance. At low temperature, the improvement of cut-off frequency fT is due to a steep 

increase in mobility and in turn gm. In addition, it reveals the advantage of the multigate 

technology which exhibits ZTC bias points over a wide range of temperatures (T=25 
o
C to 

225 
o
C). 

 

  
 (a) (b) 

Fig. 6 (a) Intrinsic Gain (AV) versus Cut off frequency (fT) (b) Sweet Spot as a function of 

Drain Current (ID) with variation of  temperature. 
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The intrinsic gain (AV = gm/gd) is a valuable FOM for operational transconductance 

amplifier (OTA) and is shown in Fig. 6 (a). From the graph, a similar type of analysis can 

be made as in the case of gm and gd. From the figure, a high gain can be obtained for high 

temperatures in the subthreshold region and the reverse effect in super threshold region. 

Fig. 6(b) presents one crucial parameter for analog/RF application, i.e. the ‘sweet spot’ 

(settlement among power, speed of operation and linearity), which is signified by the peak 

of transconductance to the current ratio (gm/ID) and cut-off frequency (fT) product. The 

variation of the ‘sweet spot’ with ID for a broad range of T (25 
0
C to 225 

0
C) is well 

examined from Fig. 6(b). The device predicts pretty higher gmfT/ID values at low T and 

gradually starts decaying with the increase in T.   

The extracted static parameters like Ion, Ioff, Ion/Ioff, and power dissipation 

(PD=Ioff*VDD) for a wide range of T variation are arranged in Table 1. All the parameters 

predict significant improvements in the lower range of T values. The performances start 

deteriorating as T increases. There is a 77.04% enhancement in Ioff, 79.01% improvement 

in on-off ratio, and 77.04% in PD, while T steps down from 75 
0
C to 225 

0
C. 

Table 1 Static performance of FinFET with T variation 

 

 

Temp. (0C) Ion (μA) Ioff (nA) Ion/Ioff PD (Ioff*VDD) (W) x10-8 

25 128 16.03 7961.96 1.122 

75 117 69.83 1670.96 4.888 

125 108 211.01 512.33 14.77 

175 101 492.53 205.52 34.47 

225 95.6 950.03 100.64 66.50 

In a similar fashion, Table 2 reveals the dynamic analysis of FinFET towards 

temperature sensitivity. The performances like fT, ‘sweet spot’, energy, and EDP are 

exported and compared for different temperatures. Alike the above discussed static 

performances, the dynamic parameters are also depict numerous enhancements at 

detrimental temperatures.    

Table 2 AC/Dynamic performance of FinFET for different values of T 

Temp. (0C) Cgg (F) 

x10-18 

Peak 

fT 

(GHz) 

Sweet Spot 

(THz/V) 

Delay (CV/Ieff) 

(ps) 

Energy (CV2) 

(J) x10-18 

EDP 

(Js) 

x10-29 

25 92.236 465 23.5 0.506 45.195 2.29 

75 92.178 412 13.8 0.553 45.167 2.5 

125 92.217 370 9.47 0.597 45.186 2.7 

175 92.325 336 6.7 0.638 45.239 2.89 

225 92.422 308 5.05 0.677 45.286 3.06 

7. CONCLUSION 

The DC characteristics of a 20 nm n-channel FinFET for variation in fin width and fin 

height are carried out using Sentaurus device simulator. From the results obtained by 

geometrical parameter variation, we can say that taller fins are required for higher current 
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drivability and narrower fins are required for higher immunization to SCEs. WFin = 0.6 x 

Lg and HFin = 0.8 x Lg cases show the desired device performances in terms of Ion, Ioff. 

When developing novel architectures to enable further miniaturization to meet the ITRS 

requirements, the evaluation of ZTC/TCP is one of the key analysis for optimal device 

operation and reliability. We have systematically analyzed the sensitivity of various 

FinFET performances towards temperature variation. From the presented outcomes of this 

work, it is evident that there exist different inflection points for ID, and gm, which should 

be seriously taken into consideration for FinFET based circuit operation. 
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